首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用不同的生化-物化组合工艺处理棉浆黑液试验结果表明,先生化处理后进行酸析、中和的工艺比先酸析、中和后生化处理工艺的效果更好,棉浆黑液的总CODCr及色度去除率可分别达88%和95%左右;与化学混凝工艺相比,酸析工艺可以实现"以废治废",节约污水处理运行成本.经酸析、中和工艺处理后的废水与0.4%的聚合硫酸铝铁进行混凝处理后,废水的COD单元去除率仍可达50%以上,色度降低了4倍.  相似文献   

2.
FeSO4/H2O2/UV体系处理化纤厂棉浆粕黑液的研究   总被引:1,自引:0,他引:1  
Fenton法是处理难降解有毒有机污染物的一种有效的方法.以棉浆粕黑液为研究对象,讨论了H2O2和FeSO4投加量、pH值、搅拌时间等因素对废水CODCr去除率的影响,将紫外光照引入Fenton试剂能提高废水中有毒有机污染物的降解速度,提高氧化能力 .实验确定了最佳工艺条件:pH=7,FeSO4投加量4 g/L,H2O2投加量为1.13%(V/V),搅拌时间15 min,此时CODCr去除率达到66.96%.  相似文献   

3.
研究了SBR法处理颜料中间体高浓度有机废水时,污泥浓度、曝气时间、pH等参数对该工艺处理效果的影响.结果表明,当SBR周期为8 h(进水0.2 h,反应6 h,沉淀1 h,排水0.5 h,闲置0.3 h), MLSS为2-4 g/L,进水CODCr1.2 g/L,pH 7.00-8.50时,COD去除率可达70%.  相似文献   

4.
研究吸附时间、pH值、温度、Cr(Ⅵ)初始浓度等因素对活性啤酒酵母吸附Cr(Ⅵ)的影响及最佳条件.采用制备的啤酒酵母菌体吸附剂在摇床(145 r/min)中对Cr(Ⅵ)进行吸附试验,当吸附时间分别为5 min、10 min、20 min、30 min、60 min、120 min、180 min、240 min和300 min时,Cr(Ⅵ)去除率随吸附时间的增加而增加并趋于稳定;当吸附4 h时,去除率达到最大值94.33%,而当吸附1 h时,去除率可达到最大去除率的94.67%.当溶液pH值分别为0.5、1、2、3、4、5、6、7、8、9和10时,33 ℃下去除率随着溶液pH值的增加先增大后减小;当pH=2时吸附效果最好,去除率达到99.31%.吸附温度为25 ℃、33 ℃和40 ℃时,去除率随着温度的升高而增加,但温度过高会使啤酒酵母失活且能耗较大,而常温吸附即可达到较高的去除率(78.19%).当Cr(Ⅵ)初始质量浓度分别为15 mg/L、20 mg/L、25 mg/L、30 mg/L、35 mg/L和40 mg/L时,去除率总体上随着Cr(Ⅵ)质量浓度的增加而减小.本研究可为含Cr(Ⅵ)废水的生物吸附处理提供指导.  相似文献   

5.
A/DAT-IAT生物膜法处理高含盐废水   总被引:1,自引:0,他引:1  
以含盐量为60 000mg/L(以NaCl计)的模拟工业废水为研究对象,利用A/DAT-IAT生物膜反应器,研究A/DAT-IAT工艺对投加悬浮填料后高含盐废水的处理,并以CODCr、NH4 -N、PO43--P等作为指标评价处理效果.试验结果表明,在总水力停留时间(HRT)为13 h、pH=7,5、25℃条件下,进水ρ(CODCr)、ρ(NH4 -N)和ρ(PO43--P)分别为907.4~1 210.0 mg/L、86.2~99.7 mg/L和3.6~5.1 mg/L.CODCr、NH4 -N和PO43--P的平均去除率分别为73.9%、38.6%和93.5%,平均出水SS为198 mg/L,其中CODCr和PO43--P的去除效果较好.研究表明,A/DAT-IAT生物膜法较其他活性污泥法有了较大的提高.  相似文献   

6.
采用好氧序批式生物反应(SBR)工艺,经过接种、驯化后,对TATB废水生物降解规律进行研究。通过单因素试验,探索了进水CODCr、曝气时间、温度、p H值等因素对废水CODCr去除率的影响规律,确定了正交试验的各因素水平,进而设计正交试验,研究TATB生物降解的最佳条件。结果表明,除温度外,各因素对CODCr去除率的影响均存在峰值点,进水CODCr对CODCr去除率的影响最明显。进水TATB质量浓度(以CODCr计)为800 mg/L时,有机负荷约为0.48kg BOD/(kg MLSS·d),满足间歇出水循环延时曝气系统(ICEAS,一种改良的SBR)活性污泥法所要求的经验值0.4~0.5kg BOD/(kg MLSS·d);高于800 mg/L时,高质量浓度TATB的毒性及较高的负荷均对微生物有抑制作用。在静置40 min后,合适的曝气时间为40 min,曝气时间太短使微生物无法充分利用有机物,太长则使微生物进入内源呼吸期,导致微生物量减少,破坏处理条件,甚至导致丝状菌膨胀,出水恶化。—NH2基团为供电子基,酸性条件下,使苯环上的电子云密度增大,表现出更好的可降解性,抵消—NO2的抑制作用。因此p H=6.0时,CODCr去除率较高。综合考虑实际处理条件,水温以18~35℃为宜。最佳处理条件时CODCr去除率为89.08%。  相似文献   

7.
改进的MBR对渗滤液的TN和NH3-N平均去除率分别达72.98%和90.1%。试验现象和数据表明,同步硝化反硝化是TN和NH3-N去除的最主要原因。同步硝化反硝化的发生在于3个方面:①膜的截留作用能使世代时间较长的硝化菌和反硝化菌富集;②在MBR内,废水在时间顺序上和空间位置上反复经历缺氧、好氧环境;③有利的操作条件,如维持MBR内MLSS为8 500 mg/L左右、温度为22~30℃、pH值为7.0~7.5、升流区的DO为2~2.5 mg/L等。  相似文献   

8.
微电解法对高浓度染料废水的脱色作用研究   总被引:1,自引:0,他引:1  
以难生化降解的甲基橙为实验染料,采用铁碳微电解法对高浓度染料废水脱色进行模拟实验.主要研究了水力停留时间(HRT)、温度和pH值对色度去除率的影响和铁碳床的再生条件.室温(20℃)条件下,最佳实验条件为:HRT=30 min,pH=5-6,铁碳床运行周期为20 h.废水温度提高有利于提高脱色效果.实验结果表明,400mg/L的甲基橙实验水样,在最佳实验条件下经过微电解法处理,色度去除率可达85%以上,CODCr去除率达到30%左右.在相同实验条件下,铁碳微电解法处理混合染料废水,色度去除率降低到64.7%.铁碳床运行失效后,用6%~8%的稀硫酸循环再生1 h,可继续使用,运行效果良好,但运行周期有所缩短.  相似文献   

9.
以味精厂废水厌氧污泥混合普通活性污泥作为接种污泥,采用味精废水在SBR反应器内培养好氧颗粒污泥,通过预曝气调整进水负荷,经95 d成功培养出好氧颗粒污泥。培养出的颗粒污泥呈黄色,轮廓整齐,平均粒径为0.5 mm,对COD和氨氮的平均去除率高达91.8%和96.6%,反应器内SVI值保持在20mL/g左右,污泥质量浓度达8 000 mg/L左右。  相似文献   

10.
不同类型反应器好氧颗粒污泥培养过程研究   总被引:1,自引:0,他引:1  
在SBR、非理想PF及CSTR反应器中接种普通活性污泥,控制反应条件:溶解氧DO 2.0 mg/L左右,pH值8.0左右,温度(25±0.2)℃,经过80 d左右时间,3个反应器中均成功培养出好氧颗粒污泥,最大颗粒污泥粒径达到2.5 mm左右。成熟好氧颗粒污泥具有较好的COD去除及脱氮能力。SBR反应器COD去除率稳定在95%~97%,氨氮去除率超过92%;PF反应器COD去除率达到95%~98%,氨氮去除率最高为98%;CSTR反应器COD去除率稳定在88%~90%,氨氮去除率超过90%。SBR反应器TN去除率最高,达到70%~78%,PF反应器TN去除率为65%~70%,CSTR反应器TN去除率达到55%~62%。3个反应器均发生全程同步硝化反硝化。  相似文献   

11.
有机膨润土对对硝基苯酚吸附性能的研究   总被引:3,自引:0,他引:3  
以溴化十六烷基三甲铵(CTMAB)和溴化十六烷基吡啶(CPB)两种表面活性剂对钠基膨润土进行有机改性,研究了改性后的有机膨润土的用量、介质pH值、作用时间、溶液中对硝基苯酚的浓度等因素对膨润土去除对硝基苯酚的影响.结果表明:同一浓度条件下,CTMAB-有机膨润土对对硝基苯酚的去除率和吸附量均比CPB-有机膨润土高;当对硝基苯酚溶液pH在2-10范围内,2种有机膨润土对对硝基苯酚的吸附性能变化不大,但当pH上升到12时,2种有机膨润土对对硝基苯酚去除率分别下降20.5%和36.2%.2种有机膨润土对对硝基苯酚的吸附可用Freundlich方程加以描述.  相似文献   

12.
研究了内电解法动态处理3种染料废水的工艺条件,如反应时间、pH值、铁屑投加量、铁屑粉煤灰比例等.在最佳工艺条件下,动态内电解法处理混合染料废水,色度去除达95%,CODCr去除率也达70%.并讨论了铁屑-粉煤灰内电解法处理染料废水的机理.  相似文献   

13.
以钛板为电极,以硝基苯模拟废水作为研究对象,考察了硝基苯溶液的初始浓度、支持电解质的种类及浓度、电解时间、外加电压及溶液初始pH值等因素对电化学降解硝基苯的影响。研究结果表明,在硝基苯初始质量浓度为60 mg/L,投加浓度为0.02 mol/L的NaCl为支持电解质,溶液初始pH为6,外加20 V电压的条件下,电解2.5 h,硝基苯COD_(Cr)去除率可达95%。在此基础之上,对硝基苯的降解过程的机理及产物进行了初步探讨。  相似文献   

14.
运用混凝/平板膜光催化联合反应器工艺对穿越自然保护区的高速公路桥面雨水径流进行处理。首先,利用混凝沉淀将雨水中的悬浮物(SS)和CODCr进行去除。以SS、CODCr为去除对象,通过试验对聚合氯化铝(PAC)和聚合硫酸铝(PAS)两种混凝剂进行性能测定和比选,考察混凝剂的处理效果,以确定合适的混凝剂。结果显示,混凝剂PAS对雨水的处理效果好。经药剂混凝之后的水再用平板膜光催化反应器进行处理,其中膜技术可以将小分子及剩余SS去除,光催化技术可以将难降解物质去除,同时光催化技术中紫外灯可将出水中的细菌消灭,达到光催化降解污染物和消毒的双重功效。在最佳工艺运行条件即100 mg/L混凝剂聚合硫酸铝(PAS)投量下,经曝气量250L/(m2·h)、停留时间20 min的光催化平板膜反应器处理后,出水SS、CODCr去除率分别为100%和94.5%,可达到地表水环境质量标准(GB 3838—2002)Ⅱ类水的水质要求。  相似文献   

15.
降膜法脱氨氮的技术可行性及影响因素浅析   总被引:1,自引:0,他引:1  
对煤气化废水的特性和处理现状进行了阐述和分析,总结了降膜技术在煤气化高氨氮废水中的脱氮效果和液泛气速、膜厚、pH值、温度的关系。研究表明,降膜技术可将氨氮去除率提高到95%以上,同时降低调整pH值的药剂成本,并有效缓解结垢现象,在类似工业废水处理项目中具有较好的推广应用价值。  相似文献   

16.
采用超声/Fenton技术处理三氯吡啶醇钠生产过程中产生的高浓度有机废水。通过正交试验确定超声/Fenton氧化最佳操作参数为H2O2投加量0.7 mol/L、Fe2+投加量1.39 g/L、反应时间90 min,此时COD降解率达95.3%。结果表明,Fe2+投加量是影响CODCr去除率最主要的因素。结合气相色谱-质谱联用仪检测,分析了超声/Fenton反应前后产物,初步探讨了超声/Fenton氧化法处理三氯吡啶醇钠废水的反应历程:在·OH作用下,氯苯与苯环转化为氯乙烯等小分子物质;氯乙烯发生加氢反应,进而转化为氯乙烷、氯甲烷。氯原子能够被·OH氧化为Cl·,并通过氢原子取代反应,将氯乙烯转化为1,1-二氯乙烯。  相似文献   

17.
电凝聚-气浮法对印染废水脱色的实验研究   总被引:1,自引:0,他引:1  
采用电凝聚-气浮法对印染废水进行脱色处理,主要考察了废水的pH值、电流强度、电凝聚时间等因素对印染废水色度去除率的影响.实验结果表明:当进水pH=6-7、电流强度I=1.5 A、电凝聚时间t=20 min时,废水的色度去除率可达90%以上.该方法具有较宽的操作范围,电流强度在1.0-2.5 A范围内,废水色度去除率相差不大;进水pH在5-8范围内,废水色度去除率可达到80%以上.  相似文献   

18.
膜生物反应器处理生活污水的试验条件研究   总被引:1,自引:0,他引:1  
研究了用MBR处理生活污水时,不同曝气时间、不同污泥浓度对生活污水中CODCr去除效果的影响,同时对比了膜出水和上清液的实验数据。实验结果表明,曝气7 h以后系统对CODCr的去除趋于稳定,污泥质量浓度在7-8 mg/L之间时,CODCr可以达到排放标准。操作简单,出水水质稳定,有很强的推广意义。  相似文献   

19.
采用MBBR-A2O/MBR(又称BCO-MBR)工艺,对水质特征呈现低碳源高氮磷、水质波动大和日变化系数大等特点的农村生活污水进行研究。对比MBBR-A2O/MBR工艺在5种不同水力停留时间下的(0.42 d、0.50 d、0.75 d、1.25 d、1.50 d)运行状况,挑选出最佳的水力停留时间,并利用Lawrence-McCarty模型构建该工艺的污染物降解动力学方程。结果表明,随着水力停留时间(HRT)的延长,MBBR-A2O/MBR工艺对污染物的去除效果逐渐提升。当HRT为1.25d,CODCr、NH3H、TN、TP平均进水质量浓度分别280.67mg/L、36.88 mg/L、50.59 mg/L、2.51 mg/L时,平均出水质量浓度分别为34.33 mg/L、3.19 mg/L、5.13 mg/L、0.63 mg/L,平均去除率分别可达87.86%、89.92%、89.85%、74.95%。CODCr、NH3H、TN出水质量浓度在城镇污水排放标准一级A限值以下,TP出水质量浓度达到一级B标准,因此确定最佳的HRT为1.25 d。污染物降解动力学计算所得模拟值与实际出水质量浓度测量值拟合度良好,其中CODCr模拟值与平均测量值一致性最高,相对误差在0.02~0.14,NH3H与TN的相对误差分别在0.19~0.60和0.1~0.33。这表明污染物降解动力学方程可以较好地模拟工艺出水的污染物质量浓度。CODCr降解动力学方程常数为Vmax=0.19 d-1,KS=82.97 mg/L;NH3H降解动力学方程常数为Vmax=0.02d-1,KS=8.49 mg/L;TN降解动力学方程常数为Vmax=0.024 d-1,KS=8.10 mg/L。研究的动力学常数与传统活性污泥法动力学常数相比,KS较高,而Vmax较低,导致Vmax较低的主要原因可能是测定的污泥质量浓度高于实际有效的质量浓度。研究对利用MBBR-A2O/MBR工艺处理农村生活污水和传统活性污泥工艺提标改造具有一定的应用参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号