首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
拉萨市城区大气和拉鲁湿地土壤中的多环芳烃   总被引:25,自引:0,他引:25  
对拉萨城区大气及郊区湿地土壤中多环芳烃的研究表明,大气中的多环芳烃,颗粒物占27.69%,气相状态占72.31%;由于高原高强度的紫外线辐射,无论是颗粒相还是气相状态存在的多环芳烃含量均是夜晚高于白天;颗粒物中的多环芳烃主要为3个苯环数以上的,而气相状态的多环芳烃多为2和3个苯环数的芳烃及芘.湿地土壤中的多环芳烃主要来自于大气,其中气相状态占52.56%,颗粒物占47.44%.  相似文献   

2.
哈尔滨市大气气相中多环芳烃的研究   总被引:6,自引:3,他引:3  
在哈尔滨地区8个采样点同时安装了PUF大气被动采样器,研究了该地区2007年春季(1月末~4月末)大气气相中多环芳烃的含量和分布特征.结果表明,PUF大气被动采样器主要采集了大气气相中三环和四环的多环芳烃,占总量的91.22%~96.37%,PAHs的浓度具有明显的功能区差异,依次为:市区(356.49 ng/d),郊区(162.65 ng/d),农村(278.35 ng/d),偏远地区(183.99 ng/d),市区大气中多环芳烃的浓度是农村的2倍,偏远地区的3倍.污染源是影响大气中多环芳烃含量高低的主要因素,通过特征分子含量比值法对该地区大气中多环芳烃的来源进行了初步研究,结果表明,哈尔滨地区城市大气中多环芳烃主要来自于燃煤,农村大气中的多环芳烃主要来自于农作物秸秆的燃烧.利用毒性当量因子法对该地区大气气相中多环芳烃的健康风险进行了评价,具有与浓度分布类似的功能区差异,表明市区和农村地区大气中PAHs对于人们的健康存在较大潜在威胁.通过安装平行采样器,PUF被动采样器具有很好的重现性,研究表明,可以用于城市尺度多个采样点大气中多环芳烃的同时研究.  相似文献   

3.
古水稻土中多环芳烃的分布特征及其来源判定   总被引:10,自引:1,他引:9  
测定了马家浜文化(距今约6 000a)遗址2个剖面表层土壤、古代水稻土和古代旱地土壤、以及底层土壤中15种多环芳烃的含量,并对其可能来源进行了判定.结果表明,表层土壤中PAHs的含量分别为202.9μg·kg-1和207.7μg·kg-1,主要来源于大气沉降;古水稻土中PAHs含量明显降低,仅为56.0μg·kg-1,但高于古旱地土壤及底层土壤。古旱地土壤及底层土壤PAHs含量在32.0~36.9μg·kg-1.古水稻土中,2环和3环所占比例较大,达63%,萘和菲含量最高,而4环以上的多环芳烃含量较低.Phe/Ant和BaA/Chr比值和有机质13C-NMR图谱显示,古水稻土中的多环芳烃主要来源于水稻秸秆的焚烧,同时还原条件下的生物合成可能是其另一个重要来源.  相似文献   

4.
<正> 近年来,环境中有机污染物对人类及其他生命体的危害已得到人们的关注。据估计人类70%至90%的癌症是由环境因素造成的,其中主要是化学致癌物。世界上已检出400多种主要的致癌物,而多环芳烃占一半左右,因此对多环芳烃及其化合物的研究已成为环境科学中的重要任务之一。多环芳烃(简称为PAH)种类多,数量大,从大气、土壤、水域、生物、食品等均分别检出。  相似文献   

5.
三峡大坝每年周期性“蓄水-放水”,形成水位落差巨大的消落带,库区内污染物环境地球化学行为随之发生变化.以冬季淹没期消落带多环芳烃为研究对象,采集成对大气(n=16)、植物(n=12)和土壤样品(n=12),采用气相色谱/质谱法(GC/MS),分析USEPA 16PAHs浓度水平,解析来源,估算大气地表、大气-植物等多介质交换通量.结果表明:大气、土壤和植物中PAHs浓度为5.65~13.47ng/m3、70.86~13 5.44ng/g和78.23~1084.72ng/g,平均值分别为(8.58±2.78) ng/m3、(90.10±22.18) ng/g和(360.36±309.54) ng/g.大气中PAHs以2~3环为主(62.3%),植物中PAHs以3~4环为主(73.7%),土壤中PAHs以3环和5环为主(52.1%).特征分子比值法揭示煤、生物质燃烧是植物PAHs的主要来源,以石油为主的化石燃料燃烧是大气和土壤PAHs主要来源.“一室模型”表明,植物吸收PAHs的主要途径为植物-气相之间动态平衡限制下的气沉降.“逸度模型”表明,3...  相似文献   

6.
野外采集了汕头国际湿地示范区内3种红树林湿地(苏埃湾天然次生桐花树林湿地、外砂河口人工种植海桑与无瓣海桑混交林湿地、义丰溪口人工无瓣海桑林湿地)的表层沉积物样品,在实验室内分析了沉积物的多环芳烃、有机碳和黑碳含量.研究了多环芳烃在3种不同红树林湿地沉积物中的分布特征,以及沉积物有机碳、黑碳与多环芳烃的相关性.结果表明:多环芳烃在天然次生红树林湿地沉积物中的累积量显著高于人工恢复红树林湿地沉积物的累积量;不同红树林湿地沉积物对多环芳烃的吸附和累积具有共同的特征,即多环芳烃的组成成分相似,主要组分为菲、荧蒽、芘和苯并(b)荧蒽;除义丰溪口红树林湿地外,多环芳烃在另外2个红树林湿地沉积物中吸附和累积都具有林内含量高于林边缘,林边缘含量高于低潮光滩的特征;有机碳和黑碳对低环多环芳烃的影响不显著,但对高环多环芳烃影响显著,黑碳较之有机碳对高环多环芳烃具有更强的吸附能力.  相似文献   

7.
用常规荧光法分析了土壤中多环芳烃总体特征光谱,同时以多环芳烃蒽作参比,定量估测了多环芳烃在土壤中的含量。蒽的线性范围0-2.0μg/mL,相关系数0.9996,检测限0.61ng/mL;测得土壤中的多环芳烃的测量浓度均〉1.01μg/g。  相似文献   

8.
通过加速溶剂萃取和硅胶柱净化等方法提取富集土壤中多环芳烃,利用高效液相色谱二极管阵列-荧光检测器检测,可高效、快速、灵敏、准确地测定土壤中的多环芳烃。本方法检测限为0.005mg/kg(土壤10.0g),平均加标回收率范围为64.4%88.8%,相对标准偏差小于20%。  相似文献   

9.
大清河流域表层土壤中多环芳烃的污染特征及来源分析   总被引:11,自引:2,他引:9  
采集大清河流域72个表层七壤(0~20cm)样品,利用GC/MS分析技术,研究了土壤中16种优控多环芳烃的含量和组分特征,根据多环芳烃分布特征和苯并[a]蒽/(苯并[a]蒽+麓)和荧葸/(荧蒽+芘)比值分析了其污染来源,并初步评价了其污染水平.结果表明,表层土壤中16种多环芳烃含量范围为54.2-3231.6μg·kg-1,均值和中位数分别为405.1和233.2μg·kg-1.多环芳烃组分特征表现出以萘、菲等2-3环多环芳烃为主,其含量占到总含量的49%,4环和5~6环含量分别为31%和20%.大清河流域土壤多环芳烃污染主要来自于燃烧源,并表现出以生物质和煤的燃烧为主要来源的特征.相对于国内外其它地区多环芳烃检测结果和土壤标准,大清河流域土壤多环芳烃处于中等偏低污染水平,Nap和Fla是主要的超标化合物.  相似文献   

10.
广州市大气中颗粒态多环芳烃(PAHs)的主要污染源   总被引:27,自引:1,他引:26  
采用特征化合物与因子分析对广州市大气中颗粒态PAHs的来源及其贡献率进行研究.结果表明,广州大气中颗粒态多环芳烃主要来源是机动车尾气排放和燃煤,其中机动车为主要污染源,占了69%,其次为燃煤,占了31%.冬季大气中颗粒态多环芳烃污染加重的主要原因为低温、无风的气象条件下形成的逆温效应,主要污染源为机动车的尾气排放;夏季颗粒态多环芳烃污染的增大同样是无风时不利于污染物扩散的结果,但此时燃煤对大气中颗粒态多环芳烃污染的贡献要略大于机动车尾气排放.  相似文献   

11.
建立了加速溶剂萃取-Florisil柱净化-气相色谱/质谱法(GCMS)同时测定新鲜土壤中的16种多环芳烃和8种有机氯农药的分析方法。通过优化GCMS分析参数和ASE条件,用选择离子模式(SIM)检测。结果表明,方法在10~600μg/L范围内线性关系良好,相关系数均大于0.996,各目标化物的方法检出限为0.10~0.31μg/kg,空白硅藻土样品的加标回收率在63.1%~86.7%之间,7次平行测定的相对标准偏差为4.9%~15.1%。用该方法测定云南某地的3个土壤样品,多环芳烃和有机氯农药均有检出,其中多环芳烃质量分数在0.9×10~(-3)~4.7×10~(-3)mg/kg之间,有机氯质量分数在0.8×10~(-3)~6.6×10~(-3)mg/kg之间,适用于土壤样品中多环芳烃和有机氯农药的分析。  相似文献   

12.
广州市大气中多环芳烃分布特征、季节变化及其影响因素   总被引:37,自引:16,他引:21  
李军  张干  祁士华 《环境科学》2004,25(3):7-13
对广州市大气中气态和颗粒态多环芳烃(PAHs)进行了连续一年的采样观测.结果表明,气态和颗粒态样品中PAHs的平均浓度值分别为312.9 ng/m3 和 23.7 ng/m3,即多环芳烃主要存在于气相中,占大气总PAHs年平均的92.5%,且在夏季的比重要高于冬季.所检出的的气态多环芳烃以芴、菲、蒽等低环数化合物为主,其中菲占了总含量的60%以上;颗粒态多环芳烃则以高环数的化合物为主,各化合物所占的比重相当,其相对浓度无显著差别.气态多环芳烃在夏季达到高值,冬季降为低值;而颗粒态与其相反,夏季低值,冬季达到高值.在所测定的气象条件中,温度在影响气态多环芳烃浓度变化的因素中占了绝对优势,其次为风速,其它气象因素未观测到有较明显的影响作用;对颗粒态多环芳烃来说,则无绝对的影响因素,温度、风速和湿度同为重要影响因素,但随着分子量的增加,各因素的影响大小顺序略有不同.  相似文献   

13.
兰州城区多环芳烃的多介质归趋模拟研究   总被引:6,自引:2,他引:4  
利用城市多介质逸度模型模拟了稳态假设下兰州市区16种PAHs在大气、水体、土壤、沉积物、悬浮颗粒物、鱼体、植物和有机膜相中的浓度分布,同时与实测值进行对比,并根据模拟结果计算了相间迁移通量.结果表明,多环芳烃在空气中浓度最小,在不透水有机膜中浓度最大.化石燃料燃烧是PAHs进入环境的主要途径,迁移过程包括扩散、沉降和侵蚀等,土壤降解是PAHs在系统中损失的主要途径:土壤是PAHs主要的汇(占99.86%),但随着环数的增加,其通过大气平流途径从系统中消失的量明显减少,在气相中的降解损失亦降低.有机膜相的存在加速了多环芳烃在大气-有机膜相-水体之间的交换和运动.模型计算浓度与实测浓度吻合较好,验证了模型的可靠性,并通过灵敏度分析,确定了模型的关键参数.  相似文献   

14.
X53200700258表面活性剂对土壤中多环芳烃解吸行为的影响/陈静…(北京大学环境学院地表过程分析与模拟教育部重点实验室)∥环境科学/中科院生态环境研究中心.-2006,27(2).-361~365环图X-5研究了4种表面活性剂对土壤中多环芳烃(PAHs)解吸行为的影响.结果表明,表面活性剂的性质、  相似文献   

15.
应用地统计学技术对全天津地区表层土壤中 16种优控多环芳烃含量和土壤理化参数进行了空间结构分析 .结果显示 ,各组分浓度均存在中尺度的空间自相关性 .多环芳烃浓度的空间结构存在明显的各向异性 .大气运移和土壤TOC含量可能是影响土壤多环芳烃浓度空间结构特征的重要环境因素 .  相似文献   

16.
北京市大气颗粒物中多环芳烃的组成   总被引:24,自引:2,他引:22  
采用高效液相色谱/质谱联用技术(HPLC/MS)检测了北京市石景山工业区和海淀居民生活区的大气颗粒物样品中的多环芳烃(PAHs),比较了北京市工业区和居民区大气飘尘中多环芳烃含量的差异以及不同季节对多环芳烃含量的影响.检测出PAHs类碳氢化合物共135种,分子质量大于300u的PAHs有55种,弥补了气相色谱/质谱(GC/MS)不能直接测定大分子量PAHs的不足,更为全面地反映了大气飘尘中PAHs的分布状况.  相似文献   

17.
《中国环境科学》2003年第4期发表的祁士华等人的文章“拉萨市城区大气和拉鲁湿地土壤中的多环芳烃”荣获2004年中国科协颁发的第二届中国科协期刊优秀学术论文奖.《中国环境科学》荣获第二届中国科协期刊优秀学术论文奖$《中国环境科学》编辑部  相似文献   

18.
《中国环境科学》2003年第4期发表的祁士华等人的文章“拉萨市城区大气和拉鲁湿地土壤中的多环芳烃”荣获2004年中国科协颁发的第二届中国科协期刊优秀学术论文奖.《中国环境科学》荣获第二届中国科协期刊优秀学术论文奖$《中国环境科学》编辑部  相似文献   

19.
王成辉  闫琨  韩新宇  施择  毕丽玫  向峰  宁平  史建武 《环境科学》2017,38(12):4968-4975
为研究高原地区机动车尾气排放特征,选取昆明市草海隧道内大气PM_(2.5)为研究对象,并对样品中的水溶性离子、碳组分、多环芳烃、无机元素进行分析.结果表明,隧道内PM_(2.5)质量浓度为225.65~312.84μg·m~(-3),是同期环境大气中PM_(2.5)浓度的11~14倍,PM_(2.5)中碳组分所占比重最高,约占总质量浓度的35.73%,其次无机元素占21.78%,离子组分在4.79%~5.52%之间,含量最低的是多环芳烃,占0.25%~0.32%;离子组分中Ca~(2+)和SO_4~(2-)含量较高,占总离子浓度的77.78%~80.17%,显示为地壳来源,其次是NH_4~+、NO_3~-的浓度也相对较高,主要来自机动车尾气源;草海隧道PM_(2.5)中以分子量相对较大、不易挥发的4、6环PAHs为主,机动车尾气对PM_(2.5)中多环芳烃的贡献十分显著,毒性最强的Ba P浓度是国家规定浓度限值的23~29倍,高原草海隧道大气中存在PM_(2.5)暴露健康风险;隧道大气PM_(2.5)中元素由PCA分析显示机动车尾气和道路扬尘来源占比约61.64%,其次机械磨损排放源占比约为17.49%,最后为轮胎磨损排放源,占比为9.11%;云贵高原大气低压低氧条件下,机动车发动机燃料不完全燃烧几率较高,导致机动车尾气PM_(2.5)中的OC以及PAHs排放量增加.  相似文献   

20.
建立以乙腈-水为流动相,高效液相色谱法测定大气颗粒物中16种优控多环芳烃化合物的方法.用玻璃纤维滤膜采集大气颗粒物,以二氯甲烷为溶剂,超声波提取样品,提取液过滤经溶剂转换后在C18硅胶柱上分离净化,洗脱液经氩气吹干浓缩后用乙腈定容,用乙腈-水作流动相进行高效液相色谱梯度洗脱分离,荧光检测器变波长程序检测.通过实验优化了16种多环芳烃化合物的分离和测定条件.16种PAH检测限为0.023~0.45 μg/L,日内(n=5)和日间(n=5)相对标准偏差分别为小于1.20%和小于2.3%.该法具有快速、灵敏、准确、重现性好的优点,适合于大气中痕量多环芳烃的测定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号