首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The aim of this study was to evaluate the public and occupational exposure to radon and metal-bearing particles in museums and public buildings located in the city of Rio de Janeiro, Brazil. For this study, four buildings were selected: two historic buildings, which currently house an art gallery and an art museum; and two modern buildings, a chapel and a club. Integrated radon concentration measurements were performed using passive radon detectors with solid state nuclear track detector-type Lexan used as nuclear track detector. Air samplers with a cyclone were used to collect the airborne particle samples that were analyzed by the particle-induced X-ray emission technique. The average unattached-radon concentrations in indoor air in the buildings were above 40 Bq/m3, with the exception of Building D as measured in 2009. The average radon concentrations in indoor air in the four buildings in 2009 were below the recommended reference level by World Health Organization (100 Bq/m3); however, in 2011, the average concentrations of radon in Buildings A and C were above this level, though lower than 300 Bq/m3. The average concentrations of unattached radon were lower than 148 Bq/m3 (4pCi/L), the USEPA level recommended to take action to reduce the concentrations of radon in indoor air. The unattached-radon average concentrations were also lower than the value recommended by the European Union for new houses. As the unattached-radon concentrations were below the international level recommended to take action to reduce the radon concentration in air, it was concluded that during the period of sampling, there was low risk to human health due to the inhalation of unattached radon in these four buildings.  相似文献   

2.
The main objective of this study is to assess the health hazard due to the indoor radon. Measurement studies have been carried out in 56 dwellings belonging to 14 residential areas in Alexandria city, Egypt. Results are obtained using the LR-115 (Type II) alpha track detector in “closed-can” geometry. The dosimeters were installed in bedroom, living room, and the kitchens of each house. For intercomparison purpose, dosimeters are installed in basements, ground floor, and first floor. Measured indoor radon concentrations were found to vary from 15 to 132 Bq m?3. The average radon concentrations in living room, bedrooms, and kitchen in basements were found to vary from to be 39 ± 10, 63 ± 15 and 81 ± 25 Bq m?3, respectively. In living room, bedrooms, and kitchen, on ground floor, the average radon concentrations were found to be 35 ± 9, 44 ± 6 and 56 ± 10 Bq m?3, whereas on first floor, the average values are 29 ± 8, 34 ± 7 and 45 ± 8 Bq m?3, respectively. The overall mean radon concentration in all surveyed districts has been found to be 44 ± 16 Bq m?3. The mean annual estimated effective dose received by the residents of the studied area is estimated to be 0.75 mSv. The obtained results are compared with the indoor radon levels prescribed by the International Commission on Radiation Protection and are found to be less than the action level recommended.  相似文献   

3.
Radon has been determined in soil, groundwater, and air in Mexico, both indoors and outdoors, as part of geophysical studies and to estimate effective doses as a result of radon exposure. Detection of radon has mainly been performed with solid-state nuclear track detectors (SSNTD) and, occasionally, with active detection devices based on silicon detectors or ionization chambers. The liquid scintillation technique, also, has been used for determination of radon in groundwater. The adjusted geometric mean indoor radon concentration (74 Bq m−3) in urban developments, for example Mexico City, is higher than the worldwide median concentration of radon in dwellings. In some regions, particularly hilly regions of Mexico where air pollution is high, radon concentrations are higher than action levels and the effective dose for the general population has increased. Higher soil radon levels have been found in the uranium mining areas in the northern part of the country. Groundwater radon levels are, in general, low. Soil-air radon contributing to indoor atmospheres and air pollution is the main source of increased exposure of the population.  相似文献   

4.
Indoor radon has been recognized as one of the health hazards for mankind. Common building materials used for construction of houses, which are considered as one of the major sources of this gas in indoor environment, have been studied for exhalation rate of radon. Non-nuclear industries, such as coal fired power plants or fertilizer production facilities, generate large amounts of waste gypsum as by-products. Compared to other building materials waste gypsum from fertilizer production facilities (phosphogypsum) shows increased rates of radon exhalation. In the present, investigation solid state alpha track detectors, CR-39 plastic detectors, were used to measure the indoor radon concentration and the radon exhalation rates from some building materials used in Egypt. The indoor radon concentration and the radon exhalation rate ranges were found to be 24–55 Bq m−3 and 11–223 mBq m−2 h−1, respectively. The effective dose equivalent range for the indoor was found 0.6–1.4 mSv y−1. The equilibrium factor between radon and its daughters increased with the increase of relative humidity.  相似文献   

5.
Radon in soil gas and its relationship with some major faults of SW England   总被引:3,自引:0,他引:3  
The south-west of England was designated by the National Radiological Protection Board (NRPB) as the first ‘Radon Affected Area’, as over 1% of the housing stock is estimated to have an indoor radon concentration in excess of the 200 Bq m−3 Action Level. The situation is even worse for houses situated above uraniferous granite intrusions, where over 30% are thought to be above the Action Level. The aim of this study is to investigate the relationship between the level of radon in soil gas and the local geology. Particularly high radon levels were measured along major fault zones. This could be explained by: increased rate of migration of the radon due to the permeable fault, the presence of radium or radon-bearing ground water within the fault, or secondary uranium mineralisation. Seasonal variations are also considered.  相似文献   

6.
A screening survey has been carried out to determine activity concentrations of radon (222Rn) in drinking water and indoor air in various locations in Kenya. The concentration of 222Rn in water was measured using a liquid scintillation counter (LSC). Three different passive integrating devices were used in the measurements of 222Rn in air. In the short-term measurements, radon is absorbed in activated charcoal and the analyses were carried out using either LSC or gamma ray spectrometry. The long-term measurements were carried out using solid-state nuclear track detectors (SSNTD). The mean and maximum values of 222Rn concentrations in water are 37 and 410 Bq L–1 and 100 and 1160 Bq m–3, respectively, in air. The highest values were obtained from groundwater sources and in the basements of buildings. When these values are compared with the internationally recommended reference levels, there are indications of existence of radon problems in some of the water sources and the dwellings tested in this survey.  相似文献   

7.
Hydrothermal areas are potentially hazardous to humans as volcanic gases such as radon (222Rn) are continuously released from soil diffuse degassing. Exposure to radon is estimated to be the second leading cause of lung cancer, but little is known about radon health-associated risks in hydrothermal regions. This cross-sectional study was designed to evaluate the DNA damage in the buccal epithelial cells of individuals chronically exposed to indoor radon in a volcanic area (Furnas volcano, Azores, Portugal) with a hydrothermal system. Buccal epithelial cells were collected from 33 individuals inhabiting the hydrothermal area (Ribeira Quente village) and from 49 individuals inhabiting a non-hydrothermal area (Ponta Delgada city). Indoor radon was measured with Ramon 2.2 detectors. Chromosome damage was measured by micronucleus cytome assay, and RAPD-PCR was used as a complementary tool to evaluate DNA damage, using three 10-mer primers (D11, F1 and F12). Indoor radon concentration correlated positively with the frequency of micronucleated cells (r s = 0.325, p = 0.003). Exposure to radon is a risk factor for the occurrence micronucleated cells in the inhabitants of the hydrothermal area (RR = 1.71; 95% CI, 1.2–2.4; p = 0.003). One RAPD-PCR primer (F12) produced differences in the banding pattern, a fact that can indicate its potential for detecting radon-induced specific genomic alterations. The observed association between chronic exposure to indoor radon and the occurrence of chromosome damage in human oral epithelial cells evidences the usefulness of biological surveillance to assess mutations involved in pre-carcinogenesis in hydrothermal areas, reinforcing the need for further studies with human populations living in these areas.  相似文献   

8.
The objectives of the study are to present a critical review of the 238U, 234U, 235U, 226Ra and 210Pb levels in water samples from the EPA studies (U.S. EPA in Abandoned uranium mines and the Navajo Nation: Red Valley chapter screening assessment report. Region 9 Superfund Program, San Francisco, 2004, Abandoned uranium mines and the Navajo Nation: Northern aum region screening assessment report. Region 9 Superfund Program, San Francisco, 2006, Health and environmental impacts of uranium contamination, 5-year plan. Region 9 Superfund Program, San Franciso, 2008) and the dose assessment for the population due to ingestion of water containing 238U and 234U. The water quality data were taken from Sect. “Data analysis” of the published report, titled Abandoned Uranium Mines Project Arizona, New Mexico, Utah–Navajo Lands 1994–2000, Project Atlas. Total uranium concentration was above the maximum concentration level for drinking water (7.410–1 Bq/L) in 19 % of the water samples, while 238U and 234U concentrations were above in 14 and 17 % of the water samples, respectively. 226Ra and 210Pb concentrations in water samples were in the range of 3.7 × 10?1 to 5.55 × 102 Bq/L and 1.11 to 4.33 × 102 Bq/L, respectively. For only two samples, the 226Ra concentrations exceeded the MCL for total Ra for drinking water (0.185 Bq/L). However, the 210Pb/226Ra ratios varied from 0.11 to 47.00, and ratios above 1.00 were observed in 71 % of the samples. Secular equilibrium of the natural uranium series was not observed in the data record for most of the water samples. Moreover, the 235U/totalU mass ratios ranged from 0.06 to 5.9 %, and the natural mass ratio of 235U to totalU (0.72 %) was observed in only 16 % of the water samples, ratios above or below the natural ratio could not be explained based on data reported by U.S. EPA. In addition, statistical evaluations showed no correlations among the distribution of the radionuclide concentrations in the majority of the water samples, indicating more than one source of contamination could contribute to the sampled sources. The effective doses due to ingestion of the minimum uranium concentrations in water samples exceed the average dose considering inhalation and ingestion of regular diet for other populations around the world (1 μSv/year). The maximum doses due to ingestion of 238U or 234U were above the international limit for effective dose for members of the public (1 mSv/year), except for inhabitants of two chapters. The highest effective dose was estimated for inhabitants of Cove, and it was almost 20 times the international limit for members of the public. These results indicate that ingestion of water from some of the sampled sources poses health risks.  相似文献   

9.
Indoor air quality in elementary schools of Lisbon in spring   总被引:1,自引:0,他引:1  
Analysis of indoor air quality (IAQ) in schools usually reveals higher levels of pollutants than in outdoor environments. The aims of this study are to measure indoor and outdoor concentrations of NO2, speciated volatile organic compounds (VOCs) and carbonyls at 14 elementary schools in Lisbon, Portugal. The investigation was carried out in May–June 2009. Three of the schools were selected to also measure comfort parameters, such as temperature and relative humidity, carbon dioxide (CO2), carbon monoxide (CO), total VOCs, and bacterial and fungal colony-forming units per cubic metre. Indoor concentrations of CO2 in the three main schools indicated inadequate classroom air exchange rates. The indoor/outdoor (I/O) NO2 ratio ranged between 0.36 and 0.95. At the three main schools, the total bacterial and fungal colony-forming units (CFU) in both indoor and outdoor air were above the advised maximum value of 500 CFU/m3 defined by Portuguese legislation. The aromatic compounds benzene, toluene, ethylbenzene and xylenes, followed by ethers, alcohols and terpenes, were usually the most abundant classes of VOCs. In general, the indoor total VOC concentrations were markedly higher than those observed outdoors. At all locations, indoor aldehyde levels were higher than those observed outdoors, particularly for formaldehyde. The inadequate ventilation observed likely favours accumulation of pollutants with additional indoor sources.  相似文献   

10.
Radon concentration was measured in water samples of 41 different locations from Udhampur district of Jammu & Kashmir, India, by using RAD7 and Smart RnDuo monitor. The variation of radon concentration in water ranged from 1.44 ± 0.31 to 63.64 ± 2.88 Bq L?1, with a mean value of 28.73 Bq L?1 using RAD7 and 0.64 ± 0.28 to 52.65 ± 2.50 Bq L?1, with a mean value of 20.30 Bq L?1 using Smart RnDuo monitor, respectively. About 17.07% of the studied water samples recorded to display elevated radon concentration above the reference range suggested by United Nation Scientific Committee on the Effects of Atomic Radiations (UNSCEAR). The mean annual effective dose of these samples was determined, and 78.95% samples were found to be within the safe limits set by World Health Organisation (WHO) and European Council (EU). The study revealed good agreement between the values obtained with two methods. Heavy metals (Zn, Cd, Fe, Cu, Ni, As, Hg, Co, Pb and Cr) were determined in water samples by microwave plasma atomic emission spectrometer, and their correlation with radon content was also analysed.  相似文献   

11.
高层建筑与室内氡浓度   总被引:1,自引:0,他引:1  
通过对20层以上的高层建筑连续一年的室内氡浓度监测分析,揭示了高层建筑因建筑取材、室内装修材料和建筑结构不同,其室内氡浓度亦有不同;高层建筑因使用时间和季节不同而室内氡浓度亦有不同。  相似文献   

12.
The concentrations and flux of CO2, 222Radon (Rn), and gaseous elemental mercury (Hg) in soil gas were investigated based on the field measurements in June 2010 at ten sites along the seismic rupture zones produced by the May 12, 2008, Wenchuan M s 8.0 earthquake in order to assess the environmental impact of degassing of CO2, Rn and Hg. Soil gas concentrations of 344 sampling points were obtained. Seventy measurements of CO2, Rn and Hg flux by the static accumulation chamber method were performed. The results of risk assessment of CO2, Rn and Hg concentration in soil gas showed that (1) the concentration of CO2 in the epicenter of Wenchuan M s 8.0 earthquake and north end of seismic ruptures had low risk of asphyxia; (2) the concentrations of Rn in the north segment of seismic ruptures had high levels of radon, Maximum was up to level 4, according to Chinese code (GB 50325-2001); (3) the average geoaccumulation index I geo of soil Hg denoted the lack of soil contamination, and maximum values classified the soil gas as moderately to strongly polluted in the epicenter. The investigation of soil gas CO2, Rn and Hg degassing rate indicated that (1) the CO2 in soil gas was characterized by a mean \(\updelta^{13}C_{CO2}\) of ?20.4 ‰ and by a mean CO2 flux of 88.1 g m?2 day?1, which were in the range of the typical values for biologic CO2 degassing. The maximum of soil CO2 flux reached values of 399 g m?2 day?1 in the epicenter; (2) the soil Rn had higher exhalation in the north segment of seismic ruptures, the maximum reached value of 1976 m Bq m?2 s?1; (3) the soil Hg flux was lower, ranging from ?2.5 to 18.7 n g m?2 h?1 and increased from south to north. The mean flux over the all profiles was 4.2 n g m?2 h?1. The total output of CO2 and Hg degassing estimated along seismic ruptures for a survey area of 18.17 km2 were approximately 0.57 Mt year?1 and 688.19 g year?1. It is recommended that land-use planners should incorporate soil gas and/or gas flux measurements in the environmental assessment of areas of possible risk. A survey of all houses along seismic ruptures is advised as structural measures to prevent the ingress of soil gases, including CO2 and Rn, were needed in some houses.  相似文献   

13.
In this study, indoor and outdoor radon (222Rn) surveys were carried out in the summer and winter seasons in homes of one hundred lung cancer patients in the year 2013–2014. The aim was to investigate the relationship between radon and cancer patients. Lung cancer patients completed a questionnaire concerning their living environment, various physical parameters and living habits. Pearson correlation and t tests revealed no meaningful results between radon concentrations, on one hand, and environmental and personal living habits, on the other hand. Consequently, the BEIR VI model was adapted and 222Rn exposure was estimated to be responsible for about 12% of the lung cancer incidences in the winter season and around 5% in the summer season in the Rize Province. However, due to the limited number of data and numerous parameters that could lead to lung cancer, the estimations done with the model should be taken very lightly. The annual effective doses due to inhalation of indoor and outdoor 222Rn were estimated to be, respectively, 1.43 and 0.94 mSv y?1. The indoor and outdoor annual effective doses were, respectively, close and below the world annual effective dose (1.3 mSv y?1). At the district level, the indoor annual effective dose equivalent in the ?yidere district was 4.52 mSv y?1, which was 3.5 times greater than the world average. The number of patients in the majority of the houses in this district was more than one.  相似文献   

14.
Radium-226 is a significant source of radon-222 which enters buildings through soil, construction materials or water supply. When cigarette smoke is present, the radon daughters attach to smoke particles. Thus, the alpha radiation to a smoker’s lungs from the natural radon daughters is increased because of smoking. To investigate whether the cigarette tobacco itself is a potential source of indoor radon, the α potential energy exposure level contents of radon (222Rn, 3.82d) and Thoron (220Rn, 55.60s) were measured in 10 different cigarette tobacco samples using CR-39 solid-state nuclear track detectors (SSNTDs). The results showed that the 222, 220Rn concentrations in these samples ranged from 128 to 266 and 49 to 148 Bqm−3, respectively. The radon concentrations emerged from all investigated samples were significantly higher than the background level. Also, the annual equivalent doses from the samples were determined. The mean values of the equivalent dose were 3.51 (0.89) and 1.44 (0.08) mSvy−1, respectively. Measurement of the average indoor radon concentrations in 20 café rooms was, significantly, higher than 20 smoking-free residential houses. The result refers to the dual (chemical and radioactive) effect of smoking as a risk factor for lung cancer.  相似文献   

15.
Because detrimental effects of exposure to lead (Pb) on human health have been observed, we previously investigated concentrations of Pb in water supplies and blood of adult residents of Riyadh, Saudi Arabia. The objectives of the present study were to: (1) examine seasonal rates of deposition of Pb in dust in several areas of Riyadh city, (2) measure concentrations of Pb in both outdoor and indoor dust, (3) compare concentrations of Pb in dust in Riyadh with those reported for other cities, and (4) quantify Pb in blood of children living in Riyadh. Mean, monthly deposition of PB in outdoor dust was 4.7 × 101 ± 3.6 tons km?2, with a mean Pb concentration of 2.4 × 102 ± 4.4 × 101 μg/g. Mean, monthly deposition of Pb in indoor dust was 2.7 ± 0.70 tons km?2, with a mean concentration of 2.9 × 101 ± 1.5 × 101 μg Pb/g. There was a significant (P < 0.01) correlation between concentrations of Pb in outdoor and indoor dust. There was no correlation between concentrations of Pb in indoor dust and that in blood of children of Riyadh, whereas there was a weakly significant (P < 0.05) correlation between concentrations of Pb in outdoor dust and that in blood of children. The mean (±SD) concentration of Pb in blood of children in Riyadh was 5.2 ± 1.7, with a range of 1.7–1.6 × 101 μg/dl. Concentrations of Pb in blood of 17.8 % of children in Riyadh were greater than 10 μg/dl, which is the CDC’s level of concern.  相似文献   

16.
This work presents a modeling approach to simulate spatial distribution of metal contamination in aerosols with evaluation of health hazard. This approach offers the advantage to be non-intrusive, less expensive than sampling and laboratory analyses. It was applied to assess the impact of metal-bearing dust from mining wastes on air quality for a nearby community and agricultural lands in Jebel Ressas (Tunisia) locality. Dust emission rates were calculated using existing parameterization adapted to the contamination source composed of mining wastes. Metal concentrations were predicted using a Gaussian model (fugitive dust model) with, as input: emission rates, dump physical parameters and meteorological data measured in situ for 30 days in summertime. Metal concentration maps were built from calculated PM10 particle concentrations. They evidence the areas where Pb and Cd concentrations exceeded WHO guidelines (0.5 and 0.005 µg/m3, respectively). Maximum concentrations of Pb and Cd in PM10 are, respectively, of 5.74 and 0.0768 µg/m3 for measured wind speed values up to 22 m/s. Preferential areas of contamination were determined in agricultural lands to the NW from the source dump where Pb and Cd exceeded guidelines up to a distance of 1,200 m. The secondary spreading directions were SW and E, toward the village. Health hazard prospecting shown that a major part of the village was exposed to contaminated dust and that daily hazard quotient (HQ) values reached locally 118 and 158, respectively, for Pb and Cd during the study period. However, HQ variations in the village are high, both temporally and geographically.  相似文献   

17.
In this investigation, the concentrations of particles in ambient air, gaseous elemental mercury (GEM), and particulate-bound mercury (Hg(p)) in total suspended particulates (TSP) as well as dry deposition at a (Traffic) sampling site at Hung-kuang were studied during the day and night in 2012. The results reveal that the mean concentrations of TSP in ambient air, GEM, and Hg(p) were 69.72 μg/m3, 3.17, and 0.024 ng/m3, respectively, at the Hung-kuang (Traffic) sampling site during daytime sampling periods. The results also reveal that the mean rates of dry deposition of particles from ambient air and Hg(p) were 145.20 μg/m2 min and 0.022 ng/m2 min, respectively, at the Hung-kuang (Traffic) sampling site during the daytime sampling period. The mean concentrations of TSP in ambient air, GEM, and Hg(p) were 60.56 μg/m3, 2.74, and 0.018 ng/m3, respectively, at the Hung-kuang (Traffic) sampling site during the nighttime sampling period. The mean rates of dry deposition of particles and Hg(p) from ambient air were 132.58 μg/m2 min and 0.016 ng/m2 min, respectively, at the Hung-kuang (Traffic) sampling site during the nighttime sampling period.  相似文献   

18.
Exposure to airborne particulate matter results in the deposition of millions of particle in the lung; consequently, there is need for monitoring them particularly in indoor environments. Case study was conducted in three different microenvironments, i.e., urban, rural and roadside to examine the elemental bioavailability in fine particulate matter and its potential health risk. The samples were collected on polytetrafluoroethylene filter paper with the help of fine particulate sampler during August–September, 2012. The average mass concentration of PM2.5 was 71.23 µg m?3 (rural), 45.33 µg m?3 (urban) and 36.71 µg m?3 (roadside). Elements in PM2.5 were analyzed by inductively coupled plasma atomic emission spectroscopy. Percentage bioavailability was determined to know the amount of soluble fraction that is actually taken across the cell membrane through inhalation pathway. Cadmium and lead were found to have cancer risk in a risk evaluation using an Integrated Risk Information system.  相似文献   

19.
Recently, the problem of indoor particulate matter pollution has received much attention. An increasing number of epidemiological studies show that the concentration of atmospheric particulate matter has a significant effect on human health, even at very low concentrations. Most of these investigations have relied upon outdoor particle concentrations as surrogates of human exposures. However, considering that the concentration distribution of the indoor particulate matter is largely dependent on the extent to which these particles penetrate the building and on the degree of suspension in the indoor air, human exposures to particles of outdoor origin may not be equal to outdoor particle concentration levels. Therefore, it is critical to understand the relationship between the particle concentrations found outdoors and those found in indoor micro-environments. In this study, experiments were conducted using a naturally ventilated office located in Qingdao, China. The indoor and outdoor particle concentrations were measured at the same time using an optical counter with four size ranges. The particle size distribution ranged from 0.3 to 2.5 μm, and the experimental period was from April to September, 2016. Based on the experimental data, the dynamic and mass balance model based on time was used to estimate the penetration rate and deposition rate at air exchange rates of 0.03–0.25 h?1. The values of the penetration rate and deposition velocity of indoor particles were determined to range from 0.45 to 0.82 h?1 and 1.71 to 2.82 m/h, respectively. In addition, the particulate pollution exposure in the indoor environment was analyzed to estimate the exposure hazard from indoor particulate matter pollution, which is important for human exposure to particles and associated health effects. The conclusions from this study can serve to provide a better understanding the dynamics and behaviors of airborne particle entering into buildings. And they will also highlight effective methods to reduce exposure to particles in office buildings.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) concentrations were analysed in the organic film on the glass surfaces of different functional areas in central Shanghai. Concentration levels of total PAHs in the organic film ranged from 1,348.5 to 4,007.9 ng m?2. The concentration of PAHs was lowest in parks and green spaces (1,348.5 ng m?2) and highest in traffic zones (4,007.9 ng m?2). A concentration gradient of total PAHs was observed as follows: traffic zones > commercial areas > cultural and educational areas > parks and green spaces. The distribution of PAHs was characterised by 3–4 ring PAHs in the study areas. The most abundant PAHs were phenanthrene (20.5 %), fluorene (16.7 %), pyrene (12.4 %) and chrysene (Chry) (11.2 %). The mass of the bulk film was composed of organic and inorganic compounds and ranged from 246 to 1,288 mg m?2. The bulk film thickness varied from 144 to 757 nm in the different functional areas. The ratios of An/178 and Fl/202 and principal component analysis suggested that PAHs came mainly from the mixed sources of fossil fuel, coal and incomplete combustion of biomass. Benzo[a]anthracene (BaA)/Chry is not suitable for use as a tracer for the transmission process of PAHs because of the rapid depletion of BaA in the organic film by photooxidation during daylight hours. The concentration of benzo[a]pyrene equivalent (BaPeq) varied from 21 to 701 ng g?1, and the major carcinogenic contributors of the 16 PAHs were BaP, DahA, B[b/k]F and InP, accounting for 83 % of BaPeq.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号