首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Marine mussels (Mytilus spp.) belong to a group of benthic species crucial to coastal ecosystems in Europe and are important for the cultivation industry. In the present study, the nuclear adhesive protein marker (Me15/16) was used for identification of Mytilus species in coastal areas, on a large geographic scale in Europe. Pure M. edulis populations were found in the White Sea and Iceland. M. edulis, M. trossulus and their hybrids were found in the Baltic Sea and the North Sea (Oosterschelde, The Netherlands). M. galloprovincialis, M. edulis and their hybrids occurred in Ireland. M. galloprovincialis populations were observed in the Sea of Azov (Black Sea), the Mediterranean and Portugal. The mitochondrial (mt) DNA coding-region ND2-COIII was studied by PCR (polymerase chain reaction) and RFLP (restriction fragment length polymorphism) assay methods. The mtDNA control region was studied by PCR. Substantial differentiation in the frequency of female haplotypes among the studied populations in Europe was observed. Despite isolation between the Mytilus taxa on a macro-geographic scale, considerable mitochondrial gene flow occurred between populations, with introgression in hybrid zones on a more local geographic scale in Europe. MtDNA of the Atlantic Iberian (Portugal) population of M. galloprovincialis was more similar to mtDNA in populations of M. galloprovincialis and M. edulis from the Atlantic coasts of the Ireland and M. edulis from the North Sea, than to M. galloprovincialis from the Mediterranean. Lower polymorphism of mtDNA in populations of the Baltic and Azov Sea mussels in comparison with other European populations was observed and can be explained by the recent history of both seas after the Pleistocene glaciation. In the M. galloprovincialis population from the Azov Sea, the presence of the male-inherited (M) genome was demonstrated for the first time by sequencing the control region and was observed at high frequency. Possible influence of mussel culture on geographic distribution of the Mytilus taxa in Europe is discussed.  相似文献   

2.
Many marine species, including mussels in the Mytilus edulis species group (i.e. M. edulis L., M. galloprovincialis Lamarck, and M. trossulus Gould), have an antitropical distribution pattern, with closely related taxa occurring in high latitudes of the northern and southern hemispheres but being absent from the tropics. We tested four hypotheses to explain the timing and route of transequatorial migration by species with antitropical distributions. These hypotheses yield different predictions for the phylogenetic relationship of southern hemisphere taxa relative to their northern counter-parts. The three Mytilus species were used to test these hypotheses since they exhibit a typical antitropical distribution and representative taxa occur in both the Pacific and Atlantic. Two types of mtDNA lineages were found among populations of mussels collected from the southern hemisphere between 1988 and 1996; over 90% of the mtDNA lineages formed a distinct subclade which, on average, had 1.4% divergence from haplotypes found exclusively in northern Atlantic populations of M. galloprovincialis. These data indicate that southern hemisphere mussels arose from a migration event from the northern hemisphere during the Pleistocene via an Atlantic route. The remainder of the southern hemisphere lineages (<10%) were very closely related to mtDNA haplotypes found in both M. edulis and M. galloprovincialis in the northern hemisphere, suggesting a second, more recent migration to the southern hemisphere. There was no evidence that southern hemisphere mussels arose from Pacific populations of mussels. Received: 8 December 1998 / Accepted: 8 November 1999  相似文献   

3.
Rocky intertidal habitats often exhibit high levels of environmental heterogeneity, and the ability of organisms to move between microhabitats is likely to have a profound influence on their rates of mortality and overall fitness. Mussels within the Mytilus edulis complex are morphologically very similar, yet at sites where these species hybridize in southwest England, populations repeatedly show evidence of selection against individuals with alleles specific to M. edulis Linnaeus, in favor of those with alleles specific to M. galloprovincialis Lamarck. Differential movement rates of these two species were examined within simulated mussel beds (gravel substrate) in the winter (February) and summer (July) of 2001. M. edulis-like mussels moved more frequently and more quickly to the exterior of gravel beds than did M. galloprovincialis-like mussels. Coupled with measurements of attachment strength in the field conducted in July 2001, we used a wave force model to examine the probability of dislodgement for each species under a range of water velocities. Results suggest that by preferentially moving to the exterior of beds, M. edulis experiences higher dislodgement rates due to exposure to large hydrodynamic forces than do M. galloprovincialis. As a consequence of lower attachment strengths, M. edulis is also predicted to have higher mortality rates than M. galloprovincialis in interior portions of the bed. Thus, differential movement behavior may contribute to the differential genotype-specific mortality rates observed in the Mytilus spp. hybrid zone in southwest England, and is an example of behavior potentially modifying rates of exogenous selection in an intertidal hybrid zone.Communicated by J.P. Grassle, New Brunswick  相似文献   

4.
A strong clinal change in salinity occurs between the Baltic Sea and the North Sea, Atlantic Ocean, in the Danish Straits, where hybridization zone between mussels Mytilus edulis and M. trossulus has been reported. Eleven samples of mussels were studied from the Danish Straits and the inner Baltic Sea. Extensive introgression of M. edulis alleles from the North Sea into populations throughout the Baltic was ascertained for mitochondrial DNA (mtDNA) and two nuclear markers (ME15–16 and ITS). In the opposite direction, introgression of M. trossulus alleles into the M. edulis background was observed at the EFbis nuclear marker in populations from Kattegat (Danish Straits). While only M. edulis F (female) mtDNA was present in the Baltic, there were still strong differences in frequencies in the control region length variants between the Danish Straits and the inner Baltic samples, and weaker variation in coding region ND2–COIII haplotype frequencies. In the assays of the two mtDNA regions, various patterns of heteroplasmy were detected in 32% of all the studied individual mussels; this includes the presence of distinct, independently inherited M and F mitochondria in males, as well as the presence of two different distinguishable F genomes. The male-inherited M mtDNA genomes are quite common in the mussels from the Danish Straits, but very rare in males from the inner Baltic. Instead, a recombined control region variant (1r), which seems to have taken over the role of the M genome, was present in a number of specimens in the Baltic. Observations of heteroplasmy for two F genomes in some females and males confirm disruptions of the doubly uniparental inheritance mechanism in the hybrid Baltic Mytilus.  相似文献   

5.
Mitochondrial DNA (mtDNA) and allozyme variation were analysed in samples of mussels collected in 1984 and 1985 from four localities in South West England and one locality in South Wales, a region of Britain where the common mussel (Mytilus edulis) occurs sympatrically and hybridises with the Mediterranean mussel (M. galloprovincialis). Significant differences in mtDNA genotype frequencies for three restriction enzymes (BstEII, XbaI, and EcoRI) were observed between mussels from M. galloprovincialis populations (Padstow and Bude) and those from an M. edulis population (Swansea). Some mtDNA genotypes at high-frequency in M. galloprovincialis were not observed in M. edulis, although there was no indication that mtDNA variation provides greater overall diagnostic power than allozyme variation in distinguishing between the two forms of mussel. Construction of a phylogenetic tree of multiple mtDNA genotypes revealed small mutational distances between the genotypes characterising M. edulis and M. galloprovincialis. The results were consistent with predominant mtDNA flow from M. edulis to M. galloprovincialis. This can be explained by the dispersal of larvae to South West England from M. edulis regions to the north and east, but little dispersal in the opposite directions. Samples from two hybrid populations (Whitsand and Croyde) were analysed. mtDNA genotype frequencies at Croyde were in line with predictions made on the basis of two partially diagnostic allozyme loci (Est-D and Odh), mtDNA frequencies at Whitsand were not. Frequencies of some mtDNA genotypes at Whitsand were characteristic of M. edulis, others of M. galloprovincialis. Differential selective mortality or flow of different mtDNA genotypes and allozyme variation are proposed as possible causes of these results.  相似文献   

6.
Blue mussels in the genus Mytilus first arrived in the Atlantic Ocean from the Pacific during the Pliocene, following the opening of the Bering Strait. Repeated periods of glaciation throughout the Pleistocene led to re-isolation of the two ocean basins and the allopatric divergence of Mytilus edulis in the Atlantic and M. trossulus in the Pacific. Mytilus trossulus has subsequently colonized the northwest Atlantic (NW Atlantic) so that the two species are presently sympatric and hybridize throughout much of the Canadian Maritimes and the Gulf of Maine. To estimate when M. trossulus arrived in the NW Atlantic, we have examined sequence variation within a portion of the female mtDNA lineage large untranslated region (F-LUR) for 156 mussels sampled from three Pacific and eleven Atlantic populations of M. trossulus. Although we found no evidence of reciprocal monophyly for Pacific and NW Atlantic M. trossulus, limited gene flow between ocean basins has led to the divergence of unique sequence clades within each ocean basin. In contrast, relative genetic homogeneity indicates high levels of gene flow within each basin. Coalescence-based analysis of the F-LUR sequences suggests that M. trossulus recolonized the NW Atlantic from the northeast Pacific subsequent to a demographic expansion in the Pacific that occurred ~96,000 years before present (ybp). Estimates of timing of divergence for Pacific and NW Atlantic populations and the time since expansion among NW Atlantic sequence clades indicate that M. trossulus arrived in the NW Atlantic more recently, between 20,000 and 46,000 ybp. Given that these estimates overlap with the dates of peak ice in the NW Atlantic during the last glacial maximum (LGM, ~18,000–21,000 ybp), we suggest that colonization of the NW Atlantic by M. trossulus occurred during, but more likely just subsequent to, the LGM and was followed by rapid temporal and spatial expansion in the region.  相似文献   

7.
Mussels of the genus Mytilus are widespread in both northern and southern hemispheres. Mytilus taxa are very important components of marine coastal ecosystems, but are difficult to differentiate morphologically. Sequencing and Sequenom MassARRAY iPLEX genotyping technology was used to identify and verify novel SNP markers in three European taxa of Mytilus: M. edulis, M. galloprovincialis, and M. trossulus. SNPs were localized in coding and non-coding sequences of some functionally important genes. Eight SNPs located in genes of the histone family, hsp70 and p53, were discovered and applied as novel markers for Mytilus taxa on a large European scale. Five of these differentiated the M. trossulus genome, two M. galloprovincialis, and one M. edulis. Other SNPs differentiated populations within taxa. The new SNPs will be a valuable tool for population studies of European Mytilus mussels. The percentage of polymorphic SNPs ranged from 19 to 100 % in 24 samples of mussels studied. Populations from Scotland, Mecklenburg Bight, and Norway had over 90 % polymorphic loci. Most loci were in Hardy–Weinberg equilibrium in all samples except for the one from Scotland. The highest percentages of heterozygotes were observed in the Atlantic (Banyuls and Vigo) and North Sea (Tjarno and Westerschelde) populations. An excess of homozygotes was observed in samples from Scotland, Norway, and the Barents Sea. Correspondence and Structure analysis also demonstrated the great heterogeneity of these three samples.  相似文献   

8.
Heterozygosity and growth in transplanted mussels   总被引:2,自引:0,他引:2  
Growth comparisons were made involving mussels (Mytilus spp.) collected from five different localities in Britain in 1980–1981. Two of the localities, Mumbles, South Wales, and Bude, Southwest England, have pure populations of M. edulis and M. galloprovincialis, respectively. The other three, Whitsand Bay, Southwest England, Croyde Bay, Southwest England and Robin Hood's Bay, Northeast England, have hybrid populations with both M. edulis and M. galloprovincialis ancestry. To make growth comparisons, mussels from different populations were mixed in oyster nets and transplanted to three different localities. After periods of transplantation varying between several months and one year, growth was assessed by measuring increase in shell length or dry body weight. Starch-gel electrophoresis was used to assay variation in the transplanted mussels at three allozyme loci partially diagnostic for M. edulis and M. galloprovincialis. The results provide evidence of small growth differences between populations and between allozyme genotypes within populations. These differences accounted for no more than a few percent of the total variation in growth between mussels. Statistically significant results were obtained, but were frequently found not to be reproducible. There is no clear evidence of a growth difference between M. edulis and M. galloprovincialis. Allozyme heterozygotes appear to have growth rates intermediate between allozyme homozygotes; this study thus fails to provide evidence for overdominance with respect to growth rate.  相似文献   

9.
Geographic variation in mitochondrial large subunit (16S) ribosomal RNA haplotypes was examined for blue mussels, Mytilus trossulus Gould, 1850 and M. galloprovincialis Lamarck, 1819, sampled from ten sites along the Pacific coast of the USA in January of 1993. Using polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) assays we determined haplotype frequencies for both the male and female mussel mitochondrial DNA (mtDNA) lineages. Populations from Morro Bay south to San Diego, California, contained only M. galloprovincialis male and female haplotypes, while those from Arcata Bay, California, north to Port Orford, Oregon, were fixed for M. trossulus haplotypes. Populations from Monterey Bay to Bodega Bay, California, contained a mixture of M. trossulus and M. galloprovincialis haplotypes. Overall only 2 of 97 heteroplasmic individuals had a mixed M. trossulus/M. galloprovincialis mitochondrial genotype indicating that hybridization is uncommon in the populations sampled. Further, there was no evidence of extensive introgression between these mussel taxa at the level of mtDNA. This is in contrast to previously published results which suggested the significant introgression of M. trossulus haplotypes into southern populations containing primarily M. galloprovincialis nuclear genotypes. We feel the discrepancy lies in the ability of our assays to detect haplotypes corresponding to both the male and female mtDNA lineages. Potential explanations for the lack of mtDNA introgression include, low levels of backcrossing between hybrids and parental taxa, epistatic interaction between nuclear and mitochondrial genes and the breakdown of a sex-specific inheritance pattern for mtDNA in hybrids.  相似文献   

10.
Patterns of (female) mitochondrial DNA diversity were investigated in the blue mussel Mytilus edulis. Mytilus edulis is a ubiquitous member of contemporary North Atlantic hard-substrate communities and well represented in studies of this region. Mytilus edulis was surveyed in North America and Europe, as well as mid-Atlantic sites in Greenland, Iceland, and the Faroe Islands. Mitochondrial DNA sequences revealed considerable population structure but no monophyly of haplotypes between any major regions. Coalescent analyses suggest that migration across the Atlantic Ocean has prominently been from North American source populations and that Greenland was colonized recently and exclusively from North America. In North America, there was support for two regional groups along the North American coastline. Surprisingly, we also found evidence of recombination between some Mytilus edulis and Mytilus galloprovincialis female mtDNA sequences, particularly in northern Europe. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

11.
We examined natural selection within a population of marine mussels, sampled in southwestern England in June 1991, containing a high frequency of hybrids between Mytilus edulis L. and M. galloprovincialis Lmk. This system is particularly tractable for the assessment of natural selection because hybridization is common and individual mussels can be aged, allowing changes in the frequency of hybrid genotypes among age classes to be determined. We show that strong viability selection occurs among hybrid genotypes which results in the virtual elimination of M. edulis–like genotypes from the population over a period of 3 years. Recombinant hybrid genotypes are intermediate in fitness, with M. edulis–like genotypes having a lower survival rate and M. galloprovincialis–like genotypes having a higher survival rate than genotypes of mixed ancestry. Since intermediate fitness for hybrid genotypes is inconsistent with endogenous selection models we conclude that the structure and position of this hybrid zone is probably generated by exogenous selection. This pattern of selection is a recurring feature of this hybrid population and likely occurs elsewhere in the hybrid zone. Selection against M. edulis–like genotypes appears to be offset by extensive immigration of larvae dispersed from pure populations of M. edulis. Received: 14 July 1997 / Accepted: 24 February 1998  相似文献   

12.
A genetic study carried out on nine natural mussel populations on the French Atlantic coast from 1989–1990 revealed interdigitation between typicallyMytilus edulis and typicallyM. galloprovincialis populations and intermediate populations. The allele components of the populations followed aM. edulis/M. galloprovincialis gradient which does not correspond to a geographical gradient. Strong hybridization was evident in samples with intermediate allele frequencies. The respective importance of gene flow and selection is discussed in the light of the results and the evironmental features of the sampling zone.  相似文献   

13.
Mussel samples were collected at 4 to 6 wk intervals throughout 1987 from two hybridMytilus edulis/M. galloprovincialis populations, at Croyde Bay and Whitsand Bay, in southwest England. These were analyzed at two polymorphic loci which are diagnostic for allozyme differences which typifyM. edulis andM. galloprovincialis. Dry mantle weight as a function of shell length was determined for all individuals of each sample. Size-frequency data for the two populations was obtained in September 1987 and March 1988. For all genotypes at both sites, fecundity was a function of shell length, and in both populations the frequency ofM. galloprovincialis alleles was positively correlated with shell length. At both sites, allozyme genotype explained a significant amount of variation in mantle weight either when assessed as a main effect or when assessed as an interaction with shell length or time of collection. At Croyde,M. galloprovincialis mussels had greater estimated fecundity per unit length than theM. edulis mussels. Differences in the timing of spawning activity between theM. edulis and theM. galloprovincialis mussels were inferred, and these differences might act to reduce the amount of interbreeding at Croyde. At Whitsand, a reduced level of variability in the timing of spawning activity and fecundity between the genotypes was observed and explained by a higher degree of genetic mixing. Because theM. galloprovincialis mussels had (1) a greater estimated fecundity at any length, and (2) a greater mean length than theM. edulis mussels, the mean genotypic annual fecundity perM. galloprovincialis mussel was 2.8 times greater than an individualM. edulis mussel at Croyde, and 2.2 times greater than an individualM. edulis mussel at Whitsand. This evidence thatM. galloprovincialis mussels have an advantage in fecundity, and thus perhaps in fertility, taken together with the evidence thatM. galloprovincialis also has a higher viability, indicates directional selection in favour of theM. galloprovincialis phenotype. Because of the observed temporal stability of the population it seems likely that this selection is counterbalanced by a massive imigration ofM. edulis spat from neighbouring populations.  相似文献   

14.
Genetic relationships among Mytilus populations throughout the North Atlantic region, including the Mediterranean and the Baltic Sea, were studied using enzyme electrophoresis. Three distinct groups of populations, each of a remarkably wide distribution, can be recognised on the basis of their multilocus allelic composition: (1) M. galloprovincialis L. of the Mediterranean and western Europe; (2) a genetically distinct form of M. edulis Lmk. from both the Baltic Sea and some localities in the Canadian Maritime Provinces (here provisionally termed the trossulus type mussel); and (3) the traditional Atlantic M. edulis populations of northwestern European coasts and most of eastern North America. These groups are regarded as representing three relatively old evolutionary lineages, which all deserve separate and equal systematic status. The main part of the differentiation at most of the loci studied is accounted for by this major systematic pattern, but considerable geographical differentiation within each of the three principal groups was also detected. At single loci, different electromorphs were found to prevail in disjunct populations of M. galloprovincialis (Mediterranean/Britain) and of the trossulus-type mussel (Baltic/eastern Canada). Within the Atlantic M. edulis, a major part of the differentiation is transoceanic. At one locus (Ap), geographic differentiation appeared to be relatively independent of the systematic boundaries; the possible role of interlineage hybridisation in contact areas in regulating the pattern of geographical variation is discussed.  相似文献   

15.
Mitochondrial DNA (mtDNA) of Mytilus trossulus from the Gulf of Gdansk (southern Baltic) and M. edulis from Swansea Bay, South Wales, UK, collected in 1991, was studied by restriction-enzyme analysis. These two species were more similar to each other in haplotype frequencies than either was to M. galloprovincialis from Britain. M. trossulus resembles M. edulis in having a high frequency of heteroplasmy restricted to males. However, in contrast to M. edulis where restriction-site heteroplasmy predominates, in M. trossulus heteroplasmic individuals possess two genomes which differ in length by up to 3 kilobases.  相似文献   

16.
The distribution of Mytilus edulis Linnaeus, M. galloprovincialis Lamarck, and their hybrids was examined in mussel populations in southwest England in 1996 and 1998. This is a region where both parental taxa and populations containing large numbers of hybrids co-occur yet a fine-scale mapping of the hybrid populations has not been conducted. In this study the geographic distribution of hybrid populations was determined in southwest England over 360 km of coast from Tintagel Castle in north Cornwall to Beer in south Devon. Sample localities were spaced from 5 to 20 km apart. Genotypes for individual mussels were determined using PCR to amplify a size polymorphism at the Glu-5' locus that is completely differentiated between M. edulis and M. galloprovincialis. Hybrid populations, characterized by high frequencies of individuals with heterozygous genotypes and a pattern of decreasing frequency of M. edulis alleles with increasing shell length, were continuously distributed along 180 km of open coast in southwest England. This "hybrid patch" was bordered at one end by geographically extensive populations of pure M. edulis and at the other end by nearly pure populations of M. galloprovincialis. Strong natural selection in hybrid populations results in a decline in the frequency of M. edulis alleles with increasing size. Wave-exposure has previously been implicated as the agent producing this pattern of selection, but in the present study the relationship between allele frequency and body size was not correlated with variation in wave shock intensity among localities within the hybrid zone. The transition between hybrid populations and those containing pure populations of M. edulis or M. galloprovincialis is abrupt which suggests that coastal circulation patterns may provide strong barriers to larval dispersal which accounts for the position and maintenance of the hybrid zone.  相似文献   

17.
Many authors have considered the common mussels in temperate waters of the Northern and Southern Hemispheres to be a single cosmopolitan species,Mytilus edulis Linnaeus, 1758. Others have divided these mussels into several subspecies or species. Samples of mussels were collected from 36 locations in the Northern Hemisphere and nine locations in the Southern Hemisphere. Electrophoretic evidence from eight loci indicates that the Northern Hemisphere samples consist of three electrophoretically distinguishable species:M. edulis from eastern North America and western Europe;M. galloprovincialis Lamarck, 1819 from the Mediterranean Sea, western Europe, California, and eastern Asia; andM. trossulus Gould, 1850 from the Baltic Sea, eastern Canada, western North America and the Pacific coast of Siberia. Mussels from Chile, Argentina, the Falkland Islands and the Kerguelen Islands contain alleles characteristic of all three Northern Hemisphere species, but because they are most similar toM. edulis from the Northern Hemisphere, we suggest that they tentatively be included inM. edulis. These South American samples are morphologically intermediate between Northern HemisphereM. edulis andM. trossulus. Mussels from Australia and New Zealand are similar in allele frequency and morphometric characters toM. galloprovincialis from the Northern Hemisphere. FossilMytilus sp. are present in Australia, New Zealand and South America, which suggests that the Southern Hemisphere populations may be native, rather than introduced by humans. Morphometric characters were measured on samples which the allozyme data indicated contained a single species. Canonical variates analysis of the morphometric characters yields functions which distinguish among our samples of the species in the Northern Hemisphere.  相似文献   

18.
In several marine bivalve species, biochemical genetic variation at a leucine aminopeptidase (LAP) locus is associated with environmental variability, primarily salinity fluctuation. Population genetic variation at a LAP locus was investigated here in two sympatric mussel species (Mytilus galloprovincialis and Perna canaliculus) from three locations along a salinity gradient in Wellington Harbour, New Zealand. The data for M. galloprovincialis and P. canaliculus do not support the hypothesis that the LAP polymorphism in either species is associated with salinity variation among adult mussels. Due to the absence of small mussels among the samples it is not possible to discount the hypothesis that selection acts primarily against juveniles, as it does for M. edulis in Long Island Sound, USA. Wellington Harbour populations of M. galloprovincialis exhibited large and often highly significant heterozygote excesses at the LAP locus, whereas populations of P. canaliculus from the same locations exhibited large and highly significant heterozygote deficiencies. The reason for this inter-specific difference in population structure is unknown. If it is the result of selection, this suggests that selection acts differentially upon the two species, because demographic attributes and reproductive biology are very similar in the two species. For both M. galloprovincialis and P. canaliculus, significant levels of population genetic heterogeneity were recorded among three locations separated by only 8 to 12 km. Neither species exhibited shell length-dependent genetic variation at the LAP locus, suggesting that for these two species the LAP polymorphism is not associated with variation in shell length. Received: 30 December 1996 / Accepted: 6 January 1997  相似文献   

19.
Loglinear analysis of electrophoretic data from two hybrid Mytilus edulis x galloprovincialis populations in southwest England revealed non-significant associations between genotypes at four allozyme loci, each of which is partially diagnostic for differences between the two taxa. Significant non-random genotypic associations within the context of the non-significant model involved all four assayed loci equally, consistent with their occurrence in a relatively tight linkage group. Multivariate analyses were used to examine electrophoretic variation from the two hybrid populations, and morphometric variation in the hybrid populations and in four allopatric (two M. edulis and two M. galloprovincialis) populations from western Europe While the number of hybrid mussels is high at both sites (22% at Croyde, 53% at Whitsand) the two taxa have largely maintained the genetic differences which exist between them in allopatry. However, morphological differences between the taxa have been eroded for mussels within the hybrid zone, whereas these differences are quite pronounced for mussels from allopatric populations. It is proposed that each taxon within the genus maintains its genetic identity, despite high dispersal potential, widespread hybridization, and high levels of introgression, as a result of adaptation to different environments. The worlwide occurrence of all four Mytilus hybrid zones at ecotones between recognized biogeographical provinces which are characterized by differences in temperature and salinity is consistent with such an interpretation.  相似文献   

20.
Most recent authors have called the bay mussels of the Pacific coast of North AmericaMytilus edulis Linnaeus, 1758. Thirteen samples ofedulis-like mussels were collected from California, Oregon, and Alaska, USA, in 1985, 1986 and 1987. Electrophoretic evidence from wight loci indicates that these samples consist of two genetically distinct groups, neither of which is similar toM. edulis from the Atlantic Ocean. Mussels in southern California are very similar toM. galloprovincialis Lamarck, 1819 from the Mediterranean Sea; it is probable thatM. galloprovincialis was introduced accidentally to southern California. Mussels in Oregon and Alaska are similar to those from the Baltic Sea and parts of eastern Canada; the nameM. trossulus Gould, 1850 has priority for this taxon. In central and nothern California,M. galloprovincialis, M. trossulus and their hybrids co-occur. Despite the presence of hybrids betweenM. galloprovincialis andM. trossulus, the genetic integrity which they maintain across large areas of the world warrants their recognition as two distinct species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号