共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A biofilter using granular activated carbon with immobilized Paracoccus sp. CP2 was applied to the elimination of 10–250 ppm of trimethylamine (TMA), dimethylamine (DMA), and methylamine (MA). The results indicated that the system effectively treated MA (>93%), DMA (>90%), and TMA (>85%) under high loading conditions, and the maximum degradation rates were 1.4, 1.2, and 0.9 g-N kg−1 GAC d−1. Among the three different amines treated, TMA was the most difficult to degrade and resulted in ammonia accumulation. Further study on TMA removal showed that the optimal pH was near neutral (6.0–8.0). The supply of high glucose (>0.1%) inhibited TMA removal, maybe due to substrate competition. However, complete TMA degradation was achieved under the co-immobilization of Paracoccus sp. CP2 and Arthrobacter sp. CP1 (96%). Metabolite analysis results demonstrated that the metabolite concentrations decreased by a relatively small 27% while the metabolite apparently increased by heterotrophic nitrification of Arthrobacter sp. CP1 in the co-immobilization biofilter. 相似文献
3.
4.
Regine Keymeulen Mikls Grgnyi Kroly Hberger Anda Priksane Herman Van Langenhove 《Atmospheric environment (Oxford, England : 1994)》2001,35(36)
Concentrations of benzene, toluene, ethyl benzene and xylenes (BTEX) in ambient air and in 1 yr old Pinus sylvestris pine needles were monitored along a busy road, petrol station and rural area of Belgium, Hungary and Latvia in a 1 yr period. To test P. sylvestris as a possible biomonitor for the BTEX concentrations, samples were taken in the four seasons. As the distribution of data was not normal, the level of pollution on different sites and seasons was compared and evaluated by non-parametric tests. The measured air concentrations did not differ significantly from one season to another throughout the year. There were, however, differences between sampling places. The C2-alkylbenzene and toluene concentrations in the needles were similar in the autumn/winter and spring/summer periods but a significant decrease in their concentration was observed in every place between winter and spring. This effect was less obvious for toluene. 相似文献
5.
Xiang Peng Jing S. Zhang Ying Y. Li Wen Li Gang M. Xu Yan C. Yan 《Journal of environmental science and health. Part. B》2013,48(7):588-594
A bacterium (Paracoccus sp. YM3) capable of degrading carbofuran was isolated from carbofuran-contaminated sludge. The strain was shown to metabolize carbofuran (50 mg L?1) to carbofuran-7-phenol in minimal salt medium within 6 days in which the pesticide was the only source of carbon. Carbofuran and its main metabolite were analyzed by high performance liquid chromatography (HPLC). The addition of an other carbon source led to accelerated biodegradation. The relevant degrading-enzyme was intracellular and inducible. A tobacco hypersensitivity experiment showed that YM3 could eliminate carbofuran in soils effectively and safely. This is the first report of a Paracoccus sp. that could degrade carbofuran. The present study may provide a basis for biotreatment of wastewaters and bioremediation of carbofuran-contaminated soils. 相似文献
6.
Peng X Zhang JS Li YY Li W Xu GM Yan YC 《Journal of environmental science and health. Part. B》2008,43(7):588-594
A bacterium (Paracoccus sp. YM3) capable of degrading carbofuran was isolated from carbofuran-contaminated sludge. The strain was shown to metabolize carbofuran (50 mg L(-1)) to carbofuran-7-phenol in minimal salt medium within 6 days in which the pesticide was the only source of carbon. Carbofuran and its main metabolite were analyzed by high performance liquid chromatography (HPLC). The addition of an other carbon source led to accelerated biodegradation. The relevant degrading-enzyme was intracellular and inducible. A tobacco hypersensitivity experiment showed that YM3 could eliminate carbofuran in soils effectively and safely. This is the first report of a Paracoccus sp. that could degrade carbofuran. The present study may provide a basis for biotreatment of wastewaters and bioremediation of carbofuran-contaminated soils. 相似文献
7.
Mukherjee AK Bordoloi NK 《Environmental science and pollution research international》2012,19(8):3380-3388
Purpose
The major aromatic constituents of petroleum products viz. benzene, toluene, and mixture of xylenes (BTX) are responsible for environmental pollution and inflict serious public concern. Therefore, BTX biodegradation potential of individual as well as formulated bacterial consortium was evaluated. This study highlighted the role of hydrogen peroxide (H2O2), nitrate, and phosphate in stimulating the biodegradation of BTX compounds under hypoxic condition.Materials and methods
The individual bacterium viz. Bacillus subtilis DM-04 and Pseudomonas aeruginosa M and NM strains and a consortium comprising of the above bacteria were inoculated to BTX-containing liquid medium and in soil. The bioremediation experiment was carried out for 120?h in BTX-containing liquid culture and for 90?days in BTX-contaminated soil. The kinetics of BTX degradation either in presence or absence of H2O2, nitrate, and phosphate was analyzed using biochemical and gas chromatographic (GC) technique.Results
Bacterial consortium was found to be superior in degrading BTX either in soil or in liquid medium as compared to degradation of same compounds by individual strains of the consortium. The rate of BTX biodegradation was further enhanced when the liquid medium/soil was exogenously supplemented with 0.01?% (v/v) H2O2, phosphate, and nitrate. The GC analysis of BTX biodegradation (90?days post-inoculation) in soil by bacterial consortium confirmed the preferential degradation of benzene compared to m-xylene and toluene.Conclusions
It may be concluded that the bacterial consortium in the present study can degrade BTX compounds at a significantly higher rate as compared to the degradation of the same compounds by individual members of the consortium. Further, addition of H2O2 in the culture medium as an additional source of oxygen, and nitrate and phosphate as an alternative electron acceptor and macronutrient, respectively, significantly enhanced the rate of BTX biodegradation under oxygen-limited condition. 相似文献8.
Zhang YP Yang R Xu QJ Mo JH 《Journal of the Air & Waste Management Association (1995)》2007,57(1):94-101
The investigation of the photocatalytic oxidation (PCO) of multicomponent volatile organic compounds (VOCs) is very important to the application of PCO technology, because there is seldom a single VOC component in indoor air. In this paper, the characteristics of binary indoor VOCs, toluene and benzene, were experimentally studied using a mass transfer based method that we developed. The concentration ranges for toluene and benzene were 4.48-27.4 mg/m3 and 1.82-4.08 mg/m3, respectively. We found the following: (1) the PCO of each individual contaminant studied obeys the unimolecular form of the Langmuir-Hinshelwood (L-H) rate form; (2) the PCO of the binary contaminants follow the competitive adsorption L-H rate form; (3) the reaction-coefficient for PCO of individual contaminants differs from that in the competitive adsorption L-H rate form; and (4) the component impact factor of A to B, put forward in this paper, is a useful parameter describing the influence of A on the reaction coefficient of B, and it was found that the impact factor of toluene (a chemically active component) on benzene (a chemically stable component) is high, and the impact factor of benzene on toluene is low. 相似文献
9.
10.
Efficiencies of two lypolytic enzymes (fungal cutinase and yeast esterase) in malathion degradation were investigated. Surprisingly, degradation rate of malathion by fungal cutinase was very high, i.e. almost 60% of initial malathion (500 mg l(-1)) was decomposed within 0.5 h, and nearly 50% of the degraded malathion disappeared within initial 15 min. With the yeast esterase, despite the same concentration, more than 65% of malathion remained even after 2-day treatment. During enzymatic degradation of malathion, two malathion-derived compounds were detected, and time-course changes in composition were also monitored. In the degradation by both fungal cutinase and yeast esterase, two additional organic chemicals were produced from malathion: malathion monoacid (MMA) and malathion diacid (MDA) by ester hydrolysis. Final chemical composition after 2 d was significantly dependent on the enzyme used. Fungal cutinase produced MDA as a major degradation compound. However in the malathion degradation by yeast esterase, an isomer of MMA was produced in abundance in addition to MDA. Toxic effects of malathion and its final degradation products were investigated using various recombinant bioluminescent bacteria. As a result, the degradation products (including MMA) by esterase severely caused membrane damage and inhibition of protein synthesis in bacterial cells, while in the fungal cutinase processes, malathion was significantly degraded to non-toxic MDA after the extended period (2 days). 相似文献
11.
Lee EY Jun YS Cho KS Ryu HW 《Journal of the Air & Waste Management Association (1995)》2002,52(4):400-406
Stenotrophomonas maltophilia T3-c, isolated from a biofilter for the removal of benzene, toluene, ethylbenzene, and xylene (BTEX), could grow in a mineral salt medium containing toluene, benzene, or ethylbenzene as the sole source of carbon. The effect of environmental factors such as initial toluene mass, medium pH, and temperature on the degradation rate of toluene was investigated. The cosubstrate interactions in the BTEX mixture by the isolate were also studied. Within the range of initial toluene mass (from 23 to 70 pmol), an increased substrate concentration increased the specific degradation of toluene by S. maltophilia T3-c. The toluene degradation activity of S. maltophilia T3-c could be maintained at a broad pH range from 5 to 8. The rates at 20 and 40 degrees C were 43 and 83%, respectively, of the rate at 30 degrees C. The specific degradation rates of toluene, benzene, and ethylbenzene by strain T3-c were 2.38, 4.25, and 2.06 micromol/g-DCW/hr. While xylene could not be utilized as a growth substrate by S. maltophilia T3-c, the presence of toluene resulted in the cometabolic degradation of xylene. The specific degradation rate of toluene was increased by the presence of benzene, ethylbenzene, or xylene in binary mixtures. The presence of toluene or xylene in binary mixtures with benzene increased the specific degradation rate of benzene. The presence of ethylbenzene in binary mixtures with benzene inhibited benzene degradation. The presence of more than three kinds of substrates inhibited the specific degradation rate of benzene. All BTEX mixtures, except tri-mixtures of benzene, ethylbenzene, and xylene or mixtures of all four substrates, had little effect on the degradation of ethylbenzene by S. maltophilia T3-c. The utilization preference of the substrates by S. maltophilia T3-c was as follows: ethylbenzene was degraded fastest, followed by toluene and benzene. However, the specific degradation rates of substrates, in order, were benzene, toluene, and ethylbenzene. 相似文献
12.
Biodegradation of endosulfan by Mortieralla sp. strain W8 in soil: Influence of different substrates on biodegradation 总被引:1,自引:0,他引:1
To examine the bioremediation potential of Mortierella sp. strain W8 in endosulfan contaminated soil, the fungus was inoculated into sterilized and unsterilized soil spiked with endosulfan. Wheat bran and cane molasses were used as substrates to understand the influence of different organic materials on the degradation of endosulfan in soil. Strain W8 degraded α- and β-endosulfan in both sterilized and unsterilized soil. In unsterilized soil with wheat bran+W8, α- and β- endosulfan were degraded by approximately 80% and 50%, respectively after 28 d incubation against the initial endosulfan concentration (3 mg kg(-1) dw). The corresponding values for α- and β-endosulfan degradation with wheat bran only were 50% and 3%. Endosulfan diol metabolite was detected after 14 d incubation in wheat bran+W8 whereas it was not found with wheat bran only. Production of endosulfan sulfate, the main metabolite of endosulfan, was suppressed with wheat bran+W8 treatment compared with wheat bran only. It was demonstrated that wheat bran is a more suitable substrate for strain W8 than cane molasses. Wheat bran+W8 is a superior fungus and substrate mix for bioremediation in soil contaminated with endosulfan. 相似文献
13.
Biodegradation of crystal violet by a Shewanella sp. NTOU1 总被引:2,自引:0,他引:2
A bacterial isolate, strain NTOU1, originally isolated from the cooling system in an oil refinery could decolorize and detoxify crystal violet under anaerobic conditions. The strain was characterized and identified as a member of Shewanella decolorationis based on Gram staining, morphology characters, biochemical tests, the 16S rRNA gene and the gyrase subunit beta gene (gyrB). The optimum pH value and temperature for decolorization of crystal violet by this strain under anaerobic conditions were pH 8-9 and 30-40 degrees C, respectively. Formate (20 mM) was the best electron donor. Addition of ferric citrate did not inhibit decolorization of crystal violet, the addition of thiosulfate, ferric oxide, or manganese oxide slightly decreased decolorization, while addition of nitrite (20 mM) inhibited the decolorization of crystal violet. By supplementing the medium with formate and ferric citrate and cultivating it under optimum pH and temperature, this strain could remove crystal violet, at a concentration of 1500 mg l(-1), at the rate of 298 mg l(-1) h(-1) (during decolorization the OD(600) of the cell culture increased from approximately 0.6 to approximately 1.2). GC/MS analysis of the degradation products of crystal violet detected the presence of N,N'-bis(dimethylamino) benzophenone (Michler's Ketone), [N,N-dimethylaminophenyl] [N-methylaminophenyl] benzophenone, N,N-dimethylaminobenzaldehyde, N,N-dimethylaminophenol, and 4-methylaminophenol. These results suggest that crystal violet was biotransformed into N,N-dimethylaminophenol and Michler's Ketone prior to further degradation of these intermediates. This paper proposes a probable pathway for the degradation of crystal violet by this Shewanella sp. Cytotoxicity and antimicrobial tests showed that the process of decolorization also detoxify crystal violet. 相似文献
14.
This review provides a summary of methods for treating soils contaminated with polychlorinated aromatic compounds, especially polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Unlike many other soil pollutants, PCDD/Fs bind tightly to the soil, which severely reduces the efficiency of most aqueous treatment procedures and leaves few realistic alternatives besides the traditional containment techniques (landfill, solidification/stabilization, and in situ vitrification). Incineration has long been, and still is, the most efficient destruction technique, with a removal efficiency of >99.9999%. However, supercritical water oxidation, base-catalyzed decomposition, steam distillation, and various extraction techniques, such as solvent and liquefied gas and subcritical water extraction, may provide removal efficiencies of >95%. Many of the alternative techniques are expected to be cheaper than incineration and may therefore be attractive for moderately polluted soils. However, some of them are at an early stage of development and need to be further tested before their true potential can be assessed. 相似文献
15.
AIDONG RUAN HANG MIN WEI ZHU 《Journal of environmental science and health. Part. B》2013,48(7):1159-1170
A nicotine-degrading bacterium, strain HF-2, was isolated from tobacco waste-contaminated soil and identified as a member of Arthrobacter sp. based on morphology, physiological tests, 16S rDNA sequence and phylogenetic characteristics. At thermal denaturation test indicated that the G + C mol% of strain HF-1 was 63.5. The relationship between the growth of the isolate and the nicotine degradation suggested that strain HF-2 could utilize nicotine as sole sources of carbon, nitrogen and energy. Blue pigment was observed during the nicotine degradation by strain HF-2. The isolate grew well at 20 to 33°C, initial pH 6.5 to 8.0 and 0.5 to 2.0 g L?1 of nicotine concentration in the nicotine inorganic salt media. The maximum growth and nicotine degradation occurred at 30°C, initial pH 7.0 and 0.7 g·L?1 of nicotine concentration in media under natural incubation condition. Strain HF-2 could degrade 100% of nicotine under the optimized incubation conditions for 43 h. The concentrations of nicotine were monitored by high performance liquid chromatography. This study demonstrates Arthrobacter sp. strain HF-2 had a great ability to degrade nicotine, and it may be available for the application to the bioremediation of environments contaminated by tobacco waste. 相似文献
16.
A co-culture consisting of Hydrogenophaga sp. PBC and Ralstonia sp. PBA, isolated from textile wastewater treatment plant could tolerate up to 100 mM 4-aminobenzenesulfonate (4-ABS) and utilize it as sole carbon, nitrogen and sulfur source under aerobic condition. The biodegradation of 4-ABS resulted in the release of nitrogen and sulfur in the form of ammonium and sulfate respectively. Ninety-eight percent removal of chemical oxygen demand attributed to 20 mM of 4-ABS in cell-free supernatant could be achieved after 118 h. Effective biodegradation of 4-ABS occurred at pH ranging from 6 to 8. During batch culture with 4-ABS as sole carbon and nitrogen source, the ratio of strain PBA to PBC was dynamic and a critical concentration of strain PBA has to be reached in order to enable effective biodegradation of 4-ABS. Haldane inhibition model was used to fit the degradation rate at different initial concentrations and the parameters μmax, Ks and Ki were determined to be 0.13 h−1, 1.3 mM and 42 mM respectively. HPLC analyses revealed traced accumulation of 4-sulfocatechol and at least four unidentified metabolites during biodegradation. This is the first study to report on the characterization of 4-ABS-degrading bacterial consortium that was isolated from textile wastewater treatment plant. 相似文献
17.
UV Fourier transform measurements of tropospheric O3, NO2, SO2, benzene, and toluene. 总被引:2,自引:0,他引:2
A C Vandaele A Tsouli M Carleer R Colin 《Environmental pollution (Barking, Essex : 1987)》2002,116(2):193-201
Using the differential optical absorption spectroscopy (DOAS) technique and a Fourier transform spectrometer, NO2, SO2, O3, benzene. and toluene were measured during three measurement campaigns held in Brussels in 1995, 1996, and 1997. The O3 concentrations could be explained as the results of the local photochemistry and the dynamical properties of the mixing layer. NO2 concentrations were anti-correlated to the O3 concentrations, as expected. SO2 also showed a pronounced dependence on car traffic. Average benzene and toluene concentrations were, respectively 1.7 ppb and between 4.4 and 6.6 pbb, but high values of toluene up to 98.8 ppb were observed. SO2 concentrations and to a lesser extent, those of NO2 and 03, were dependent on the wind direction. Ozone in Brussels has been found to be influenced by the meteorological conditions prevailing in central Europe. Comparisons with other measurements have shown that 03 and SO2 data are in general in good agreement, but our NO2 concentrations seem to be generally higher. 相似文献
18.
Chao Xu Jinghui Ding Jiguo Qiu Yun Ma 《Journal of environmental science and health. Part. B》2013,48(11):960-966
A highly effective acetochlor-degrading bacterial strain (D-12) was isolated from the soil of a pesticide factory. The strain was identified as Achromobacter sp. based on its 16S rRNA gene sequence. The strain D-12 optimally degrades acetochlor at a pH of 7.0 and a temperature of 30°C in a mineral salts medium (MSM). Approximately 95% of acetochlor was degraded by the stain treated at a concentration of 10 mg L?1 after 5 days of incubation. A chiral high performance liquid chromatography (HPLC) system was used to study the enantioselectivity during the process. However, no obvious enantioselective biodegradation was observed. The primary biodegradation acetochlor products were identified by high-performance liquid chromatography-mass spectroscopy (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS). The results indicated that the strain D-12 could be applied in the bioremediation of an acetochlor-polluted environment. 相似文献
19.
Hao Zhang Yubin Zhang Zhiguang Hou Xian Wu Henan Gao Fengjie Sun 《Journal of environmental science and health. Part. B》2013,48(2):79-86
By enrichment culturing of soil contaminated with metribuzin, a highly efficient metribuzin degrading bacterium, Bacillus sp. N1, was isolated. This strain grows using metribuzin at 5.0% (v/v) as the sole nitrogen source in a liquid medium. Optimal metribuzin degradation occurred at a temperature of 30ºC and at pH 7.0. With an initial concentration of 20 mg L?1, the degradation rate was 73.5% in 120 h. If the initial concentrations were higher than 50 mg L?1, the biodegradation rates decreased as the metribuzin concentrations increased. When the concentration was 100 mg L?1, the degradation rate was only 45%. Degradation followed the pesticide degradation kinetic equation at initial concentrations between 5 mg L?1 and 50 mg L?1. When the metribuzin contaminated soil was mixed with strain N1 (with the concentration of metribuzin being 20 mg L?1 and the inoculation rate of 1011 g?1 dry soil), the degradation rate of the metribuzin was 66.4% in 30 days, while the degradation rate of metribuzin was only 19.4% in the control soil without the strain N1. These results indicate that the strain N1 can significantly increase the degradation rate of metribuzin in contaminated soil. 相似文献
20.
The capability of different white rot (WR, Heterobasidion annosum, Phanerochaete chrysosporium, Trametes versicolor) and ectomycorrhizal (ECM, Paxillus involutus, Suillus bovinus) fungal species to degrade different aromatic compounds and the absorption of 3-chlorobenzoic acid (3-CBA) by ECM pine seedlings was examined. The effect of aromatic compounds on the fungal biomass development varied considerably and depended on (a) the compound, (b) the external concentration, and (c) the fungal species. The highest effect on the fungal biomass development was observed for 3-CBA. Generally the tolerance of WR fungi against aromatic compounds was higher than that of the biotrophic fungal species. The capability of different fungi to degrade aromatic substances varied between the species but not generally between biotrophic and saprotrophic fungi. The highest degradation capability for aromatic compounds was detected for T. versicolor and H. annosum, whereas for Phanerochaete chrysosporium and the ECM fungi lower degradation rates were found. However, Paxillus involutus and S. bovinus showed comparable degradation rates at low concentrations of benzoic acid and 4-hydroxybenzoic acid. In contrast to liquid cultures, where no biodegradation of 3-CBA by S. bovinus was observed, mycorrhizal pines inoculated with S. bovinus showed a low capability to remove 3-CBA from soil substrates. Additional X-ray microanalytical investigations showed, that 3-CBA supplied to mycorrhizal plants was accumulated in the root cell cytoplasm and is translocated across the endodermis to the shoot of mycorrhizal pine seedlings. 相似文献