首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: We examine the potential for nutrient limitation of algal periphyton biomass in blackwater streams draining the Georgia coastal plain. Previous studies have investigated nutrient limitation of planktonic algae in large blackwater rivers, but virtually no scientific information exists regarding how algal periphyton respond to nutrients under different light conditions in smaller, low‐flow streams. We used a modification of the Matlock periphytometer (nutrient‐diffusing substrata) to determine if algal growth was nutrient limited and/or light limited at nine sites spanning a range of human impacts from relatively undisturbed forested basins to highly disturbed agricultural sites. We employed four treatments in both shaded and sunny conditions at each site: (1) control, (2) N (NO3‐N), (3) P (PO4‐P), and (4) N + P (NO3‐N + PO4‐P). Chlorophyll a response was measured on 10 replicate substrates per treatment, after 15 days of in situ exposure. Chlorophyll a values did not approach what have been defined as nuisance levels (i.e., 100‐200 mg/m2), even in response to nutrient enrichment in sunny conditions. For Georgia coastal plain streams, algal periphyton growth appears to be primarily light limited and can be secondarily nutrient limited (most commonly by P or N + P combined) in light gaps and/or open areas receiving sunlight.  相似文献   

2.
Hughes, Robert M., Alan T. Herlihy, and Philip R. Kaufmann, 2010. An Evaluation of Qualitative Indexes of Physical Habitat Applied to Agricultural Streams in Ten U.S. States. Journal of the American Water Resources Association (JAWRA) 46(4): 792-806. DOI: 10.1111/j.1752-1688.2010.00455.x Abstract: Assessment of stream physical habitat condition is important for evaluating stream quality globally. However, the diversity of metrics and methods for assessing physical habitat condition confounds comparisons among practitioners. We surveyed 51 previously sampled stream sites (0.0-6.3 m wide) located in regions of row-crop agriculture in Oregon, California, North Dakota, South Dakota, Nebraska, Iowa, Minnesota, Pennsylvania, Maryland, and West Virginia to evaluate the comparability of four indexes of physical habitat condition relative to each other. We also compared the indexes to previously calculated indexes of fish and macroinvertebrate condition. The physical habitat indexes included the Stream Visual Assessment Protocol Version 2 of the Natural Resources Conservation Service, the qualitative habitat evaluation index of the Ohio Environmental Protection Agency, the rapid bioassessment protocol of the United States Environmental Protection Agency (USEPA), and a qualitative physical habitat index based on USEPA quantitative physical habitat measurements. All four indexes were highly correlated with each other, but low-to-moderately correlated with biotic index scores for fish and macroinvertebrate assemblages. Moderately high correlations occurred between some macroinvertebrate biotic index scores and quantitative metrics. We conclude that additional research is needed to increase the predictive and diagnostic capabilities of qualitative physical habitat indexes.  相似文献   

3.
Maret, Terry R., Christopher P. Konrad, and Andrew W. Tranmer, 2010. Influence of Environmental Factors on Biotic Responses to Nutrient Enrichment in Agricultural Streams. Journal of the American Water Resources Association (JAWRA) 46(3):498-513. DOI: 10.1111/j.1752-1688.2010.00430.x Abstract: The influence of environmental factors on biotic responses to nutrients was examined in three diverse agricultural regions of the United States. Seventy wadeable sites were selected along an agricultural land use gradient while minimizing natural variation within each region. Nutrients, habitat, algae, macroinvertebrates, and macrophyte cover were sampled during a single summer low-flow period in 2006 or 2007. Continuous stream stage and water temperature were collected at each site for 30 days prior to sampling. Wide ranges of concentrations were found for total nitrogen (TN) (0.07-9.61 mg/l) and total phosphorus (TP) (<0.004-0.361 mg/l), but biotic responses including periphytic and sestonic chlorophyll a (RCHL and SCHL, respectively), and percent of stream bed with aquatic macrophyte (AQM) growth were not strongly related to concentrations of TN or TP. Pearson’s coefficient of determination (R2) for nutrients and biotic measures across all sites ranged from 0.08 to 0.32 and generally were not higher within each region. The biotic measures (RCHL, SCHL, and AQM) were combined in an index to evaluate eutrophic status across sites that could have different biotic responses to nutrient enrichment. Stepwise multiple regression identified TN, percent canopy, median riffle depth, and daily percent change in stage as significant factors for the eutrophic index (R2 = 0.50, p < 0.001). A TN threshold of 0.48 mg/l was identified where eutrophic index scores became less responsive to increasing TN concentrations, for all sites. Multiple plant growth indicators should be used when evaluating eutrophication, especially when streams contain an abundance of macrophytes.  相似文献   

4.
Non-structural streambank stabilization, or bioengineering, is a common stream restoration practice used to slow streambank erosion, but its ecological effects have rarely been assessed. We surveyed bank habitat and sampled bank macroinvertebrates at four bioengineered sites, an unrestored site, and a comparatively less-impacted reference site in the urban Peachtree-Nancy Creek catchment in Atlanta, GA, USA. The amount of organic bank habitat (wood and roots) was much higher at the reference site and three of the bioengineered sites than at the unrestored site or the other bioengineered site, where a very different bioengineering technique was used (“joint planting”). At all sites, we saw a high abundance of pollution-tolerant taxa, especially chironomids and oligochaetes, and a low richness and diversity of the bank macroinvertebrate community. Total biomass, insect biomass, and non-chironomid insect biomass were highest at the reference site and two of the bioengineered sites (p < 0.05). Higher biomass and abundance were found on organic habitats (wood and roots) versus inorganic habitats (mud, sand, and rock) across all sites. Percent organic bank habitat at each site proved to be strongly positively correlated with many factors, including taxon richness, total biomass, and shredder biomass. These results suggest that bioengineered bank stabilization can have positive effects on bank habitat and macroinvertebrate communities in urban streams, but it cannot completely mitigate the impacts of urbanization.  相似文献   

5.
Abstract: In 2003, we compared two benthic macroinvertebrate sampling methods that are used for rapid biological assessment of wadeable streams. A single habitat method using kick sampling in riffles and runs was compared to a multiple habitat method that sampled all available habitats in proportion of occurrence. Both methods were performed side‐by‐side at 41 sites in lower gradient streams of the Piedmont and Northern Piedmont ecoregions of the United States, where riffle habitat is less abundant. Differences in sampling methods were examined using similarity indices, two multimetric indices [the family‐level Virginia Stream Condition Index (VSCI) and the species‐level Macroinvertebrate Biotic Integrity Index (MBII)], their component metrics, and bioassessment endpoints based on each index. Index scores were highly correlated between single and multiple habitat field methods, and sampling method comparability, based on comparison of similarities between and within sampling methods, was particularly high for species level data. The VSCI scores and values of most of its component metrics were not significantly higher for one particular method, but relationships between single and multiple habitat values were highly variable for percent Ephemeroptera, percent chironomids, and percent Plecoptera and Trichoptera (Hydropsychidae excluded). A similar level of variability in the relationship was observed for the MBII and most of its metrics, but Ephemeroptera richness, percent individuals in the dominant five taxa, and Hilsenhoff Biotic Index scores all exhibited differences in values between single and multiple habitat field methods. When applied to multiple habitat samples, the MBII exhibited greater precision, higher index scores, and higher assessment categories than when applied to single habitat samples at the same sites. In streams with limited or no riffle habitats, the multiple habitat method should provide an adequate sample for biological assessment, and at sites with abundant riffle habitat, little difference would be expected between the single and multiple habitat field methods. Thus, in geographic areas with a wide variety of stream types, the multiple habitat method may be more desirable. Even so, the variability in the relationship between single and multiple habitat methods indicates that the data are not interchangeable, and we suggest that any change in sampling method should be accompanied by a recalibration of any existing assessment tool (e.g., multimetric index) with data collected using the new method, regardless of taxonomic level.  相似文献   

6.
/ Fish and macroinvertebrate assemblage composition, instream habitat features and surrounding land use were assessed in an agriculturally developed watershed to relate overall biotic condition to patterns of land use and channel structure. Six 100-m reaches were sampled on each of three first-order warm-water tributaries of the River Raisin in southeastern Michigan. Comparisons among sites and tributaries showed considerable variability in fish assemblages measured with the index of biotic integrity, macroinvertebrate assemblages characterized with several diversity indexes, and both quantitative and qualitative measurements of instream habitat structure. Land use immediate to the tributaries predicted biotic condition better than regional land use, but was less important than local habitat variables in explaining the variability observed in fish and macroinvertebrate assemblages. Fish and macroinvertebrates appeared to respond differently to landscape configuration and habitat variables as well. Fish showed a stronger relationship to flow variability and immediate land use, while macroinvertebrates correlated most strongly with dominant substrate. Although significant, the relationships between instream habitat variables and immediate land use explained only a modest amount of the variability observed. A prior study of this watershed ascribed greater predictive power to land use. In comparison to our study design, this study covered a larger area, providing greater contrast among subcatchments. Differences in outcomes suggests that the scale of investigation influences the strength of predictive variables. Thus, we concluded that the importance of local habitat conditions is best revealed by comparisons at the within-subcatchment scale. KEY WORDS: Stream; Biomonitoring; Land use; Scale; Habitat; Fish; Macroinvertebrates  相似文献   

7.
Worldwide, the ecological condition of streams and rivers has been impaired by agricultural practices such as broadscale modification of catchments, high nutrient and sediment inputs, loss of riparian vegetation, and altered hydrology. Typical responses include channel incision, excessive sedimentation, declining water quality, and loss of in-stream habitat complexity and biodiversity. We review these impacts, focusing on the potential benefits and limitations of wood reintroduction as a transitional rehabilitation technique in these agricultural landscapes using Australian examples. In streams, wood plays key roles in shaping velocity and sedimentation profiles, forming pools, and strengthening banks. In the simplified channels typical of many agricultural streams, wood provides habitat for fauna, substrate for biofilms, and refuge from predators and flow extremes, and enhances in-stream diversity of fish and macroinvertebrates.Most previous restoration studies involving wood reintroduction have been in forested landscapes, but some results might be extrapolated to agricultural streams. In these studies, wood enhanced diversity of fish and macroinvertebrates, increased storage of organic material and sediment, and improved bed and bank stability. Failure to meet restoration objectives appeared most likely where channel incision was severe and in highly degraded environments. Methods for wood reintroduction have logistical advantages over many other restoration techniques, being relatively low cost and low maintenance. Wood reintroduction is a viable transitional restoration technique for agricultural landscapes likely to rapidly improve stream condition if sources of colonists are viable and water quality is suitable.  相似文献   

8.
We sampled 240 wadeable streams across Wisconsin for different forms of phosphorus and nitrogen, and assemblages of macroinvertebrates and fish to (1) examine how macroinvertebrate and fish measures correlated with the nutrients; (2) quantify relationships between key biological measures and nutrient forms to identify potential threshold levels of nutrients to support nutrient criteria development; and (3) evaluate the importance of nutrients in influencing biological assemblages relative to other physicochemical factors at different spatial scales. Twenty-three of the 35 fish and 18 of the 26 macroinvertebrate measures significantly correlated (P < 0.05) with at least one nutrient measure. Percentages of carnivorous, intolerant, and omnivorous fishes, index of biotic integrity, and salmonid abundance were fish measures correlated with the most nutrient measures and had the highest correlation coefficients. Percentages of Ephemeroptera–Plecoptera–Trichoptera individuals and taxa, Hilsenhoff biotic index, and mean tolerance value were macroinvertebrate measures that most strongly correlated with the most nutrient measures. Selected biological measures showed clear trends toward degradation as concentrations of phosphorus and nitrogen increased, and some measures showed clear thresholds where biological measures changed drastically with small changes in nutrient concentrations. Our selected environmental factors explained 54% of the variation in the fish assemblages. Of this explained variance, 46% was attributed to catchment and instream habitat, 15% to nutrients, 3% to other water quality measures, and 36% to the interactions among all the environmental variables. Selected environmental factors explained 53% of the variation in macroinvertebrate assemblages. Of this explained variance, 42% was attributed to catchment and instream habitat, 22% to nutrients, 5% to other water quality measures, and 32% to the interactions among all the environmental variables.  相似文献   

9.
The effects of livestock grazing on selected riparian and stream attributes, water chemistry, and algal biomass were investigated over a two-year period using livestock enclosures and by completing stream surveys in the Cypress Hills grassland plateau, Alberta, Canada. Livestock enclosure experiments, partially replicated in three streams, comprised four treatments: (1) early season livestock grazing (June–August), (2) late season livestock grazing (August–September), (3) all season grazing (June–September), and (4) livestock absent controls. Livestock grazing significantly decreased streambank stability, biomass of riparian vegetation, and the extent to which aquatic vegetation covered the stream channels compared with livestock-absent controls. Water quality comparisons indicated significant differences among the four livestock grazing treatments in Battle and Graburn creeks but not in Nine Mile Creek. In Graburn Creek, the concentration of total phosphorus in the all-season livestock grazing treatment was significantly higher than that in the livestock-absent control, and the early season and late season grazing treatments. Concentrations of soluble reactive phosphorus in the all-season livestock grazing treatment also exceeded that in livestock-absent control. In contrast, differences in water quality variables in the remaining 22 comparisons (i.e., 22 of the total 24 comparisons) were minor even when differences were statistically significant. Effects of livestock grazing on algal biomass were variable, and there was no consistent pattern among creeks. At the watershed scale, spatial variation in algal biomass was related (P < 0.05) with concentrations of NO2 ? + NO3 ? and soluble reactive phosphorus in two of the four study creeks. Nutrient diffusing substrata experiments showed that algal communities were either nitrogen-limited or not limited by nutrients, depending on stream and season.  相似文献   

10.
Effective water quality management of streams in urbanized basins requires identification of the elements of urbanization that contribute most to pollutant concentrations and loads. Drainage connection (the proportion of impervious area directly connected to streams by pipes or lined drains) is proposed as a variable explaining variance in the generally weak relationships between pollutant concentrations and imperviousness. Fifteen small streams draining independent subbasins east of Melbourne, Australia, were sampled for a suite of water quality variables. Geometric mean concentrations of all variables were calculated separately for baseflow and storm events, and these, together with estimates of runoff derived from a rainfall-runoff model, were used to estimate mean annual loads. Patterns of concentrations among the streams were assessed against patterns of imperviousness, drainage connection, unsealed (unpaved) road density, elevation, longitude (all of which were intercorrelated), septic tank density, and basin area. Baseflow and storm event concentrations of dissolved organic carbon (DOC), filterable reactive phosphorus (FRP), total phosphorus (TP) and ammonium, along with electrical conductivity (EC), all increased with imperviousness and its correlates. Hierarchical partitioning showed that DOC, EC, FRP, and storm event TP were independently correlated with drainage connection more strongly than could be explained by chance. Neither pH nor total suspended solids concentrations were strongly correlated with any basin variable. Oxidized and total nitrogen concentrations were most strongly explained by septic tank density. Loads of all variables were strongly correlated with imperviousness and connection. Priority should be given to low-impact urban design, which primarily involves reducing drainage connection, to minimize urbanization-related pollutant impacts on streams.  相似文献   

11.
Rebich, Richard A., Natalie A. Houston, Scott V. Mize, Daniel K. Pearson, Patricia B. Ging, and C. Evan Hornig, 2011. Sources and Delivery of Nutrients to the Northwestern Gulf of Mexico From Streams in the South‐Central United States. Journal of the American Water Resources Association (JAWRA) 47(5):1061‐1086. DOI: 10.1111/j.1752‐1688.2011.00583.x Abstract: SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed to estimate nutrient inputs [total nitrogen (TN) and total phosphorus (TP)] to the northwestern part of the Gulf of Mexico from streams in the South‐Central United States (U.S.). This area included drainages of the Lower Mississippi, Arkansas‐White‐Red, and Texas‐Gulf hydrologic regions. The models were standardized to reflect nutrient sources and stream conditions during 2002. Model predictions of nutrient loads (mass per time) and yields (mass per area per time) generally were greatest in streams in the eastern part of the region and along reaches near the Texas and Louisiana shoreline. The Mississippi River and Atchafalaya River watersheds, which drain nearly two‐thirds of the conterminous U.S., delivered the largest nutrient loads to the Gulf of Mexico, as expected. However, the three largest delivered TN yields were from the Trinity River/Galveston Bay, Calcasieu River, and Aransas River watersheds, while the three largest delivered TP yields were from the Calcasieu River, Mermentau River, and Trinity River/Galveston Bay watersheds. Model output indicated that the three largest sources of nitrogen from the region were atmospheric deposition (42%), commercial fertilizer (20%), and livestock manure (unconfined, 17%). The three largest sources of phosphorus were commercial fertilizer (28%), urban runoff (23%), and livestock manure (confined and unconfined, 23%).  相似文献   

12.
Abstract: Streams draining mountain headwater areas of the western Mojave Desert are commonly physically isolated from downstream hydrologic systems such as springs, playa lakes, wetlands, or larger streams and rivers by stream reaches that are dry much of the time. The physical isolation of surface flow in these streams may be broken for brief periods after rainfall or snowmelt when runoff is sufficient to allow flow along the entire stream reach. Despite the physical isolation of surface flow in these streams, they are an integral part of the hydrologic cycle. Water infiltrated from headwater streams moves through the unsaturated zone to recharge the underlying ground‐water system and eventually discharges to support springs, streamflow, isolated wetlands, or native vegetation. Water movement through thick unsaturated zones may require several hundred years and subsequent movement through the underlying ground‐water systems may require many thousands of years – contributing to the temporal isolation of mountain headwater streams.  相似文献   

13.
14.
Artemisia tridentata Nutt.) habitat within the Idaho Army National Guard Orchard Training Area in southwestern Idaho. The purpose of this study was to determine the short-term (1–2 years) influence of tank tracks on vegetation and microphytic crusts in shrubsteppe habitat. The two types of tank tracks studied were divots (area where one track has been stopped or slowed to make a sharp turn) and straight-line tracks. Divots generally had a stronger influence on vegetation and microphytic crusts than did straight-line tracks. Tank tracks increased cover of bare ground, litter, and exotic annuals, and reduced cover of vegetation, perennial native grasses, sagebrush, and microphytic crusts. Increased bare ground and reduced cover of vegetation and microphytic crusts caused by tank tracks increase the potential for soil erosion and may reduce ecosystem productivity. Reduced sagebrush cover caused by tank tracks may reduce habitat quality for rodents. Tank tracks may also facilitate the invasion of exotic annuals into sagebrush habitat, increasing the potential for wildfire and subsequent habitat degradation. Thus, creation of divots and movement through sagebrush habitat by tanks should be minimized.  相似文献   

15.
A common theme in recent landscape studies is the comparison of riparian and watershed land use as predictors of stream health. The objective of this study was to compare the performance of reach-scale habitat and remotely assessed watershed-scale habitat as predictors of stream health over varying spatial extents. Stream health was measured with scores on a fish index of biotic integrity (IBI) using data from 95 stream reaches in the Eastern Corn Belt Plain (ECBP) ecoregion of Indiana. Watersheds hierarchically nested within the ecoregion were used to regroup sampling locations to represent varying spatial extents. Reach habitat was represented by metrics of a qualitative habitat evaluation index, whereas watershed variables were represented by riparian forest, geomorphology, and hydrologic indices. The importance of reach- versus watershed-scale variables was measured by multiple regression model adjusted-R2 and best subset comparisons in the general linear statistical framework. Watershed models had adjusted-R2 ranging from 0.25 to 0.93 and reach models had adjusted-R2 ranging from 0.09 to 0.86. Better-fitting models were associated with smaller spatial extents. Watershed models explained about 15% more variation in IBI scores than reach models on average. Variety of surficial geology contributed to decline in model predictive power. Results should be interpreted bearing in mind that reach habitat was qualitatively measured and only fish assemblages were used to measure stream health. Riparian forest and length-slope (LS) factor were the most important watershed-scale variables and mostly positively correlated with IBI scores, whereas substrate and riffle-pool quality were the important reach-scale variables in the ECBP.  相似文献   

16.
The objective of this study was to evaluate which macroinvertebrate and deposited sediment metrics are best for determining effects of excessive sedimentation on stream integrity. Fifteen instream sediment metrics, with the strongest relationship to land cover, were compared to riffle macroinvertebrate metrics in streams ranging across a gradient of land disturbance. Six deposited sediment metrics were strongly related to the relative abundance of Ephemeroptera, Plecoptera and Trichoptera and six were strongly related to the modified family biotic index (MFBI). Few functional feeding groups and habit groups were significantly related to deposited sediment, and this may be related to the focus on riffle, rather than reach-wide macroinvertebrates, as reach-wide sediment metrics were more closely related to human land use. Our results suggest that the coarse-level deposited sediment metric, visual estimate of fines, and the coarse-level biological index, MFBI, may be useful in biomonitoring efforts aimed at determining the impact of anthropogenic sedimentation on stream biotic integrity.  相似文献   

17.
Abstract: Conservation practices are regularly implemented within agricultural watersheds throughout the United States without evaluating their ecological impacts. Impact assessments documenting how habitat and aquatic biota within streams respond to these practices are needed for evaluating the effects of conservation practices. Numerous sampling protocols have been developed for monitoring streams. However, protocols designed for monitoring studies are not appropriate for impact assessments. We developed guiding principles for designing impact assessments of ecological responses to conservation practices. The guiding principles are as follows: (1) develop the hypothesis first, (2) use replicated experimental designs having controls and treatments, (3) assess the habitat and biological characteristics with quantitative and repeatable sampling methods, (4) use multiple sampling techniques for collecting aquatic organisms, and (5) standardize sampling efforts for aquatic organisms. The guiding principles were applied in designing a study intended to evaluate the influence of herbaceous riparian buffers on channelized headwater streams in central Ohio. Our example highlights that the application of our recommendations will result in impact assessments that are hypothesis‐driven and incorporate quantitative methods for the measurement of abiotic and biotic attributes.  相似文献   

18.
We developed logistic regression models from data on biotic and abiotic variables for 172 sites on Banks Peninsula, New Zealand, to predict the probability of occurrence of two diadromous fish, banded kokopu (Galaxias fasciatus) and koaro (G. brevipinnis). Banded kokopu occurrence was positively associated with small streams and low-intensity land uses (e.g., sheep grazing or forested), whereas intensive land uses (e.g., mixed sheep and cattle farming) and lack of riparian forest cover impacted negatively on occurrence at sampled sites. Also, if forests were positioned predominantly in lowland areas, banded kokopu occurrence declined with increasing distance to stream mouth. Koaro occurrence was positively influenced by catchment forest cover, high stream altitudes, and areas of no farming activity or mixed land uses. Intensive land uses, distance to stream mouth, and presence of banded kokopu negatively influenced koaro occupancy of stream reaches. Banded kokopu and koaro presence was predicted in 86.0% and 83.7% agreement, respectively, with field observations. We used the models to quantify the amount of stream reaches that would be of good, moderate, and poor quality, based on the probability of occurrences of the fish being greater than 0.75, between 0.75 and 0.5, or less than 0.5, respectively. Hindcasting using historical data on vegetation cover undertaken for one catchment, Pigeon Bay, showed they would have occupied most of the waterway before anthropogenic modification. We also modeled potential future scenarios to project potential fish distribution.  相似文献   

19.
Anecdotal information suggests that woody debris have had an important channel-forming role in Swedish streams and rivers, but there are few data to support this view. We identified 10 streams within near-natural and 10 streams within managed forest landscapes in central Sweden, and quantified their channel characteristics and content of woody debris. All pieces of woody debris greater than 0.5 m in length and greater than 0.05 m in base diameter were included. The near-natural forests were situated in reserves protected from forest cutting, whereas the managed forests had previously faced intensive logging in the area adjacent to the stream. The two sets of streams did not differ in general abiotic characteristics such as width, slope, or boulder cover, but the number of wood pieces was twice as high and the wood volume almost four times as high in the near-natural streams. This difference resulted in a higher frequency of debris dams in the near-natural streams. Although the total pool area did not differ between the two sets of streams, the wood-formed pools were larger and deeper, and potentially ecologically more important than other pools. In contrast to what has been believed so far, woody debris can be a channel-forming agent also in steeper streams with boulder beds. In a stepwise multiple regression analysis, pool area was positively and most strongly related to the quantity of woody debris, whereas channel gradient and wood volume were negatively related. The frequency of debris dams increased with the number of pieces of woody debris, but was not affected by other variables. The management implications of this study are that the wood quantity in streams in managed forests would need to be increased if management of streams will target more pristine conditions.  相似文献   

20.
Zorn, Troy G., Paul W. Seelbach, and Edward S. Rutherford, 2012. A Regional‐Scale Habitat Suitability Model to Assess the Effects of Flow Reduction on Fish Assemblages in Michigan Streams. Journal of the American Water Resources Association (JAWRA) 48(5): 871‐895. DOI: 10.1111/j.1752‐1688.2012.00656.x Abstract: In response to concerns over increased use and potential diversion of Michigan’s freshwater resources, and the resulting state legislative mandate, an advisory council created an integrated assessment model to determine the potential for water withdrawals to cause an adverse resource impact to fish assemblages in Michigan’s streams. As part of this effort, we developed a model to predict how fish assemblages characteristic of different stream types would change in response to decreased stream base flows. We describe model development and use in this case study. The model uses habitat suitability information (i.e., catchment size, base‐flow yield, and July mean water temperature) for over 40 fish species to predict assemblage structure in an individual river segment under a range of base‐flow reductions. By synthesizing model runs for individual fish species at representative segments for each of Michigan’s 11 ecological stream types, we developed curves describing how typical fish assemblages in each type respond to flow reduction. Each stream type‐specific, fish response curve was used to identify streamflow reduction levels resulting in adverse resource impacts to characteristic fish populations, the regulatory standard. Used together with a statewide map of stream types, our model provided a spatially comprehensive framework for evaluating impacts of flow withdrawals on biotic communities across a diverse regional landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号