首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kaewsarn P 《Chemosphere》2002,47(10):1081-1085
Biosorption of heavy metals can be an effective process for the removal and recovery of heavy metal ions from aqueous solutions. The biomass of marine algae has been reported to have high uptake capacities for a number of heavy metal ions. In this paper, the adsorption properties of a pre-treated biomass of marine algae Padina sp. for copper(II) were investigated. Equilibrium isotherms and kinetics were obtained from batch adsorption experiments. The biosorption capacities were solution pH dependent and the maximum capacity obtained was 0.80 mmol/g at a solution pH of about 5. The biosorption kinetics was found to be fast, with 90% of adsorption within 15 min and equilibrium reached at 30 min. The effects of light metal ions on copper(II) uptake were studied and the presence of light metal ions did not affect copper(II) uptake significantly. Fixed-bed breakthrough curves for copper(II) removal were also obtained. This study demonstrated that the pre-treated biomass of Padina sp. could be used as an effective biosorbent for the treatment of copper(II) containing wastewater streams.  相似文献   

2.

Purpose

The objectives of this research are to identify the functional groups and determine corresponding pK a values of the acidic sites on dried brown algae Cystoseira barbata using FTIR and potentiometric titrations, and to investigate the biosorption ability of biomass towards divalent nickel, cadmium, and lead ions. Adsorption was studied as a function of solution pH and contact time, and experimental data were evaluated by the Langmuir isotherm model.

Methods

CaCl2 pretreatment was applied to the sorbent for enhancing the metal uptake capacity. The effect of solution pH on biosorption equilibrium was investigated in the pH range of 1.5?C5.0. Individual as well as competitive adsorption capacity of the sorbent were studied for metal cations and mixtures.

Results

The retention of the tested metal ions was mostly influenced from pH in the range of 1.5?C2.5, then stayed almost constant up to 5.0, while Ni(II) uptake showed the highest variation with pH. Potentiometric titrations were performed to find the number of strong and weak acidic groups and their acidity constants. The density of strong and weak acidic functional groups in the biomass were found to be 0.9 and 2.26?mmol/g, respectively. The FTIR spectra of the sorbent samples indicated various functionalities on the biomass surface including carboxyl, hydroxyl, and amino and sulphonate groups which are responsible for the binding of metal ions.

Conclusions

The capacity of the biomass for single metal ions (around 1?mmol/g) was increased to 1.3?mmol/g in competitive adsorption, Pb(II) showing the highest Langmuir intensity constant. Considering its extremely high abundance and low cost, C. barbata may be potentially important in metal ion removal from contaminated water and industrial effluents.  相似文献   

3.
Iqbal M  Edyvean RG 《Chemosphere》2005,61(4):510-518
The potential of loofa sponge discs to immobilize fungal biomass of Phanerochaete chrysosporium (a known biosorbent) was investigated as a low cost biosorbent for the removal of Cd(II) ions from aqueous solution. A comparison of the biosorption of Cd(II) by immobilized and free fungal biomass from 10 to 500 mg l(-1) aqueous solutions showed an increase in uptake of over 19% when the biomass is immobilized (maximum biosorption capacity of 89 and 74 mg Cd(II) g(-1) biomass for immobilized and free biomass respectively at a solution pH of 6). Equilibrium was established within 1h and biosorption was well defined by the Langmuir isotherm model. The immobilized biomass could be regenerated using 50 mM HCl, with up to 99% metal recovery and reused in ten biosorption-desorption cycles without significant loss of capacity. This study suggests that such an immobilized biosorbent system has the potential to be used in the industrial removal/recovery of cadmium and other pollutant metal ions from aqueous solution.  相似文献   

4.
5.
硅质磷块岩对水溶液中镉离子的吸附实验结果表明,硅质磷块岩对水溶性镉离子具有良好的去除效果,主要影响因素有介质的酸度、作用时间、镉离子的初始浓度和样品用量.在pH=6,作用时间为15 min,初始Cd2+浓度为30mg/L的实验条件下,硅质磷块岩对镉离子的去除率可达98%,有可能利用动态法进行工业废水的连续处理.初步研究结果显示,磷块岩对水溶性镉离子的吸附作用符合Langmuir等温吸附模型,不同产地的硅质磷块岩S1和S2对镉离子的最大吸附容量分别为4.43 mg/g和3.88 mg/g.  相似文献   

6.
Biosorption of cadmium and copper contaminated water by Scenedesmus abundans   总被引:14,自引:0,他引:14  
Terry PA  Stone W 《Chemosphere》2002,47(3):249-255
Experiments were conducted comparing the individual removals of cadmium and copper from water via biosorption using Scenedesmus abundans, a common green algae, to removal in a multi-component system to determine competitive effects, if any, between the metals. The goal was to characterize the biological treatment of water contaminated with heavy metals using live aquatic species. In addition, experiments were performed to measure cell viability as a function of metal concentration and also to compare metal removal using living species to that using nonliving ones. It was shown that, while both living and nonliving S. abundans removed cadmium and copper from water, living algae significantly outperformed nonliving algae. Further, in characterizing biosorption by three concentrations of live S. abundans, capacity curves were created comparing the metal biosorbed per mass algae to the initial metal concentration in solution. The algae concentration was not a factor in the biosorption of either metal individually, such that the capacity of the algae for the metal increased with decreasing algae concentration. At the lowest algae concentration considered, competitive effects were observed at copper and cadmium concentrations above 4 mg/l each. At the highest algae concentration considered, no competitive effects were observed in the range of cadmium and copper concentrations studied (1-7 mg/l). It was concluded that biological treatment of heavy metal contaminated water is possible and that at adequately high algae concentrations, multi-component metal systems can be remediated to the same level as individual metals.  相似文献   

7.
Natural clinoptilolite can be used as an ion exchanger for removal of heavy metals and treatment of environmental pollution because of its desirable characteristics of high ion exchange selectivity and resistance to different media. In this work, the potential of natural clinoptilolite from G?rdes mines (West Anatolia, Turkey) for the uptake of lead(II), nickel(II), copper(II), and zinc(II), from their single and mixed ion solutions, was evaluated using the batch method. The mineralogical and chemical properties of the sorption material were carried out by X-ray diffraction, X-ray fluoremetry, scanning electron microscopy, and wet analysis. Contact time, initial solution pH, solid-to-liquid ratio, and initial metal cation concentration were determined as single ion sorption parameters. The silicon/aluminum ratio and the theoretical and equivalent exchange capacities, both in single and mixed solutions, were established. Corresponding adsorption constants and distribution coefficients have been found.  相似文献   

8.
The dead dried alga, Chlorella vulgaris, was used for metal ion sequestering. The uptake of each of Cu(II), Cd(II), Fe(III), and Sn(IV) from their aqueous solutions decreased upon reuse of the biomass. Introducing mixed ethanol/water (50% v/v) metal ion solutions in batch systems enhanced the metal uptake of the exhausted biomass by 90% for iron, 40% for tin and only 14% for cadmium. In the column system, 20% v/v ethanol/water proved to be superior to acetone/water and isopropanol/water metal solutions in enhancing metal uptake. This increase in uptake offers a new method for regeneration of the algal capacity to remove metal ions from their solutions. Mossbauer results of iron and tin loaded algae from aqueous and mixed ethanol water solutions exhibited the characteristic doublet for (FeCl4-) at 0.350-0.565 mms(-1) respectively and the major doublet for inorganic Sn(IV) moieties at -0.217 to -0.365 mms(-1) respectively, excluding the possibility of microprecipitation of iron and tin, which is expected at such high concentrations of metals in the alga.  相似文献   

9.
Metal ion removal from water by sorption on paper mill sludge   总被引:5,自引:0,他引:5  
Chromatographic columns packed with paper mill sludge are employed for metal ion recovery from water. The breakthrough curves show that cadmium, copper, lead and silver are removed from acid solutions (pH 2, 4); the affinity series is Pb(II)>Cu(II)>Ag(I)>Cd(II). Both the amount of metal retained and the metal-matrix interaction are pH dependent; the sorptive capacity increases with increasing pH. When the metals are present together at the same initial concentrations a competition among the different ions occurs although the affinity order remains unchanged. In metal recovery from the paper mill sludge column, the total amount of the cadmium and copper is displaced by HCl 1.0 M, 65% of the lead by HCl 0.1 M and 75% of the silver by HNO(3) 0.1 M. More than 95% of copper and lead and less than 20% of cadmium were recovered with HCl 0.1 M when the metals were present at the same time.  相似文献   

10.
To develop an efficient bio-immobilization approach for the remediation of heavy metal pollution in soil, a mutant species of Bacillus subtilis (B38) was obtained by ultraviolet irradiation and selection under high concentration of cadmium (Cd) in a previous study. In the present study, to check the applicability of this mutated species to the sorption and immobilization of other metals, the sorption of four heavy metals, Cd, chromium (Cr), mercury (Hg), and lead (Pb), on living and nonliving B38 in single- and multiple-component systems under different conditions was investigated using batch experiments. Rapid metal binding occurred on both living and nonliving B38 during the beginning of the biosorption. The sorption kinetics followed the exponential equation for living biomass and the pseudo-first-order Lagergren model for nonliving biomass, with r 2 values in the range of 0.9004-0.9933. The maximum adsorptive quantity of the heavy metals on B38 changed with the solution pH, temperature, biomass dose, and ionic strength. The nonliving biomass generally showed greater or similar adsorptive capacities as compared with the living biomass and was not likely to be affected by the solution parameters. The bacterium had a stronger affinity to the cationic heavy metals than to the anionic one, and the equilibrium sorption amounts were 210.6, 332.3, and 420.9 mg/g for Cd(II), Hg(II), and Pb(II), respectively. The results of binary and ternary sorption experiments indicated that the metals with the higher sorption capacity in the single-component systems showed greater inhibitory effects on the biosorption of other metal ions in the multiple-component systems, but the sorption sites of Hg and Cd or Pb are likely to be different. The results of this study illustrated that the mutant species is a promising biosorbent for the remediation of multiple heavy metals.  相似文献   

11.
This work reports kinetic and equilibrium studies of cadmium(II) and lead(II) adsorption by the brown seaweed Cystoseira baccata. Kinetic experiments demonstrated rapid metal uptake. Kinetic data were satisfactorily described by a pseudo-second order chemical sorption process. Temperature change from 15 to 45 degrees C showed small variation on kinetic parameters. Langmuir-Freundlich equation was selected to describe the metal isotherms and the proton binding in acid-base titrations. The maximum metal uptake values were around 0.9 mmol g(-1) (101 and 186 mg g(-1) for cadmium(II) and lead(II), respectively) at pH 4.5 (raw biomass), while the number of weak acid groups were 2.2 mmol g(-1) and their proton binding constant, K(H), 10(3.67) (protonated biomass). FTIR analysis confirmed the participation of carboxyl groups in metal uptake. The metal sorption was found to increase with the solution pH reaching a plateau above pH 4. Calcium and sodium nitrate salts in solution were found to affect considerably the metal biosorption.  相似文献   

12.
Heavy metal removal by activated sludge: influence of Nocardia amarae.   总被引:3,自引:0,他引:3  
The goal of this research was to examine the metal binding capacity of Nocardia amarae cells and to assess the influence of Nocardia cells on the overall metal binding capacity of activated sludge. Metal sorption capacities of the pure Nocardia cells and activated sludge biomass containing various levels of added Nocardia pure cultures were determined by a series of batch experiments. Batch sorption isotherms for nickel (Ni), copper (Cu), and cadmium (Cd) showed that the pure culture of N. amarae exhibited significantly higher metal sorption capacity than the activated sludge biomass obtained from Wilmington Wastewater Treatment Plant (Wilmington, DE). Surface area of biomass estimated by a dye technique showed that pure N. amarae cells growing at stationary phase have substantially more specific surface area than that of activated sludge from Wilmington Treatment Plant. A two-fold difference in specific surface area indicated that the higher metal sorption capacity of Nocardia cells may be due to the higher specific surface area. The metal sorption capacity of activated sludge increased proportionally with the amount of Nocardia cells present in the mixed liquor. This increase was attributed to the greater specific surface area of the mixed liquor samples containing greater amounts of Nocardia cells.  相似文献   

13.
采用天然磷矿石及其改性产品对水溶液中铅离子和镉离子的去除进行了对比研究.天然磷矿石能够有效地去除水溶性铅离子和镉离子,在强酸介质条件下对铅离子的去除效果最好,而对于镉离子,在弱酸或中性的介质中去除效果达到最佳;改性后的磷矿石能够在广泛的pH值范围内对铅离子具有良好的去除作用,显著地提高了对铅离子的去除能力,但是对镉离子的去除没有明显的改善;最后指出,磷矿石对铅离子和镉离子去除差异的根本原因是其对铅离子和镉离子去除机理的不同.  相似文献   

14.
Goal, Scope and Background The retention of lead by a Mexican, clinoptilolite-rich tuff from Oaxaca (Mexico) at different pH values was evaluated and the lead sorption mechanisms on the zeolitic material in this work were discussed. Methods Isotherms were determined using lead nitrate solutions (initial pH values between 2 and 5) at 303 K. After the equilibrium was reached, the content of lead in the liquid phases was determined by atomic absorption spectrometry. The elemental composition of the clinoptilolite-rich tuff before and after the lead sorption process was evaluated by electron microscopy. Results The maximum ion exchange capacity of the Mexican, clinoptilolite-rich tuff for lead was 1.4 meq/g at pH 3, considering an ion exchange mechanism in the absence of any precipitated or hydrolyzed lead species in the sorption process or any change in the zeolite network. Langmuir and Freundlich isotherms were also considered in this work for comparison purposes. Discussion It is important to consider the nature of the sorption processes before choosing a model to describe the interaction between the metal ions and the sorbent. Conclusions The chemical lead speciation, the pH, as well as the characteristics of the clinoptilolite-rich tuff are important factors to be considered on the lead sorption process by natural zeolites. The chemical species involved in that process are Na+ from the zeolite and Pb2+ from the aqueous solution at pH 2 and 3, so that the ion exchange mechanism explains the lead sorption processes by the clinoptilolite-rich tuff through the ion exchange isotherms. The sodium, Mexican, clinoptilolite-rich tuff is a potential adsorbent for lead from aqueous solutions. Recommendations and Perspectives The natural zeolite-rich tuffs are very important as ion exchangers for the treatment of polluted water due to their sorption properties and low cost. The sorption behavior of each natural material depends on their composition. Mexican, clinoptilolite-rich tuff from Oaxaca (Mexico) could be used for the treatment of waste water contaminated with lead. It would be important to propose this material as an alternative as waste water treatment, because it shows good selectivity for the removal of heavy metals from water.  相似文献   

15.
The effect of ions, including Na(+), Mg(2+), Ca(2+), Cl(-), SO(4)(2-) and CO(3)(2-), at various initial concentrations, on the kinetics of cadmium sorption by chitin was studied at 25 degrees C and free initial pH solution in batch conditions. The presence of these ions in solution was found to inhibit the uptake of cadmium by chitin to different degrees: sodium and chloride ions have no significant effect. For Mg(2+), Ca(2+), SO(4)(2-) and CO(3)(2-) ions, the effects ranged from a large inhibition of cadmium by Ca(2+) and CO(3)(2-) to a weak inhibition by Mg(2+) and SO(4)(2-). These results indicate that the uptake sites of these ions are the same. No ion was found to enhance cadmium uptake. The results also showed that the kinetics of sorption are best described by a pseudo second-order expression than a first or second-order model.  相似文献   

16.
The present study attempts to analyze the biosorption trend of biosorbent Caulerpa fastigiata (macroalgae) biomass for removal of toxic heavy metal ion Pb (II) from solution as a function of initial metal ion concentration, pH, temperature, sorbent dosage, and biomass particle size. The sorption data fitted with various isotherm models and Freundlich model was the best one with correlation coefficient of 0.999. Kinetic study results revealed that the sorption data on Pb (II) with correlation coefficient of 0.999 can best be represented by pseudo-second-order. The biosorption capacity (q e ) of Pb (II) is 16.11?±?0.32 mg g?1 on C. fastigiata biomass. Thermodynamic studies showed that the process is exothermic (ΔH° negative). Free energy change (ΔG°) with negative sign reflected the feasibility and spontaneous nature of the process. The SEM studies showed Pb (II) biosorption on selective grains of the biosorbent. The FTIR spectra indicated bands corresponding to –OH, COO?, –CH, C?=?C, C?=?S, and –C–C– groups were involved in the biosorption process. The XRD pattern of the C. fastigiata was found to be mostly amorphous in nature.  相似文献   

17.

Purpose

This work aimed at investigating the adsorption of lead and cadmium onto Fe and Ag nanoparticles for use as a water contaminant removal agent as a function of particle type, sorbent concentration, and contact time.

Methods

Fe and Ag spherical nanoparticles were prepared in water by the lab-made electro-exploding wire (EEW) system and were investigated for their structure properties. Adsorption experiments were carried out at room temperature and pH 8.3 water solutions.

Results

The removal/adsorption of both Pb(II) and Cd(II) ions was found to be dependent on adsorbent dosage and contact time. Pb(II) adsorption onto Fe and Ag nanoparticles showed more or less similar efficiency and behavior. The kinetic data for the adsorption process obeyed pseudo second-order rate equations. The calculated equilibrium adsorption capacities (q e) were 813 and 800 mg/g for Pb sorption onto Fe and Ag nanoparticles, respectively. Cd(II) ion adsorption onto Fe nanoparticles obeyed pseudo second-order rate equations with q e equal to 242 mg/g, while their adsorption onto Ag nanoparticles obeyed pseudo first-order rate equations with q e of 794 mg/g. The calculated q es are in quite agreement with the experimental values. The removal/uptake mechanisms of metal ions involved interaction between the metal ion and the oxide/hydroxyl layer around the spherical metallic core of the nanoparticle in water medium.

Conclusion

Fe and Ag nanoparticles prepared using the EEW technique exhibited high potentials for the removal of metal ions from water with very high adsorption capacities, suggesting that the EEW technique can be enlarged to generate nanoparticles with large quantities for field or site water purification.  相似文献   

18.
Lo W  Chua H  Lam KH  Bi SP 《Chemosphere》1999,39(15):135-2736
The removal of lead from aqueous solutions by adsorption on filamentous fungal biomass was studied. Batch biosorption experiments were performed to screen a series of selected fungal strains for effective lead removal at different metal and biomass concentrations. Biosorption of the Pb2+ ions was strongly affected by pH. The fungal biomass exhibited the highest lead adsorption capacity at pH 6. Isotherms for the biosorption of lead on fungal biomass were developed and the equilibrium data fitted well to the Langmuir isotherm model. At pH 6, the maximum lead biosorption capacity of Mucor rouxii estimated with the Langmuir model was 769 mg/g dry biomass, significantly higher than that of most microorganisms. Biomass of Mucor rouxii showed specific selectivity for Pb2+ over other metals ions such as Zn2+. Ni2+ and Cu2+. This fungal strain may be applied to develop potentially cost-effective biosorbent for removing lead from effluents. The technique of scanning electron microscopy coupled with X-ray dispersion analysis shows that Pb2+ has exchanged with K+ and Ca2+ on the cell wall of Mucor rouxii, thereby suggesting ion exchange as one of the dominant mechanisms of metal biosorption for this fungal strain.  相似文献   

19.
Simultaneous heavy metal removal mechanism by dead macrophytes   总被引:13,自引:0,他引:13  
The use of dead, dried aquatic plants, for water removal of metals derived from industrial activities as a simple biosorbent material has been increasing in the last years. The mechanism of simultaneous metal removal (Cd2+, Ni2+, Cu2+, Zn2+ and Pb2+) by 3 macrophytes biomass (Spirodela intermedia, Lemna minor and Pistia stratiotes) was investigated. L. minor biomass presented the highest mean removal percentage and P. stratiotes the lowest for all metals tested. Pb2+ and Cd2+ were more efficiently removed by the three of them. The simultaneous metal sorption data were analysed according to Langmuir and Freundlich isotherms. Data fitted the Langmuir model only for Ni and Cd, but Freundlich isotherm for all metals tested, as it was expected. The K(F) values showed that Pb was the metal more efficiently removed from water solution. The adsorption process for the three species studied followed first order kinetics. The mechanism involved in biosorption resulted ion exchange between monovalent metals as counter ions present in the macrophytes biomass and heavy metal ions and protons taken up from water. No significant differences were observed in the metal exchange amounts while using multi-metal or individual metal solutions.  相似文献   

20.
The present study aims to evaluate the competitive biosorption of lead, cadmium, copper, and arsenic ions by using native algae. A series of experiments were carried out in a batch reactor to obtain equilibrium data for adsorption of single, binary, ternary, and quaternary metal solutions. The biosorption of these metals is based on ion exchange mechanism accompanied by the release of light metals such as calcium, magnesium, and sodium. Experimental parameters such as pH, initial metal concentrations, and temperature were studied. The optimum pH found for removal were 5 for Cd2+ and As3+ and 3 and 4 for Pb2+ and Cu2+, respectively. Fourier transformation infrared spectroscopy analysis was used to find the effects of functional groups of algae in biosorption process. The results showed that Pb2+ made a greater change in the functional groups of algal biomass due to high affinity to this metal. An ion exchange model was found suitable for describing the biosorption process. The affinity constants sequence calculated for single system was K Pb > K Cu > K Cd > K As; these values reduced in binary, ternary, and quaternary systems. In addition, the experimental data showed that the biosorption of the four metals fitted well the pseudo-second-order kinetics model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号