首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clair Patterson and colleagues demonstrated already four decades ago that the lead cycle was greatly altered on a global scale by humans. Moreover, this change occurred long before the implementation of monitoring programs designed to study lead and other trace metals. Patterson and colleagues also developed stable lead isotope analyses as a tool to differentiate between natural and pollution-derived lead. Since then, stable isotope analyses of sediment, peat, herbaria collections, soils, and forest plants have given us new insights into lead biogeochemical cycling in space and time. Three important conclusions from our studies of lead in the Swedish environment conducted over the past 15 years, which are well supported by extensive results from elsewhere in Europe and in North America, are: (1) lead deposition rates at sites removed from major point sources during the twentieth century were about 1,000 times higher than natural background deposition rates a few thousand years ago (~10 mg Pb m?2 year?1 vs. 0.01 mg Pb m?2 year?1), and even today (~1 mg Pb m?2 year?1) are still almost 100 times greater than natural rates. This increase from natural background to maximum fluxes is similar to estimated changes in body burdens of lead from ancient times to the twentieth century. (2) Stable lead isotopes (206Pb/207Pb ratios shown in this paper) are an effective tool to distinguish anthropogenic lead from the natural lead present in sediments, peat, and soils for both the majority of sites receiving diffuse inputs from long range and regional sources and for sites in close proximity to point sources. In sediments >3,500 years and in the parent soil material of the C-horizon, 206Pb/207Pb ratios are higher, 1.3 to >2.0, whereas pollution sources and surface soils and peat have lower ratios that have been in the range 1.14–1.18. (3) Using stable lead isotopes, we have estimated that in southern Sweden the cumulative anthropogenic burden of atmospherically deposited lead is ~2–5 g Pb m?2 and ~1 g Pb m?2 in the “pristine” north. Half of this cumulative total was deposited before industrialization. (4) In the vicinity of the Rönnskär smelter in northern Sweden, a major point source during the twentieth century, there is an isotopic pattern that deviates from the general trends elsewhere, reflecting the particular history of ore usage at Rönnskär, which further demonstrates the chronological record of lead loading recorded in peat and in soil mor horizons.  相似文献   

2.
In order to reveal the historical context of metal element accumulation under the economic boom during the last decades in eastern China, concentrations of nine metal elements, radionuclides (210Pb), Pb isotope ratios (207Pb/206Pb) and sedimentary characteristics were investigated in two sediment cores collected from the Sheyang River. The sediments have recorded the heavy metal deposition and thus allow establishing a connection between the temporal evolution of the heavy metal pollution and historical changes in industrial and urban discharges. Enrichment factors (EFs) were calculated to estimate the level of contamination in these sediments. A significant anthropogenic enrichment of Cu, Ni, Pb, Cr and Zn was highlighted, which were identified from anthropogenic discharges from cities and industrial sources, according to a cluster analysis. According to the annual variation in GDP growth rate, industrial growth rate, ratio of 207Pb/206Pb and EFs, it was obvious that sedimentary accumulation of metals has a close relationship with anthropogenic activities. In the pre-industrial period, natural inputs prevailed with lower EF and constant 207Pb/206Pb ratios around 0.82. However, during 1980–1995, the rapid industrial development caused a gradual increase in EFs and 207Pb/206Pb (>0.83). Our results disinterred the evolution of anthropogenic metal inputs in the last century into the Sheyang River.  相似文献   

3.
Overbank and stream sediments have been studied in the Community of Madrid. Four vertical profiles have been sampled corresponding to Guadarrama, Jarama, and finally Manzanares River, where two profiles have been studied upstream (El Pardo profile) and downstream (Rivas profile) Madrid city. Sieved samples (<63 µm) were subjected to total (ICP-MS/ICP-OES and INAA) and partial analysis (ICP-MS). AMS radiocarbon dating techniques revealed a young age (170 ± 40 years BP) at 2.40–2.65 m depth for Rivas profile. It has not been possible to detect pristine or pre-industrial overbank sediments, since in the rest of the studied profiles, anthropogenic wastes were found even in the lower levels. Three main sources of sediment have been detected in the area. Granitic and arkosic geology, located in the northern part of Madrid (U, Th, W, K, Na, or rare earth elements); clays located in the southeast of Madrid (Ni, Cr, or V), and finally an anthropogenic source has been identified (Au, Ag, Pb, Zn, or Sb) in Rivas profile. The influence of the anthropogenic activity has been established based on the contents distribution of contaminant elements in the profile. This can be associated to the growth of industrial activities and population in the city of Madrid during the last decades. The comparison of the profiles by a k-means cluster analysis showed some similarities for these samples that could have analogous sources (anthropogenic and geological).  相似文献   

4.
Lead emitted into the environment, primarily from the combustion of leaded petrol and industrial activities, retains the isotopic signature of the ore(s) from which it is derived. Leaded petrol, atmospheric particulates and street dust sampled in central Edinburgh between February 1989 and December 1991 had mean206Pb/207Pb ratios of 1.082 ± 0.024, 1.092 ± 0.011 and 1.109 ± 0.016 respectively. These isotope ratios were found to be depleted in206Pb compared with a mean of 1.160 ± 0.012 for tap water in contact with lead pipes and %typical ratios of 1.17–1.19 for British lead ore deposits and coal. Paint, with an observed wide range of 20 Pb207 Pb ratios (1.083–1.183), appears to have significantly influenced house dust and some street dust206Pb207 values. Such overlaps and influences may hinder the quantitative apportionment, via isotope data, of source and route in general population surveys of human exposure to lead.  相似文献   

5.
The lead isotopic composition of various sections (crown, crown base, root) of teeth was determined in specimens collected from 19th century skulls preserved in museum collections and, upon extraction or exfoliation, from humans of known ages residing in Scotland in the 1990s. For most 20th century samples, calculation of accurate crown-complete or root-complete dates of tooth formation ranging from the 1920s to the 1990s enabled comparison of 206Pb/207Pb ratios for teeth sections (crown base root) with corresponding decadally averaged data for archival herbarium Sphagnum moss samples. This showed that the teeth sections had been significantly influenced by incorporation of non-contemporaneous (more recent) lead subsequent to the time of tooth formation, most probably via continuous uptake by dentine. This finding confirmed that separation of enamel from dentine is necessary for the potential of teeth sections as historical biomonitors of environmental (and dietary) lead exposure at the time of tooth formation to be realised. Nevertheless, the mean 19th century value of 1.172±0.007 for the 206Pb/207Pb ratio in teeth was very similar to the corresponding mean value of 1.173±0.004 for 19th century archival moss, although relative contributions from environmental sources – whether direct, by inhalation/ingestion of dust contaminated by local lead smelting (206Pb/207Pb~1.17) and coal combustion (206Pb/207Pb~1.18) emissions, or indirect, through ingestion of similarly contaminated food – and drinking/cooking water contaminated by lead pipes of local origin, cannot readily be determined. In the 20th century, however, the much lower values of the 206Pb/207Pb ratio (range 1.100–1.166, mean 1.126±0.013, median 1.124) for the teeth collected from various age groups in the 1990s reflect the significant influence of imported Australian lead of lower 206Pb/207Pb ratio (~1.04) and released to the environment most notably through car-exhaust emissions arising from the use of alkyl lead additives (206Pb/207Pb~1.06–1.09) in petrol in the U.K. from ca. 1930 until the end of the 20th century.  相似文献   

6.
Here we show that heavy metal geoaccumulation is apparent in the Tinto and Odiel estuary and, at a lower magnitude, in off-shore sediments. Values above probable effects level (PEL) are recorded for As, Cu, Hg, Pb and Zn in the Tinto and Odiel estuary, for As and Hg in the associated off-shore sediments and for As in the Guadiana River. Significant correlations were found between total organic carbon (TOC) and Cr, Cu, Ni and Zn in the Tinto and Odiel estuary, and Cr, Cu, Ni, Pb, Hg and As in the Guadiana River. PCA analysis differentiated the three studied locations.  相似文献   

7.
More than 60 coal samples, predominantly from the principal coalfields of England and Wales (25) and Scotland (30), were analysed for lead by AAS and for stable lead isotopes by ICPMS. While the average lead content of Scottish coal, 23.9mg kg–1, was more than double that of coal from England and Wales, 11.0mg kg–1, the corresponding mean 206Pb/207Pb ratios (± 1 s.d.) were nearly identical, at 1.181±0.011 and 1.184±0.006, respectively. In the light of the lead isotopic signatures of British coals and of both indigenous (206Pb/207Pb 1.17) and imported Australian (206Pb/207Pb 1.04) lead ores, an approach based on estimated lead emissions from these sources and the deconvolution of the historical lead and 206Pb/207Pb records preserved in lake sediments, peat bogs and archival herbage material indicates that coal combustion became an increasingly significant contributor to atmospheric lead deposition in the UK during the period 1830–1930, especially after the onset of Englands decline as a major location of lead mining and smelting in the late19th Century. Since 1930 and the introduction of leaded petrol, the atmospheric 206Pb/207Pb ratio in the UK has been strongly influenced by carexhaust emissions of comparatively 206Pbdepleted lead of predominantly Australian origin, counterbalanced to some extent by coalcombustion emissions of lead, although these have fallen dramatically since the mid1950s. Nevertheless, with the introduction and substantial uptake of unleaded petrol in the UK during the last decade, even the declining releases from coal, along with contributions from other sources, are continuing to affect the atmospheric lead content and 206Pb/207Pb ratio.  相似文献   

8.
A simple procedure using both cation and anion exchange chromatography has been applied in the study of lead and strontium isotope composition in rain and stream water samples from remote catchments in Scotland. Whereas the soil released strontium to stream waters, lead was removed from rain water and the concentrations in stream waters were very low. Highly precise analysis by thermal ionisation mass spectrometry proved necessary in the determination of strontium isotope composition. The 87Sr/86Sr ratio in rain water was close to that of marine strontium but the ratios in stream waters were constant and highly characteristic for the stream. In the case of the stream at the Sourhope site, the ratio (0.70798 ± 0.00005) was less than that in rain water and probably resulted from the weathering of one specific mineral. The results suggested that the 87Sr/86Sr ratios could be used as a stable isotope tracer of waters and to provide information on the weathering processes. Two major anthropogenic components of lead were identified in water samples. One had its origin in petrol additives whereas the other was probably of industrial origin. The low 206Pb/207Pb ratios observed in stream waters confirmed the lead as being of anthropogenic origin and the data suggested that there was a movement, albeit very small, of lead from the soil to waters.  相似文献   

9.
A brief review of the use of stable lead isotope ratio measurements to identify and apportion sources of lead in human tissue is followed by examples of the use of inductively coupled plasma source mass spectrometry for such studies. Inductively coupled plasma source mass spectrometry (ICP-MS) has only recently been used for measurements of coupled ratios in body tissues and fluids and in environmental sources of lead. Generally, the inaccuracy of these measurements is about −0.2% and the imprecision less than 0.5%. This analytical performance is sufficient to detect the much larger changes in206Pb:207Pb ratios of −2% or higher, seen in environmental lead exposure and in childhood lead poisoning. Measurements of lead isotope ratios by ICP-MS have been used to identify specific sources of childhood lead poisoning and to indicate the relative importance of environmental sources, such as drinking water and lead from petrol. Populations in the United Kingdom with low lead uptake usually have206:Pb207Pb ratios in body tissues within the range 1.13 ± 0.01. Significant deviations from this range have been seen in response to increased uptake from lead in: drinking water in parts of Scotland (source ratio ∼1.18 and petrol lead in inner London (source ratio ∼1.07). The dominant source for some Scottish subjects with high concentrations of lead in blood or in teeth was water, which contributed approximately 60% to body lead. Petrol lead was shown to be a significant contributor (30–40%) to the body lead of inner London children.  相似文献   

10.
The emission of radon gas in regions of geological faults, during the radioactive decay of uranium and thorium, results in the formation of lead isotopes 210Pb, 208Pb, 207Pb and 206Pb. As a consequence, the lead contamination in the soil poses a hazard to humans through ingestion of food, contaminated water, and even by direct contact with the soil contaminant. So far the relationship between the occurrence of geological faults and soil Pb contamination has not been established. Here, we studied lead in soils of regions with geological faults and their possible relationship with radon emissions. Soils were sampled from Presidente Prudente located in the far west of São Paulo State, Brazil. The region has strong evidence of the existence and direction of geological faults at depths of approximately 200 m. Soil sampling was done according to the USEPA 3050 method. Total lead was quantified by anodic stripping voltammetry. Results show that the total Pb concentration increases systematically with soil depth. This finding is explained by the fact that the lead originates from radon emissions. Pearson correlation analysis further proves a relationship of the nuclear track density obtained with CR-39 detectors, and mean Pb levels within each soil profile. Overall, our findings should improve risk evaluation of Pb contamination derived from radon emission and geological faults.  相似文献   

11.
This study presents metal levels in the sediments of the Bakar Bay, with its main goal to evaluate recent anthropogenic influence, as well as over previous decades. Sediment profiles at 7 sampling points were taken. Chemical contents in bulk sediment were obtained using ICP, ICP-MS, and AAS methodologies, and 20 most significant elements were presented. Concentrations of selected elements were evaluated by factor statistical analyses to identify their source. Also, metal enrichment factor and geoaccumulation index were calculated, and spatial distribution maps for three sediment layers were constructed. Measured metal concentrations in sediment were compared with concentrations in other sediments from the Adriatic Sea. In addition, a set of sediment quality guidelines were also applied in order to predict the probability of adverse biological effects on the benthic community: This was found not to be very serious. Factor analysis clearly demonstrates the segregation between metals of natural origin resulted from soil and bedrock weathering (Li, Al, Cr, Sc), and with two anthropogenic sources originating from the city of Bakar and bulk cargo terminal (Hg, Pb, Zn, Ag, Sn, and Fe). Mercury (max 0.65 μg g?1) is found to be the heaviest contaminant, followed by lead (max 71.5 μg g?1), copper (89.3 μg g?1), and zinc (156 μg g?1). However, this study shows that Bakar Bay is considerably less polluted with toxic metals than it was believed.  相似文献   

12.
Estuarine sediments in the<63 μm size fraction were collected from 15 stations within the Tambaraparni River Estuary, located on the east coast of India. The distribution of the heavy metals Cd, Co, Cr, Cu, Ni, Pb and Zn was recorded. Our analysis distinguished two groups of elements. First, Cd, Pb and Zn, which occurred in higher than expected concentrations indicative of pollution, and second, Co, Cr, Cu and Ni, which occurred at background levels. The highest metal concentration found in the study area was for Zn (1200 μ g·g?1), and the lowest was for Cd (0.42 μ g·g?1). It is presumed that river run-off, industrial waters and untreated domestic waters are major contributors to heavy metal pollution in the Tambaraparni River Estuary. The concentrations of heavy metal species in surface sediments (<2 m water depth) of the Tambaraparni Estuary were studied to determine the extent of anthropogenic inputs from catchment areas and to understand anthropogenic effects on geochemical process in this tropical estuarine system.  相似文献   

13.
Levels of heavy metals (Cd, Hg, Cr, Cu, Fe, Mn, Ni, Pb and Zn), organic carbon content and textural characteristics in the superficial and cored sediments of Oum Er Bia estuary have been studied. The anthropogenic fluxes of heavy metals were determined in two sediment cores collected in the estuary, facing urban sewages. A dated estuarine core from the inter-tidal area was assessed using 210Pb and 137Cs data. These data indicate that the mean sedimentation rates are 0.38–68 cm year?1. The analytical results and the radio-dating of sediment cores show extremely high concentrations of Zn, Pb and Cu in the sediments that can be ascribed mostly to the discharge of the liquid effluent from the sewage since the late 1960s, decreasing towards the present day. The pollution intensity of the estuary is determined by the enrichment factors, which show that the Oum Er Bia estuary is moderately polluted to polluted.  相似文献   

14.
Because detrimental effects of exposure to lead (Pb) on human health have been observed, we previously investigated concentrations of Pb in water supplies and blood of adult residents of Riyadh, Saudi Arabia. The objectives of the present study were to: (1) examine seasonal rates of deposition of Pb in dust in several areas of Riyadh city, (2) measure concentrations of Pb in both outdoor and indoor dust, (3) compare concentrations of Pb in dust in Riyadh with those reported for other cities, and (4) quantify Pb in blood of children living in Riyadh. Mean, monthly deposition of PB in outdoor dust was 4.7 × 101 ± 3.6 tons km?2, with a mean Pb concentration of 2.4 × 102 ± 4.4 × 101 μg/g. Mean, monthly deposition of Pb in indoor dust was 2.7 ± 0.70 tons km?2, with a mean concentration of 2.9 × 101 ± 1.5 × 101 μg Pb/g. There was a significant (P < 0.01) correlation between concentrations of Pb in outdoor and indoor dust. There was no correlation between concentrations of Pb in indoor dust and that in blood of children of Riyadh, whereas there was a weakly significant (P < 0.05) correlation between concentrations of Pb in outdoor dust and that in blood of children. The mean (±SD) concentration of Pb in blood of children in Riyadh was 5.2 ± 1.7, with a range of 1.7–1.6 × 101 μg/dl. Concentrations of Pb in blood of 17.8 % of children in Riyadh were greater than 10 μg/dl, which is the CDC’s level of concern.  相似文献   

15.
High-altitude lake sediments can be used as natural archives to reconstruct the history of pollutants. In this work, the temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was determined in a sediment core collected from the southern Tibetan Plateau (TP), which was dated by using the 210Pb dating method and validated with the 137Cs fallout peak. The concentrations of the anthropogenic PAHs (Σ8PAH) in the sediment core ranged from 0.83 to 12 ng/g dw, and the fluxes of the Σ8PAH were in the range of 2.1–27 g/cm2/year. The temporal variations in the concentration and input flux of anthropogenic PAHs were low with little variability before the 1950s, and then gradually increased from the 1950s to the 1980s, and an accelerated increase was observed after the early 1980s. The content of total organic carbon played an insignificant role in affecting the time trends of PAHs in the sediment core. Diagnostic concentration fractions of PAH components indicate PAHs in the lake sediment of the southern TP which are mainly from biomass burning and/or from long-range atmospheric transport.  相似文献   

16.
Liming materials have been used to immobilize heavy metals in contaminated soils. However, no studies have evaluated the use of eggshell waste as a source of calcium carbonate (CaCO3) to immobilize both cadmium (Cd) and lead (Pb) in soils. This study was conducted to evaluate the effectiveness of eggshell waste on the immobilization of Cd and Pb and to determine the metal availability following various single extraction techniques. Incubation experiments were conducted by mixing 0–5% powdered eggshell waste and curing the soil (1,246 mg Pb kg?1 soil and 17 mg Cd kg?1 soil) for 30 days. Five extractants, 0.01 M calcium chloride (CaCl2), 1 M CaCl2, 0.1 M hydrochloric acid (HCl), 0.43 M acetic acid (CH3COOH), and 0.05 M ethylendiaminetetraacetic acid (EDTA), were used to determine the extractability of Cd and Pb following treatments with CaCO3 and eggshell waste. Generally, the extractability of Cd and Pb in the soils decreased in response to treatments with CaCO3 and eggshell waste, regardless of extractant. Using CaCl2 extraction, the lowest Cd concentration was achieved upon both CaCO3 and eggshell waste treatments, while the lowest Pb concentration was observed using HCl extraction. The highest amount of immobilized Cd and Pb was extracted by CH3COOH or EDTA in soils treated with CaCO3 and eggshell waste, indicating that remobilization of Cd and Pb may occur under acidic conditions. Based on the findings obtained, eggshell waste can be used as an alternative to CaCO3 for the immobilization of heavy metals in soils.  相似文献   

17.
The objective of this research was to investigate the effects of biosolids on the competitive sorption and lability of the sorbed Cd, Cu, Ni, Pb, and Zn in fluvial and calcareous soils. Competitive sorption isotherms were developed, and the lability of these metals was estimated by DTPA extraction following their sorption. Sorption of all metals was higher in the fluvial than in the calcareous soil. Sorption of Cu and Pb was stronger than that of Cd, Ni, and Zn in all soils. Biosolids application (2.5%) reduced the sorption of all metals especially Cu and Pb (28–43%) in both soils (especially the calcareous soil) at the lower added metal concentrations (50 and 100 mg L?1). However, it increased the sorption of all metals especially Pb and Cu in both soils (especially the calcareous soil; 15.5-fold for Cu) at the higher added concentrations (250 and 300 mg L?1). Nickel showed the highest lability followed by Cd, Zn, and Pb in both soils. Biosolids increased the lability of the sorbed Ni in the fluvial soils at all added concentrations and the lability of Cd, Pb, and Zn at 50 mg L?1, but decreased the lability of Cd, Pb, and Zn at 250 and 300 mg L?1 in both soils. We conclude that at low loading rate (e.g., 50 mg L?1) biosolids treatment might increase the lability and environmental risk of Cd, Cu, Pb, and Zn. However, at high loading rate (e.g., 300 mg L?1) biosolids may be used as an immobilizing agent for Cd, Cu, Pb, Zn and mobilizing agent for Ni.  相似文献   

18.
This contribution characterises the sources and distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments of the Basque coast (Bay of Biscay). Different source characterisation approaches (i.e. GIS assisted-chemometrics, PAH diagnostic ratios and analyses of composition profiles) were used in combination to successfully identify the factors determining the origin and distribution of PAHs. Urban/industrial combustion processes were identified as the main PAH source. However, the analysis of PAH composition patterns and diagnostic ratios identified secondary natural and petrogenic PAH sources on small spatial scales. The median ∑18PAH concentration ranged from 66 μg kg?1 (d.w.) to 7021 μg kg?1 (d.w.). The Ibaizabal estuary, which supports most of the anthropogenic pressure in the region (i.e. urban development, industrialisation, commercial and recreational harbours), also showed the highest PAH concentrations. On the shelf, human activities, hydrodynamic conditions and geomorphological features led to spatial differences in the PAH concentrations among sectors: the offshore and west sectors were characterised by higher concentrations, while the lowest values were found in the mid and east sectors. The results enhance the knowledge on PAH-related contamination processes and could be used to support the environmental assessment process required under current European marine legislation.  相似文献   

19.
Sediment cores were collected from two remote subalpine lakes: the rather shallow (1.5 m) Little Ghost Lake at 2040 m elevation and the deeper, Great Ghost Lake (40 m) at 2150 m elevation. Different early diagenesis of metals were observed. the seasonally anoxic hypolimnion drives the annual iron redox cycle and causes the remobilization of metals in the mobile fractions of sediments in the Great Ghost Lake. These result in the redistribution of metals in the mobile fractions of sediment and poor correlation between metal concentrations. in the Little Ghost Lake, the shallow water column is always oxic with less change of metals in the mobile fractions of sediments. As a result, most metals have strong positive correlations with each other.

The distributions of metal/Al ratios, total metal contents and acid-leached metal concentrations in the near-surface sediments of these two lakes suggest that the anthropogenic inputs from the atmospheric fallouts in recent decades are one of the major factors affecting the distributions of metals such as cadmium, lead and, to a lessor extent, zinc. the Pb-206/Pb-207 ratios confirm the anthropogenic lead input in these surface sediments.  相似文献   

20.
Trace metal contents (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn) have been measured in 27 surface sediment samples collected from Kongsfjorden, Svalbard, Norwegian Arctic. The analyses yielded concentration values (in mg kg?1) of 0.13–0.63 for Cd, 11.89–21.90 for Co, 48.65–81.84 for Cr, 21.26–36.60 for Cu, 299.59–683.48 for Mn, 22.43–35.39 for Ni, 10.68–36.59 for Pb, 50.28–199.07 for Zn and 8.09–65.34 for Hg (in ng g?1), respectively. Relative cumulative frequency method has been used to define the baseline values of these metals, which (in mg kg?1) were 0.14 for Cd, 13.56 for Co, 57.86 for Cr, 25.14 for Cu, 364.08 for Mn, 26.22 for Ni, 17.46 for Pb, 70.49 for Zn and 9.76 for Hg (in ng g?1), respectively. The enrichment factor analysis indicated that Hg showed some extent of anthropogenic pollution, while Pb, Zn and Cd showed limited anthropogenic contamination in the study areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号