首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multi-biomarker approaches are used to assess ecosystem health and identify impacts of environmental stress on organisms. However, exploration of large datasets by environmental managers represents a major challenge for regulatory application of this tool. Several integrative tools were developed to summarize biomarker responses. The aim of the present paper is to update calculation of the “Integrated Biological Response” (IBR) described by Beliaeff and Burgeot (Environ Toxicol Chem 21:1316–1322, 2002) to avoid weaknesses of this integrative tool. In the present paper, a novel index named “Integrated Biological Responses version 2” based on the reference deviation concept is presented. It allows a clear discrimination of sampling sites as for the IBR, but several differences are observed for contaminated sites according to up- and downregulation of biomarker responses. This novel tool could be used to integrate multi-biomarker responses not only in large-scale monitoring but also in upstream/downstream investigations.  相似文献   

2.
Mytilus galloprovincialis mussels from a clean area were transplanted from 2003 to 2005 to several stations in the Bay of Cannes (North-Western Mediterranean Sea) including a site considered as reference, for 1 month at the end of spring (May). Several biomarkers (AChE, GST and CAT activities, TBARS and MT concentrations) were measured in the transplanted organisms. The concentrations of metals (Cd, Cu and Zn) were determined in the transplanted mussels, PAH and PCB analyses were performed in the mussels caged in 2004. The integrated biomarker response (IBR) was calculated; pollutant concentrations in mussels were displayed as star plots and compared to IBR star plots. Visualization was thus possible between sites for comparison with exposure conditions. Results demonstrated that the mussels from the Old harbour site (VP) are characterized by elevated copper and PCB concentrations, those from Canto harbour (PC) presented high PCB contents and those from the mouth of the Siagne River (ES) high PAH concentrations compared to the animals transplanted in the reference site (IL). In 2003, there was a visual correlation between the copper gradient measured in the transplanted mussels and the IBR variation. In 2004, the agreement between the copper gradient and the PCB gradient measured in the caged mussels and the IBR variation was good whereas the PAH gradient did not seem to contribute to the IBR demonstrating that the chosen biomarkers did not respond to PAHs. In 2005, IBR showed that other contaminants, not measured might be present in VP, PC and ES compared to the reference station (IL).  相似文献   

3.

In this study, crucian carp (Carassius auratus) was exposed to the increasing concentrations of municipal sewage treatment plant effluent (MSTPE) for 15 days, and the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and acetylcholinesterase (AChE), together with the contents of malondialdehyde (MDA) and glutathione (GSH) in the liver of C. auratus were investigated. Moreover, the integrated biomarker response (IBR) approach was applied to assess the adverse effects of MSTPE in freshwater. The aim of the study was to provide an effective biological indicator for evaluating the toxicity effects and ecological risks of MSTPE in the freshwater environment quantitatively. Results showed that MSTPE could cause oxidative damage to the liver of C. auratus, which reflected through the increasing MDA content over the exposure period. MSTPE also led to the biochemical responses of antioxidant defense in C. auratus liver, such as the enhancement of SOD, CAT, and GPx activities, as well as the inhibition of AChE activity and GSH content. It was found that MDA, SOD, GPx, and GSH could be used as the biomarkers for reflecting the adverse effects of MSTPE in the receiving freshwater on the 12th day of exposure. A significant increase of IBR values was observed as the increasing concentration of MSTPE, and the IBR values presented a significant positive correlation (r?=?0.891, P?<?0.05) with the increasing concentrations of MSTPE, indicating that IBR approach is a promising tool for assessing the toxicity effects of MSTPE in environmental freshwater.

  相似文献   

4.
This study examined the influence of increasing temperatures in spring and summer on biochemical biomarkers in Mytilus galloprovincialis mussels sampled from Bizerte lagoon (northern Tunisia). Spatial and seasonal variations in a battery of seven biomarkers were analyzed in relation to environmental parameters (temperature, salinity, and pH), physiological status (condition and gonad indexes), stress on stress (SoS), and chemical contaminant levels (heavy metals, polycyclic aromatic hydrocarbons (PAHs), and PCBs) in digestive glands. Integrated biological response (IBR) was calculated using seven biomarkers (acetylcholinesterase (AChE), benzo[a]pyrene hydroxylase (BPH), multixenobiotic resistance (MXR), glutathione S-transferase (GST), catalase (CAT), malondialdehyde (MDA), and metallothioneins (MT). Seasonal variations in biological response were determined during a critical period between spring and summer at two sites, where chemical contamination varies by a factor of 2 for heavy metals and a factor 2.5 for PAHs. The analysis of a battery of biomarkers was combined with the measurement of physiological parameters at both sites, in order to quantify a maximum range of metabolic regulation with a temperature increase of 11 °C between May and August. According to our results, the MT, MDA, CAT, and AChE biomarkers showed the highest amplitude during the 11 °C rise, while the BPH, GST, and MXR biomarkers showed the lowest amplitude. Metabolic amplitude measured with the IBR at Menzel Abdelrahmen—the most severely contaminated station—revealed the highest metabolic stress in Bizerte lagoon in August, when temperatures were highest 29.1 °C. This high metabolic rate was quantified for each biomarker in the North African lagoon area and confirmed in August, when the highest IBR index values were obtained at the least contaminated site 2 (IBR = 9.6) and the most contaminated site 1 (IBR = 19.6). The combined effects of chemical contamination and increased salinity and temperatures in summer appear to induce a highest metabolic adaptation response and can therefore be used to determine thresholds of effectiveness and facilitate the interpretation of monitoring biomarkers. This approach, applied during substantial temperature increases at two sites with differing chemical contamination, is a first step toward determining an environmental assessment criteria (EAC) threshold in a North African lagoon.  相似文献   

5.
Many publicly owned treatment works in North America are exceeding permitted limits for total cyanide in their wastewater treatment effluents. A recently introduced rapid, segmented, flow-injection analysis procedure using UV digestion and amperometric detection of the membrane-separated cyanide was used to investigate the various scenarios by which elevated cyanide levels might be present in wastewater treatment plant effluent. A number of significant interferences can produce false positive bias during sample analysis with the traditional acid distillation technique, but are minimized or absent with the new analytical method. However, increased levels of cyanide were found in some chlorinated wastewaters compared to the levels before chlorination, suggesting a fast reaction mechanism associated with the disinfectant and some precursor in the wastewater. In particular, the contact of chlorine with nitrite in the presence of a carbon precursor appears to contribute to cyanide formation during wastewater treatment and sample handling. This paper explores the scenarios under which cyanide can form during wastewater treatment as well as those in which a false bias for total cyanide can be obtained during sample processing and provides guidance for appropriate sample handling, screening, and processing to ensure valid analytical results.  相似文献   

6.

An investigative biomonitoring study was conducted along the coastal area of Laizhou Bay (China) to evaluate the impact of organic pollution on the clam Ruditapes philippinarum using bioaccumulation and multi-biomarker measurements. In addition, the polychlorinated biphenyls (PCBs), total petroleum hydrocarbons (TPHs) and nonylphenol (NP) content in surface sediment at the study sites were also analyzed. Concentrations of PCBs, TPHs and NP in the sediments of the study area were 1.90 ± 0.10 μg kg?1, 39.55 ± 2.42 mg kg?1, 9.23 ± 0.41 μg kg?1 dry weight, respectively, while the organic contaminants in the soft tissues of R. philippinarum were 14.81 ± 0.96 μg kg?1 for PCBs, 165.87 ± 5.03 mg kg?1 for TPHs and 86.16 ± 5.29 μg kg?1 for NP. Linear regression analysis on the levels of organic pollutants accumulated in R. philippinarum and in sediments showed no significant correlation. Multi-biomarkers including superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, total glutathione and lipid peroxidation were assayed in gills and digestive glands of R. philippinarum. Finally, the biomarkers in gills were selected to calculate the Integrated Biomarker Response (IBR) index and to evaluate the impact of the three organic contaminants on R. philippinarum collected from different sites. According to IBR results, the western coast and eastern coast exhibited higher environmental stress than the sampling sites along the southern coast of Laizhou Bay. Significant correlation was found between the level of organic contaminants in the sediments and IBR whereas no dependence was found between pollutants’ concentrations in sediments and separate biomarker responses. The results showed that PCBs and NP were the main organic pollutants among the three studied which have caused pollution pressure on R. philippinarum in Laizhou Bay coastal area.

  相似文献   

7.
In this work we report the results for estimating the measurement uncertainty (MU) following up the application of two different approaches, relatively the top-down procedure, by using proficiency test data. We have focused the estimation on the olive oil matrix. We used the analytical data obtained from five selected editions of the Proficiency Tests (PTs, from 2007 to 2011) on pesticide residues in olive oil to estimate the MU. These PTs have been organized by Istituto Superiore di Sanità annually in cooperation with International Olive Council (IOC) since 1997. The number of participants in each trial ranged from 10 to 43. We used a total of 34 pesticide results. The expanded uncertainty U (c) was calculated using a covering factor k = 2 for a confidence interval of 95%. In the approach 1, the within–laboratory reproducibility standard deviation is combined with estimates of the method and laboratory bias using PTs data. In the approach 2, the way of estimating the MU is based only on the bias that the laboratory has obtained participating in a sufficient number of the IOC proficiency tests. Comparing the relative expanded uncertainty based on these different approaches we notice values quite constant and close, from 42% to 48%. Moreover, these calculated expanded uncertainties are less than the default value of 50% (corresponding to a 95% confidence level), adopted from European guidance document SANCO based on the fit-for-purpose relative standard deviation (FFP-RSD).  相似文献   

8.
9.
An innovative screening procedure has been developed to detect illicit toxic discharges in domestic septic tank sludge hauled to the Montreal Urban Community waste-water treatment plant. This new means of control is based on an integrative approach, using bioassays and chemical analyses. Conservative criteria are applied to detect abnormal toxicity with great reliability while avoiding false positive results. The complementary data obtained from toxicity tests and chemical analyses support the use of this efficient and easy-to-apply procedure. This study assesses the control procedure in which 231 samples were analyzed over a 30-month period. Data clearly demonstrate the deterrent power of an efficient control procedure combined with a public awareness campaign among the carriers. In the first 15 months of application, between January 1996 and March 1997, approximately 30% of the 123 samples analyzed showed abnormal toxicity. Between April 1997 and June 1998, that is, after a public hearing presentation of this procedure, this proportion dropped significantly to approximately 9% based on 108 analyzed samples. The results of a 30-month application of this new control procedure show the superior efficiency of the ecotoxicological approach compared with the previously used chemical control procedure. To be able to apply it effectively and, if necessary, to apply the appropriate coercive measures, ecotoxicological criteria should be included in regulatory guidelines.  相似文献   

10.
The evaluation of toxicological effects at the cellular and molecular levels in organisms are often used to determine sites subjected to contamination problems that pose a threat to the long-term survival of organisms. However, the integration of multiple measurements on the health status of organisms into a model for site discrimination is challenging. This study compares two discrimination methods which are based on rule inference: rough sets (RS) analysis and classification trees (CT) with classical multivariate discriminant analysis (DA). Site classification was attempted with six biomarkers of effects: metallothionein levels, lipid peroxidation, DNA damage, levels of lipophosphoproteins (i.e., vitellins), phagocytosis activity and haemocyte cell viability on clam (Mya arenaria) populations from the Saguenay River fjord (Quebec, Canada). Rule based methods have the advantage of complete independence from data distribution constraints in contrast to the classification methods from multivariate analysis that are more commonly used in ecotoxicology. Results show that RS and CT gave better classifications than DA because they do not require strong distributional assumptions. Moreover, RS provided classification rules that could identify the most important biomarker(s) for site discrimination. RS and CT were shown to be simple and efficient methods for classifying multivariable ecotoxicological data. This methodology would be especially useful when freedom from distributional assumptions is required.  相似文献   

11.
A procedure for calculating the concentration at any point and time under varying emissions and mean wind conditions is developed based on exact integration of the governing conservation equation. The procedure is simple, easy to use and has no numerical instability difficulties. Application of the procedure shows the fast achievement of steady state concentration under steady chimney emissions and mean wind conditions. It is also suggested that the procedure be used to calculate the correction factor to the time-averaged concentrations determined by conventional computer or physical modelling for constant wind condition to account for the actual fluctuating mean wind direction condition. If the wind databank does not contain detailed minute-to-minute data for exact calculation of the correction factor, the sinusoidal wind assumption should give good approximation without adversely affecting the margin of safety for environmental protection. It is also suggested that the meteorological data bank should contain information on hourly amplitude and standard deviations of wind directions if storage is insufficient to store minute-to-minute wind data.  相似文献   

12.
ABSTRACT

An innovative screening procedure has been developed to detect illicit toxic discharges in domestic septic tank sludge hauled to the Montreal Urban Community waste-water treatment plant. This new means of control is based on an integrative approach, using bioassays and chemical analyses. Conservative criteria are applied to detect abnormal toxicity with great reliability while avoiding false positive results. The complementary data obtained from toxicity tests and chemical analyses support the use of this efficient and easy-to-apply procedure.

This study assesses the control procedure in which 231 samples were analyzed over a 30-month period. Data clearly demonstrate the deterrent power of an efficient control procedure combined with a public awareness campaign among the carriers. In the first 15 months of application, between January 1996 and March 1997, approximately 30% of the 123 samples analyzed showed abnormal toxicity. Between April 1997 and June 1998, that is, after a public hearing presentation of this procedure, this proportion dropped significantly to approximately 9% based on 108 analyzed samples.

The results of a 30-month application of this new control procedure show the superior efficiency of the ecotoxicological approach compared with the previously used chemical control procedure. To be able to apply it effectively and, if necessary, to apply the appropriate coercive measures, ecotoxicological criteria should be included in regulatory guidelines.  相似文献   

13.
The inhabitants living in the neighbourhood of a deserted mercury-contaminated industrial site are subjected to an age-group differentiated mercury exposure assessment based on a scenario-linked calculation. Analytical input data for the calculation procedure are provided for from soil, air and plants in a large number. The most sensitive group are small children being mainly exposed by soil ingestion which makes up nearly 80% of the ADI, followed by inhalation of mercury contaminated indoor air. On the other hand, inhalation of indoor air has a predominant impact on youth and adults.  相似文献   

14.
Air quality models are used to make decisions regarding the construction of industrial plants, the types of fuel that will be burnt and the types of pollution control devices that will be used. It is important to know the uncertainties that are associated with these model predictions. Standard analytical methods found in elementary statistics textbooks for estimating uncertainties are generally not applicable since the distributions of performance measures related to air quality concentrations are not easily transformed to a Gaussian shape. This paper suggests several possible resampling procedures that can be used to calculate uncertainties or confidence limits on air quality model performance. In these resampling methods, many new data sets are drawn from the original data set using an empirical set of rules. A few alternate forms of the socalled bootstrap and jackknife resampling procedures are tested using a concocted data set with a Gaussian parent distributions, with the result that the jackknife is the most efficient procedure to apply, although its confidence bounds are slightly overestimated. The resampling procedures are then applied to predictions by seven air quality models for the Carpinteria coastal dispersion experiment. Confidence intervals on the fractional mean bias and the normalized mean square error are calculated for each model and for differences between models. It is concluded that these uncertainties are sometimes so large for data sets consisting of about 20 elements that it cannot be stated with 95% confidence that the performance measure for the ‘best’ model is significantly different from that for another model.  相似文献   

15.
Galassi S  Guzzella L  Croce V 《Chemosphere》2004,54(11):1619-1624
Complex mixtures of toxic substances occurring in surface waters are difficult to characterise by chemical analyses because each compound occurs at a very low concentration and requires a specific analytical method to be identified. Ecotoxicological tests on water extracts can be used as a screening tool to evaluate quickly and simply the overall quality of a water body with regard to micropollutant contamination. In this work, a pre-concentration procedure based on solid-phase extraction (SPE), suitable for both biological testing and analytical determination, is proposed. The extraction procedure is an improved version of a methodology used to evaluate the toxicity of organic micropollutants occurring in surface waters. It offers the advantage of using disposable commercial cartridges, which are easier to manage than the columns prepared with macromolecular resins. Water extracts from two representative Italian rivers, characterised by a different gradient of potential contamination and prepared according to the new concentration techniques, are used. The acute toxicity of the water extracts is tested on Daphnia magna and the bioluminescence inhibition in Vibrio fischeri. Criteria based on the concentration factor (CF) are proposed for assessing the hazard to aquatic life due to the exposure to toxic substances in surface waters. The aim of hazard ranking is to focus analytical efforts towards those samples that show the highest toxic potential.  相似文献   

16.
A methodology has been developed to calculate industrial air pollutant emissions with an absolute minimum of effort. The procedure is dependent upon available industrial fuel data for Standard Industrial Classifications for Standard Metropolitan Statistical Areas as published by the Census of Manufacturers. Emission factors were developed which include both combustion and process losses and six SIC classifications which consume, on the average, about 80 per cent of the industrial fuels in urban areas. In spite of the diversity of industrial processes which dictate the weight of emissions discharged from industrial operation, factors have been developed which are considered representative for urban areas across the nation. The development of such factors permits the calculation of industrial emissions with a minimum of man-hours. The developed procedure allows the calculation of industrial emissions on an urban basis, a state basis, or a nation basis.  相似文献   

17.
Perchloroethylene (PCE) saturations determined from GPR surveys were used as observations for inversion of multiphase flow simulations of a PCE injection experiment (Borden 9 m cell), allowing for the estimation of optimal bulk intrinsic permeability values. The resulting fit statistics and analysis of residuals (observed minus simulated PCE saturations) were used to improve the conceptual model. These improvements included adjustment of the elevation of a permeability contrast, use of the van Genuchten versus Brooks-Corey capillary pressure-saturation curve, and a weighting scheme to account for greater measurement error with larger saturation values. A limitation in determining PCE saturations through one-dimensional GPR modeling is non-uniqueness when multiple GPR parameters are unknown (i.e., permittivity, depth, and gain function). Site knowledge, fixing the gain function, and multiphase flow simulations assisted in evaluating non-unique conceptual models of PCE saturation, where depth and layering were reinterpreted to provide alternate conceptual models. Remaining bias in the residuals is attributed to the violation of assumptions in the one-dimensional GPR interpretation (which assumes flat, infinite, horizontal layering) resulting from multidimensional influences that were not included in the conceptual model. While the limitations and errors in using GPR data as observations for inverse multiphase flow simulations are frustrating and difficult to quantify, simulation results indicate that the error and bias in the PCE saturation values are small enough to still provide reasonable optimal permeability values. The effort to improve model fit and reduce residual bias decreases simulation error even for an inversion based on biased observations and provides insight into alternate GPR data interpretations. Thus, this effort is warranted and provides information on bias in the observation data when this bias is otherwise difficult to assess.  相似文献   

18.
The U.S. Environmental Protection Agency has established a federal reference method (FRM) for ozone (O3) and allowed for designation of federal equivalent methods (FEMs). However, the ethylene-chemiluminescence FRM for O3 has been replaced by the UV photometric FEM by most state and local monitoring agencies because of its relative ease of operation. Accumulating evidence indicates that the FEM is prone to bias under the hot, humid, and stagnant conditions conducive to high O3 formation. This bias may lead to overreporting hourly O3 concentrations by as much as 20-40 ppb. Measurement bias is caused by contamination of the O3 scrubber, a problem that is not detected by dry air calibration. An adequate wet test has not been codified, although a procedure has been proposed for agency consideration. This paper includes documentation of laboratory tests quantifying specific interferant responses, collocated ambient FRM/FEM monitoring results, and smog chamber comparisons of the FRM and FEMs with alternative scrubber designs. As the numbers of reports on monitor interferences have grown, interested parties have called for agency recognition and correction of these biases.  相似文献   

19.
This paper addresses a common operation and maintenance problem encountered with sectionalized electrostatic precipitators—bus section failure. ESPs are normally designed to meet a specific minimum collection efficiency in order to comply with emission standards; the loss of several bus sections may cause the unit to be out of compliance. In this paper, the effect of bus section failure on precipitator performance is analyzed. The study is presented in two parts. First, a simplified procedure to estimate the effect of bus section failure on the overall collection efficiency is developed. An illustrative example is presented to demonstrate the use of the technique. Secondly—and this is the main thrust of this study—the technique is extended to include calculations on whether a unit is out of compliance due to the failure of a given number of bus sections. This development clearly shows that this latter effect can only be expressed in terms of a probability. Two additional examples, based on a field unit using actual test data, complement the presentation and illustrate this probability calculation.  相似文献   

20.
Polymer biodegradation: mechanisms and estimation techniques   总被引:2,自引:0,他引:2  
Within the frame of the sustainable development, new materials are being conceived in order to increase their biodegradability properties. Biodegradation is considered to take place throughout three stages: biodeterioration, biofragmentation and assimilation, without neglect the participation of abiotic factors. However, most of the techniques used by researchers in this area are inadequate to provide evidence of the final stage: assimilation. In this review, we describe the different stages of biodegradation and we state several techniques used by some authors working in this domain. Validate assimilation (including mineralisation) is an important aspect to guarantee the real biodegradability of items of consumption (in particular friendly environmental new materials). The aim of this review is to emphasise the importance of measure as well as possible, the last stage of the biodegradation, in order to certify the integration of new materials into the biogeochemical cycles. Finally, we give a perspective to use the natural labelling of stable isotopes in the environment, by means of a new methodology based on the isotopic fractionation to validate assimilation by microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号