首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ANAMMOX菌利用零价铁还原硝酸盐脱氮研究   总被引:3,自引:1,他引:2  
采用全混式厌氧搅拌罐,研究在自养条件下,ANAMMMOX菌利用零价铁还原硝酸盐为氮气的可行性及最佳反应条件.投加铁屑71 g·L~(-1),接种厌氧氨氧化颗粒污泥200 mg·L~(-1),控制温度33℃±0.5℃,搅拌强度150 r·min~(-1),水力停留时间10 h,pH值为7.0~8.0.在中性条件下,添加厌氧氨氧化微生物的零价铁还原硝酸盐体系一次性投加零价铁,0~5 d硝酸盐脱氮负荷达到0.12 kg·(m~3·d)~(-1).反应出水氨和亚硝酸盐始终小于2.0 mg·L~(-1),硝酸盐以氮气形式损失,出水pH较进水高值超过8.0,并且可溶性铁含量始终小于7 mg·L~(-1).硝酸盐去除氮能力始终高于0.1 kg·(m~3·d)~(-1).批试实验优化反应条件:在偏酸性条件下(pH值为4~6)反应速度加快,并且液相总氮损失率大于89%.反应温度在30~40℃时,液相总氮损失率大于89%.过于极端的pH值环境及温度环境均不利于耦合反应的进行.  相似文献   

2.
ANAMMOX菌利用零价铁转化氨和硝酸盐实验   总被引:4,自引:4,他引:0  
周健  黄勇  袁怡  刘忻  李祥  沈杰  杨朋兵 《环境科学》2015,36(12):4546-4552
研究在自养条件下,零价铁促使厌氧氨氧化菌同步转化硝酸盐和氨氮的性能.添加零价铁,温度35℃±0.5℃,进水p H7~8,进水氨氮、硝态氮分别为50~100 mg·L~(-1)、50~100 mg·L~(~(-1))条件下,添加ANAMMOX菌后硝酸盐的还原加快8.2倍,并且出现硝酸盐和氨的同步转化,其转化速率最高达17.2 mg·(L·h)~(-1).改变反应时间及进水n(NH+4):n(NO-3),两者摩尔转化比于1.2~3.5范围内波动,该反应并非基元反应.实验证明,氨与硝酸盐同步转化途径为零价铁作用首先将硝酸盐还原为亚硝酸盐,生成的亚硝酸盐再与氨发生厌氧氨氧化反应.  相似文献   

3.
单质硫自养短程反硝化耦合厌氧氨氧化强化脱氮   总被引:1,自引:0,他引:1  
通过在厌氧氨氧化(ANAMMOX)连续流反应器中添加单质硫,试图引入单质硫自养短程反硝化(short-cut S~0-SADN)来强化ANAMMOX过程中NO~-_3-N的去除.在温度为(33±2)℃,pH为7.8~8.2条件下,探讨不同的进水NH~+_4-N/NO~-_2-N比对耦合系统中氮素转化以及NO~-_2-N竞争特性的影响.结果表明,在不同的进水NH~+_4-N/NO~-_2-N比(1∶1.3、 1∶1.5、 1∶1和1∶1.1)下,耦合系统的TN平均去除率分别达到了96.78%、 97.21%、 94.68%和97.72%,均远远大于ANAMMOX理论TN最高去除率89%.其中,在进水NH~+_4-N/NO~-_2-N比为1∶1或1∶1.1条件下,耦合系统能够实现单质硫自养短程反硝化耦合ANAMMOX深度脱氮的稳定运行.在最佳进水NH~+_4-N/NO~-_2-N比1∶1.1、NH~+_4-N和NO~-_2-N浓度分别为240mg·L~(-1)和265mg·L~(-1)条件下,TN去除速率达到1.50kg·(m~3·d)~(-1),ANAMMOX和S~0-SADN途径的TN去除率分别稳定在(95.68±1.22)%和(2.04±0.77)%.在整个运行过程中,ANAMMOX在底物NO~-_2-N的竞争过程中一直占据着绝对的优势,ANAMMOX菌的活性(以NH~+_4-N/VSS计)稳定在(0.166±0.008)kg·(kg·d)~(-1).  相似文献   

4.
马航  朱强  朱亮  李祥  黄勇  魏凡凯  杨朋兵 《环境科学》2016,37(6):2235-2242
室温下(19~24℃),采用硫自养反硝化生物膜反应器和厌氧污泥反应器,接种厌氧活性污泥,研究了反应器类型和单质硫尺寸对硫自养反硝化反应器启动的影响.结果表明,生物膜反应器经过65 d运行后获得稳定的脱氮效能,在进水NO~-_3-N浓度为150 mg·L~(-1),HRT为3.3 h,NO~-_3-N去除率为91%,TN去除率为77%,TN去除速率为0.67~0.83 kg·(m3·d)~(-1).对于厌氧污泥反应器,随着进水NO~-_3-N负荷的提高,污泥产气量的增加导致了污泥上浮.在进水NO~-_3-N浓度为185 mg·L~(-1),HRT为3.3 h的条件下,获得最大去除速率1.1 kg·(m3·d)~(-1),但是出水NO~-_3-N浓度的增加导致出水水质恶化,且污泥上浮严重影响了反应器的稳定运行.分别采用0.8 mm、3.0 mm的单质硫颗粒作为反应器启动的电子供体,于批试反应器中进行试验.试验结果表明,采用0.8 mm的单质硫颗粒能够获得较高的NO~-_3-N、TN去除率,出水NO~-_2-N浓度也明显低于采用3.0 mm的单质硫颗粒作为电子供体的反应器.  相似文献   

5.
ABR工艺ANAMMOX耦合短程硝化协同脱氮处理城市污水   总被引:2,自引:2,他引:0  
厌氧氨氧化技术如能替代市政污水厂的主流工艺,将大幅降低市政污水处理能耗.故采用ABR反应器,构建除碳系统、短程硝化系统和厌氧氨氧化系统,将三者耦合成一体化短程硝化-厌氧氨氧化反应器进行城市污水脱氮.结果表明,ABR除碳系统的HRT为4.5 h时,其出水COD平均浓度为80 mg·L~(-1),不会对后续短程硝化系统产生不利影响,出水TN平均浓度为10mg·L~(-1),厌氧氨氧化系统TN容积负荷为0.36 kg·(m~3·d)~(-1).当控制DO为1~2 mg·L~(-1)时,亚硝化率能长时间维持在90%左右,有利于保证后续厌氧氨氧化系统的稳定运行.当控制温度为30℃左右,好氧区DO为1~2 mg·L~(-1)良时,短程硝化-ANAMMOX一体化ABR工艺可以对城市污水稳定高效地脱氮.  相似文献   

6.
本研究以模拟城市污水和高硝酸盐废水为处理对象,在一个厌氧-缺氧-微曝气运行的SBR反应器内,将短程反硝化工艺(PD,NO_3~-→NO_2~--N)与反硝化除磷工艺(DPR)耦合,并通过联合调控进水C/N比、厌氧排水率和缺氧时间,考察了PD-DPR系统的亚硝酸盐积累特性和除磷性能.结果表明,经过140d,NO_3~-→NO_2~--N转化率(NTR)为80.1%,PO~(3-)_4-P去除率高达97.64%.在厌氧段(180 min),聚糖菌(GAOs)和聚磷菌(PAOs)对污水有机碳源进行充分利用,将其转化为内碳源;缺氧段(150 min),反硝化聚糖菌(DGAOs)和异养反硝化菌(DOHOs)分别进行内源和外源短程反硝化实现NO~-_2-N稳定积累,同时反硝化聚磷菌(DPAOs)进行高效反硝化吸磷;微曝气段(10 min),在不发生硝化反应的前提下,PAOs超量吸磷,提高了系统的除磷性能.系统出水NO~-_2-N/NH~+_4-N为1.31∶1(接近厌氧氨氧化工艺理论值1.32∶1),PO~(3-)_4-P浓度为0.30 mg·L~(-1),COD浓度为12.94 mg·L~(-1).其出水水质可满足与厌氧氨氧化(ANAMMOX)工艺耦合进行深度脱氮的需求.  相似文献   

7.
HRT对厌氧氨氧化协同异养反硝化脱氮的影响   总被引:2,自引:2,他引:0  
采用SBR处理实际生活污水,在实现半亚硝化时,出水NH_4~+-N、NO-2-N及COD平均浓度分别为37.27、39.97和120mg·L~(-1),将其作为厌氧氨氧化反应器(ASBR)的进水.控制温度为24℃,pH为7.2±0.2,考察HRT分别为36、33、30和27h时对厌氧氨氧化协同异养反硝化脱氮的影响.结果表明:(1)HRT为33 h时系统脱氮效能最佳,总氮容积负荷(TNLR)和总氮去除负荷(TNRR)平均值分别为0.056 kg·(m3·d)~(-1)和0.050 kg·(m3·d)~(-1);NH_4~+-N、NO-2-N和COD平均出水浓度分别为1.36、0.47和49.79 mg·L~(-1),三者去除率分别为96.30%、98.83%和56.17%;ΔNO-2-N/ΔNH_4~+-N和ΔNO_3~--N/ΔNH_4~+-N分别为1.17和0.15,比厌氧氨氧化反应的理论值(1.32,0.26)小0.15和0.11,造成此偏差的原因是由于系统中存在异养反硝化.(2)随着HRT的逐渐减小,厌氧氨氧化对脱氮的贡献率逐渐减小,异养反硝化对脱氮的贡献率逐渐增加.本研究结果可为厌氧氨氧化技术在实际工程中的应用提供参考.  相似文献   

8.
为寻求经济、有效的同步脱氮除硫工艺,采用HABR(复合式厌氧折流板反应器),接种厌氧氨氧化活性污泥,以人工模拟废水为研究对象,在进水p H为8.0、温度为(32±1)℃、HRT为6.5 h的条件下,调整进水S2-/NO3--N〔n(S2-)∶n(NO3--N)〕分别为2.0∶5、3.5∶5、5.0∶5、6.5∶5,研究其对硫自养反硝化和厌氧氨氧化耦合工艺启动的影响,试验连续进行了54 d.结果表明:当S2-/NO3--N1时,S2-的供应量相对不足,导致硫自养反硝化生成的NO2--N量不足,进而影响后续厌氧氨氧化效果,NH4+-N去除率较低,平均值为53.5%,同时剩余NO3--N继续氧化硫自养反硝化生成的S0,致使出水中ρ(SO42-)增大;当S2-/NO3--N=1时,S2-供应量充足,硫自养反硝化生成NO2--N量最大,厌氧氨氧化效果最好,NH4+-N去除率最高,平均值为65.1%;当S2-/NO3--N1时,S2-过量,S2-去除率下降.试验通过控制S2-/NO3--N,在HABR内成功实现了硫自养反硝化和厌氧氨氧化耦合工艺启动,NH4+-N、S2-、NO3--N最大去除率分别为74.3%、99.0%、99.5%,S2-/NO3--N=1为最佳比例.  相似文献   

9.
硫自养反硝化处理高含氟光伏废水可行性   总被引:1,自引:1,他引:0  
马航  朱强  朱亮  李祥  黄勇  魏凡凯  杨朋兵 《环境科学》2016,37(8):3094-3100
为了研究硫自养反硝化处理高含氟光伏废水的可行性,室温(20~25℃)下,采用驯化后的硫自养反硝化生物膜反应器,探究了不同进水F-浓度对硫自养反硝化脱氮效能的影响.结果表明,当进水F-浓度为0~700 mg·L~(-1)时,随着F-浓度的提升,反应器的脱氮效能逐渐提升,且当F-浓度为700 mg·L~(-1)时,可获最大TN去除速率1.0 kg·(m3·d)-1.当进水F-浓度在700~900 mg·L~(-1)时,经短期驯化,TN去除速率可稳定在0.81~0.87 kg·(m~3·d)~(-1).当进水F-浓度提升至900 mg·L~(-1)以上时,反应器的TN去除速率随进水F-浓度的提升而下降,最低至0.4~0.5 kg·(m~3·d)~(-1).以光伏废水为研究对象,在进水F-浓度为800 mg·L~(-1)左右,进水NO_3~--N浓度为390~420 mg·L~(-1),HRT为8.8 h的条件下,经50 d运行后,获得稳定的脱氮效能,TN去除速率为1.1 kg·(m~3·d)~(-1),出水TN为15~25 mg·L~(-1),达到污水接管排放标准.采用传统反硝化工艺和硫自养反硝化工艺脱氮处理光伏废水的成本分别为2.468元·t~(-1)和2.072 8元·t~(-1),硫自养反硝化工艺更节约脱氮处理成本.  相似文献   

10.
陈亚  印雯  张星星  张钰  宋吟玲  吴鹏  徐乐中 《环境科学》2020,41(5):2367-2372
采用厌氧折流板反应器与完全混合反应器(ABR-CSTR)组合的一体式工艺作为试验载体,在连续流的运行条件下,针对低碳高氨氮(NH~+_4-N≥200mg·L~(-1))污水,将不同隔室内的普通厌氧污泥驯化培养为分别具有反硝化除磷、部分亚硝化和厌氧氨氧化功能,以实现三者功能的耦合.A4(CSTR)段通过限氧(DO=0.8 mg·L~(-1))和间歇曝气(曝∶停比=30 min∶30 min)的方式经过30 d成功实现部分亚硝化的启动.随后进一步采取缩短水力停留时间(HRT)的方式实现部分亚硝化的稳定运行,为厌氧氨氧化提供了NO~-_2-N/NH~+_4-N为1.0~1.1的稳定进水基质.A5和A6隔室运行154 d后实现了厌氧氨氧化功能, NH~+_4-N和NO~-_2-N的去除率分别为94%和97%,其出水中NO~-_3-N浓度稳定在22 mg·L~(-1)左右.A1~A3隔室利用回流中的NO~-_x-N作为电子受体成功实现了反硝化除磷功能,PO~(3-)_4-P的去除率为77%.一体式工艺经过175d成功耦合,实现了碳、氮和磷的同步高效去除.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

17.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

18.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

19.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

20.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号