首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
通过优化阴极材料,构建新型单室无膜壁式空气阴极微生物燃料电池,开展了污泥浓度、阳极面积、导线材料和NaCl离子浓度等影响因素及其优化试验研究。结果显示:在恒温30℃和外接电阻1 000Ω的条件下,以铜线为导线,污泥浓度为21 000 mg/L,阳极面积为31.4 cm2,Na+浓度为200 mmol/L时,其产电性能最佳,最大电压为597 mV,最大输出功率密度为301 mW/m2,内阻为92.5Ω。此外,还分析了污泥运行过程中的变化。与目前其他以未经过预处理的剩余污泥作为底物的微生物燃料电池相比,该新型单室无膜壁式空气阴极微生物燃料电池功率密度较高,内阻较低。  相似文献   

2.
外加酶强化剩余污泥微生物燃料电池产电特性的研究   总被引:3,自引:1,他引:3  
以剩余污泥作为接种液和基质,探讨了外加酶(中性蛋白酶、α-淀粉酶)强化单室型剩余污泥微生物燃料电池产电效率的可行性,研究了酶投加量对微生物燃料电池的产电特性及剩余污泥减量的影响.结果表明,在相同条件下,实验组产生的最大功率密度远远高于对照组;当酶的总投加量为10 mg.g-1时,最大输出功率密度及污泥水解效率达到最大,即中性蛋白酶组的最大功率密度、库仑效率、TCOD去除率、TSS去除率、VSS去除率分别为507 mW.m-2、3.98%、88.31%、83.18%、89.03%,而α-淀粉酶组则分别为700 mW.m-2、5.11%、94.09%、98.02%、98.80%.本实验采用向剩余污泥中投加酶的方法,成功增强了微生物燃料电池的产电效率,同时对剩余污泥有效地进行了处理,为微生物燃料电池的实际应用提供了新途径.  相似文献   

3.
剩余污泥为燃料的微生物燃料电池产电特性研究   总被引:11,自引:2,他引:9  
利用厌氧污泥作为接种体在不加入任何营养元素的条件下,经过20 d成功地启动了单室无膜微生物燃料电池.启动成功后对剩余污泥作为燃料产电特性以及底物的变化进行了研究.结果表明,微生物燃料电池产生的最大电压为495 mV(外电阻为1 000 Ω),最大功率密度达到44 mW·m-2,稳定期间内阻约为300 Ω.在1个运行周期中,污泥SS和VSS的去除率分别为27.3%和28.7%,pH值的变化范围为6.5~8.0, COD的起始浓度为617 mg·L-1,浓度随时间的增加而增大并稳定在1 150 mg·L-1左右,随后逐渐下降,糖的起始浓度为47 mg·L-1,逐渐增大到60 mg·L-1之后浓度逐渐下降.微生物燃料电池可以将剩余污泥中的化学能转化为最清洁的电能,为污泥资源化提供了新的思路.  相似文献   

4.
剩余污泥生物燃料电池输出功率密度的影响因素   总被引:5,自引:2,他引:5       下载免费PDF全文
对于以剩余污泥为燃料的微生物燃料电池(MFC),考察了可能影响输出功率密度的相关因素.结果表明,污泥体积对燃料电池以面积为单位的输出功率密度影响效果不明显.电池阳极面积越大,输出功率密度反而越小.采用NaCl为离子添加剂时,随着投加量的增加,输出功率密度相应增加,最大为173.40mW/m2;但采用K2HPO4为离子添加剂时,输出功率密度则先增加后降低,可能是磷浓度的增加影响了系统微生物的活性.泥水比1:2时,最大功率密度为163.35mW/m2,稀释比增加或减少,输出功率密度均相应降低.阴阳极距离从5cm缩小到0.5cm,输出功率密度从50.14mW/m2增加到84.02mW/m2,说明O2的扩散未对阳极厌氧微生物造成影响.采用最优条件时,输出功率密度为256.12mW/m2.  相似文献   

5.
以剩余污泥为接种液和基质,探讨了添加生物表面活性剂(鼠李糖脂/TSS,0.3 g·g-1)对单室剩余污泥微生物燃料电池(SSMFC)产电特性及剩余污泥减量化的影响.结果表明,在一个运行周期中,对照组的产电周期为20 d,最大功率密度为236.8 mW·m-2,库仑效率为5.7%,TCOD去除率为28.6%,TSS去除率为28.9%,VSS去除率为33.4%,而实验组产电周期达到35 d,库伦效率为11.8%,最大输出功率密度为516.7 mW·m-2,较对照组增加了118.2%,TCOD、TSS、VSS去除率分别为58.5%、56.7%和66.3%,较对照组分别提高了104.5%、96.2%和98.5%.随着系统的运行,对照组和实验组系统输出电压均是先稳定一段时间后逐渐降低,污泥中SCOD、蛋白质和溶解性糖浓度均呈先上升再下降趋势.采用向剩余污泥中投加鼠李糖脂的方法可以增强SSMFC的产电效率,同时能显著增强剩余污泥减量化效果.  相似文献   

6.
污泥为燃料的微生物燃料电池运行特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
实验采用单室无膜悬浮阴极微生物燃料电池(MFC),考察了运行特性对污泥为燃料的MFC(SMFC)的影响.研究表明,相对于未搅拌情况,搅拌时SMFC最大输出功率由45.94mW/m2分别增加到124.03mW/m2(1300r/min)和136.5mW/m2(2600 r/min),主要是由于搅拌有利于改善SMFC内物质的传递. 温度对SMFC的产电特性影响较明显,但在一定区间内(如20~25℃;30~40℃;45~50℃)变化不明显,说明产电微生物有一定的温度适应范围,这也可能是在不同温度下产电微生物不同导致.相对于采用未经处理的剩余污泥为燃料,微波处理后的污泥和微波处理过滤后的上清液做燃料时SMFC输出功率迅速增加,这主要是由于污泥中的微生物竞争作用引起.阴极面积的增加有利于降低阴极电势,降低SMFC内阻,从而促进功率密度的增加.  相似文献   

7.
剩余污泥为底物的微生物燃料电池处理含铜废水   总被引:3,自引:3,他引:3  
以剩余污泥作为阳极底物,CuSO4溶液为阴极溶液构建了双室有膜微生物燃料电池(microbial fuel cell,MFC),研究了MFC的启动,污泥的降解,Cu2+的去除和阴极还原产物的性质.结果表明,Cu2+可作MFC的阴极电子受体,在外电路电阻为1 000 Ω,Cu2+浓度为6 400 mg/L的条件下获得的稳...  相似文献   

8.
采用单室无膜悬浮阴极微生物燃料电池(MFC),对比分析了不同处理方式的污泥(直接污泥、微波预处理污泥和酶强化水解污泥)为燃料时MFC产电特性、污泥减量化效果和能源效率.研究表明,酶强化污泥为燃料的MFC(ESMFC)产电周期最长(41d),功率密度最大(775.21mW/m2),但库仑效率(CE)仅10.58%.采用微波污泥为燃料的MFC(MSMFC)CE最高(84.6%),而产电周期(30d)和功率密度(343.41mW/m2)居中.采用直接污泥为燃料的MFC(SMFC)产电周期(15d)、功率密度(294.53mW/m2)和CE(5.8%)均最小.采用直接污泥为燃料的MFC中TCOD去除率为26.2%,VSS去除率为32.5%.采用污泥预处理手段有利于促进污泥减量化,MSMFC和ESMFC中TCOD去除率分别增加到58.5%和63.2%,VSS去除率分别增加到73.9%和77.1%.  相似文献   

9.
沉积物微生物燃料电池(SMFC)作为一种原位修复手段,既能降解沉积物中有机污染物,又可同时输出电能,具有广阔的应用前景.沉积物的来源和特性对于SMFC的产电及污染物降解性能具有重要影响.本研究采用了不同环境的6种沉积物(VS质量分数为3.1%~12.6%)构建SMFC反应器,研究不同沉积物构建的SMFC的产电性能、有机物去除率以及SMFC液相p H值的变化.实验结果显示,在不外加有机碳源的条件下,只有当沉积物的VS含量较高(12.6%)时,SMFC才可实现稳定产电,最大功率密度为39.6 m W·m-2.而当沉积物的VS含量较低(12%)时,SMFC不能实现自发产电.向6种沉积物中投加乙酸钠作为外加碳源,可明显促进产电.在有外加碳源的条件下,具有较高含盐量的沉积物构建的SMFC产电性能较好,其最大功率密度可达到142.3 m W·m-2.试验还发现,以土壤与厌氧污泥为混合底物的SMFC系统的产电功率密度明显低于纯土壤SMFC系统,显示了厌氧污泥对SMFC产电有抑制作用.  相似文献   

10.
采用剩余污泥为阳极底物,六价铬为阴极电子受体,构建双室微生物燃料电池(MFC).MFC启动成功后,考察阳极室污泥初始浓度和阴极室六价铬初始浓度对MFC产电性能及六价铬还原速率的影响.较高的污泥浓度(8~12g/L)对六价铬的还原速率影响均较小,且去除率均可达99%以上.污泥浓度为10g/L的MFC具有较高的产电性能,内阻为108Ω,最大功率密度输出为3621mW/m3.阴极室较高的Cr(VI)初始浓度可维持较长时间的高输出电压,但对阳极污泥降解并无明显影响.XPS测试结果表明,阴极Cr(VI)的还原产物为Cr(III),因电场作用被吸附在电极片上,使得阴极溶液中的总铬浓度降低.研究表明,剩余污泥为底物的微生物燃料电池可以在产电的同时实现剩余污泥的资源化及电镀废水的无害化.  相似文献   

11.
基于微生物燃料电池技术的多元生物质生物产电研究进展   总被引:3,自引:3,他引:3  
微生物燃料电池(microbial fuel cell,MFC)是一种使用微生物作为催化剂,直接将生物质能转化为电能的装置,为生物质的利用提供了新的途径.底物类型和底物浓度对于MFC的性能至关重要.使用小分子酸、醇或葡萄糖等简单有机物为底物时,MFC功率输出较高.但当底物为结构复杂的有机物时,为了提高MFC功率输出和底物降解效率,可以采用物理、化学手段对其进行预处理、采用天然菌群进行生物预降解或者添加简单有机物进行底物强化.基于多元生物质MFC技术未来将应用于污水中生物质能回收、偏远地区供电和生物传感器等方面.  相似文献   

12.
郭坤  李顶杰  李浩然  杜竹玮 《环境科学》2009,30(10):3082-3088
用夹子将质子交换膜和载铂量为0.2 mg/cm2碳纸固定在阳极室的短臂端口构成短臂型空气阴极微生物燃料电池.利用污泥电池从厌氧消化污泥中富集产电菌于石墨棒表面,循环伏安法检测发现这些微生物具有电化学活性.将富集好的石墨棒作为阳极用于短臂型空气阴极微生物燃料电池,以醋酸钠为底物时该电池的最大功率密度为738 mW/m2,内阻为280Ω,开路电压为741 mV.连续向阳极室通氮气和去掉质子交换膜可分别将电池的最大功率密度提高到745 mW/m2和759 mW/m2,当两者同时作用时最大功率密度可达到922 mW/m2,而这3种条件下电池的内阻仍保持在280Ω左右.当底物浓度在12.62~100.96 mg/L、外电阻为510Ω时,电池的最大输出电压和底物浓度之间存在明显的线性关系(R2=0.99).当底物浓度高于100.96 mg/L时,电池的最大输出电压不再增大并保持在302 mV(外电阻为510Ω).然而,电池的库仑效率则随着底物浓度的提高而提高,从31.83%逐渐增大到45.03%.  相似文献   

13.
电极构型对空气阴极生物燃料电池发电性能的影响   总被引:5,自引:5,他引:5  
尤世界  赵庆良  姜珺秋 《环境科学》2006,27(11):2159-2163
在空气阴极生物燃料电池(ACMFC)中,从阴极扩散进入阳极的氧气能够被兼性微生物作为电子受体还原,进而导致电子损失严重.本研究利用葡萄糖作底物,对2种不同电极构型的空气阴极生物燃料电池ACMFC1和ACMFC2的功率输出和电子回收进行了比较研究.结果表明,ACMFC1的内阻为302.14Ω,阳极电位为-323mV,最大功率密度为3 070 mW/m3;ACMFC2的内阻为107.79Ω,阳极电位为-442mV,最大功率密度达到9 800 mW/m3.在间歇条件下,ACMFC2可以连续运行220h,电子回收率为30.1%;而ACMFC1只能运行不到50h,电子回收率为9.78%.因此,合理的设计空气阴极生物燃料电池电极构型可以减小内阻,增大电池电动势进而增大功率输出,提高电子回收率.  相似文献   

14.
以吡啶和葡萄糖为燃料的MFC产电特性研究   总被引:1,自引:0,他引:1  
不同类型的有机物对MFC的产电性能有不同的影响,通过构建填料型MFC,以吡啶和葡萄糖为混合燃料,以铁氰化钾为电子受体,对有机物在MFC中的降解以及产电性进行研究.结果表明,外阻为1 000Ω的条件下,MFC的最大输出电压随着葡萄糖浓度的降低而降低,当吡啶初始浓度为500 mg/L,葡萄糖浓度分别为500、250、100 mg/L时,运行周期逐渐缩短,分别为49.5、25.7、25.2 h;最大体积功率密度为48.5、36.2、15.2 W/m3,最高电压为623 mV.MFC可实现对吡啶的高效降解,24h内吡啶去除率高达95%,但葡萄糖的浓度对吡啶的降解速率影响不大;高浓度吡啶存在的条件下对MFC利用葡萄糖产电的性能影响不大.利用500 mg/L单一吡啶作为MFC的燃料时,无明显产电现象.MFC利用吡啶和葡萄糖作为混合燃料时,可以在实现吡啶降解的同时稳定地向外输出电能.  相似文献   

15.
方丽  刘志华  李小明  杨麒  郑峣  贾斌 《环境科学》2010,31(10):2518-2524
采用经微波预处理的剩余污泥上清液作为接种体,成功地启动了空气阴极单室无膜微生物燃料电池(MFC),同时考察了不同微波时间和功率下MFC最大输出功率密度以及外接电阻对MFC的影响.结果表明,MFC整个产电周期长达600h,在同一微波功率(900W)下,MFC最大输出功率密度随辐射时间的延长而增大,在300s时达到210.07mW·m-2;当微波时间(300s)相同时,随着微波功率的增大,MFC最大输出功率在720W处出现一个峰值随后下降.长时间和较高功率(900W)的微波处理能够有效地提高MFC的工作效率;在最佳微波处理条件(300s,720W)下,最大输出功率密度最高可达306.2mW·m-2;不同外接电阻(30、500、2000Ω)下,库仑效率依次为83.3%、79.0%、33.6%;通过扫描电镜观察到,当外接电阻较高(2000Ω)时,阳极表面附着的微生物以球菌为主,外接电阻较低(30Ω)时,形态较为复杂,主要是丝状菌、球菌和杆菌,表明外接电阻会对MFC库仑效率和阳极表面微生物的富集产生影响.  相似文献   

16.
为探究MFC(microbial fuel cells,微生物燃料电池)对人工湿地(constructed wetland,CW)堵塞物EPS(extracellular polymeric substances,胞外聚合物)组分的处理效果和产电性能,构建双室MFC,设置闭路组(closed circuit MFC,MFC-C)和开路组(open circuit MFC,MFC-O)对EPS中的主要组分〔PN(protein,蛋白质)和PS(polysaccharide,多糖)〕及人工湿地堵塞物进行处理,分析底物类型、底物浓度和外阻(Rex)对MFC系统产电性能的影响及系统对底物的处理效果.结果表明:①MFC系统的产电性能受底物类型、底物浓度及Rex的影响较大,底物浓度增加1.5倍(由200 mg/L增至500 mg/L)时,MFC系统最大电压(Vmax)增加5.8%(PN),最大功率密度(Pmax)分别增加188.30%(PN)和124.21%(PS);保持底物类型和底物浓度不变,Rex增加9倍(由100 Ω增至1 000 Ω)时,MFC的Vmax分别增加110.26%(PN)和92.81%(PS),Pmax分别增加109.19%(PN)和7.51%(PS).②PN可全部被阳极微生物利用,但同时阳极微生物会分泌PS,底物浓度增加1.5倍时,出水中ρ(PS)分别增加107.85%(MFC-C)和78.55%(MFC-O);Rex增加9倍时,ρ(PS)分别增加415.85%(MFC-C)和294.29%(MFC-O);底物为PN时,出水中ρ(PS)均表现为MFC-C < MFC-O,说明MFC形成的微弱电场在一定程度上可抑制PS的分泌.③人工湿地堵塞物可作为MFC的底物,随着投加量的增加(除堵塞物投加量为0.500 g/L外),Vmax(约750 mV)变化不大,但电压稳定时间随投加量的增加而略有延长;堵塞物投加量为6.667 g/L时,MFC的Pmax为12.25 mW/m2,内阻(Rint)为1 112.5 Ω,MFC产电性能下降.研究显示,人工湿地堵塞物EPS可以作为MFC的阳极底物并同步实现能源回收.   相似文献   

17.
废水同步生物处理与生物燃料电池发电研究   总被引:17,自引:10,他引:17  
尤世界  赵庆良  姜珺秋 《环境科学》2006,27(9):1786-1790
利用厌氧活性污泥作为接种体成功地启动了空气阴极生物燃料电池(ACMFC),110h的接种产生了0.24V的电压;以乙酸钠和葡萄糖作底物分别产生了0.38V和0.41V电压(外电阻1 000Ω),最大功率密度分别达到146.56 mW/m2和192.04mW/m2,表明有机废水可以用来发电;同时,乙酸钠和葡萄糖的去除率分别为99%和87%,表明燃料电池可以处理废水.二者的电子回收率均在10%左右,主要是由于阴极对氧气分子的透过作用引起的微生物好氧呼吸导致电子损失.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号