共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Effect of humic matter on metal adsorption onto clay materials: Testing the linear additive model 总被引:1,自引:0,他引:1
Migration of contaminants with low affinity for the aqueous phase is essentially governed by interaction with mobile carriers such as humic colloids. Their impact is, however, not sufficiently described by interaction constants alone since the humic carriers themselves are subject to a solid–liquid distribution that depends on geochemical parameters.In our study, co-adsorption of the REE terbium (as an analogue of trivalent actinides) and humic acid onto three clay materials (illite, montmorillonite, Opalinus clay) was investigated as a function of pH. 160Tb(III) and 131I-labelled humic acid were employed as radiotracers, allowing experiments at very low concentrations to mimic probable conditions in the far-field of a nuclear waste repository. Humate complexation of Tb was examined by anion and cation exchange techniques, also considering competitive effects of metals leached from the clay materials.The results revealed that desorption of metals from clay barriers, occurring in consequence of acidification processes, is generally counteracted in the presence of humic matter. For all clay materials under study, adsorption of Tb was found to be enhanced in neutral and acidic systems with humic acid, which is explained by additional adsorption of humic-bound Tb.A commonly used composite approach (linear additive model) was tested for suitability in reconstructing the solid–liquid distribution of Tb in ternary systems (Tb/humic acid/clay) on the basis of data determined for binary subsystems. The model can qualitatively explain the influence of humic acid as a function of pH, but it failed to reproduce our experimental data quantitatively. It appears that the elementary processes (metal adsorption, metal–humate complexation, humic acid adsorption) cannot be considered to be independent of each other. Possible reasons are discussed. 相似文献
3.
Mabrouk Eloussaief Ali Sdiri Mourad Benzina 《Environmental science and pollution research international》2013,20(1):469-479
Introduction
The removal of heavy metals by natural adsorbent has become one of the most attractive solutions for environmental remediation. Natural clay collected from the Late Cretaceous Aleg formation, Tunisia was used as a natural adsorbent for the removal of Hg(II) in aqueous system.Methods
Physicochemical characterization of the adsorbent was carried out with the aid of various techniques, including chemical analysis, X-ray diffraction, Fourier transform infrared and scanning electron micrograph. Batch sorption technique was selected as an appropriate technique in the current study. Method parameters, including pH, temperature, initial metal concentration and contact time, were varied in order to quantitatively evaluate their effects on Hg(II) adsorption onto the original and pillared clay samples. Adsorption kinetic was studied by fitting the experimental results to the pseudo-first-order and pseudo-second-order kinetic models. The adsorption data were also simulated with Langmuir, Freundlich and Temkin isotherms.Results
Results showed that the natural clay samples are mainly composed of silica, alumina, iron, calcium and magnesium oxides. The sorbents are mainly mesoporous materials with specific surface area of <250 m2 g?1. From the adsorption of Hg(II) studies, experimental data demonstrated a high degree of fitness to the pseudo-second-order kinetics with an equilibration time of 240 min. The equilibrium data showed the best model fit to Langmuir model with the maximum adsorption capacities of 9.70 and 49.75 mg g?1 for the original and aluminium pillared clays, respectively. The maximum adsorption of Hg(II) on the aluminium pillared clay was observed to occur at pH 3.2. The calculated thermodynamic parameters (?G°, ?H° and ?S°) showed an exothermic adsorption process. The entropy values varied between 60.77 and 117.59 J?mol?1 K?1, and those of enthalpy ranged from 16.31 to 30.77 kJ mol?1. The equilibrium parameter (R L) indicated that the adsorption of Hg(II) on Tunisian smectitic clays was favourable under the experimental conditions of this study.Conclusion
The clay of the Aleg formation, Tunisia was found to be an efficient adsorbent for Hg(II) removal in aqueous systems. 相似文献4.
5.
Shamik Chowdhury Sagnik Chakraborty Papita Das Saha 《Environmental science and pollution research international》2013,20(3):1698-1705
The adsorption of crystal violet from aqueous solution by NaOH-modified rice husk was investigated in a laboratory-scale fixed-bed column. A two-level three factor (23) full factorial central composite design with the help of Design Expert Version 7.1.6 (Stat Ease, USA) was used for optimisation of the dynamic dye adsorption process and evaluation of interaction effects of different operating parameters: initial dye concentration (100–200 mg L?1), flow rate (10–30 mL min?1) and bed height (5–25 cm). A correlation coefficient (R 2) value of 0.999, model F value of 1,936.59 and its low p value (<0.0001) along with lower value of coefficient of variation (1.38 %) indicated the fitness of the response surface quadratic model developed during the present study. Numerical optimisation applying desirability function was used to identify the optimum conditions for a targeted breakthrough time of 12 h. The optimum conditions were found to be initial solution pH?=?8.00, initial dye concentration?=?100 mg L?1, flow rate?=?22.88 mL min?1 and bed height?=?18.75 cm. A confirmatory experiment was performed to evaluate the accuracy of the optimised procedure. Under the optimised conditions, breakthrough appeared after 12.2 h and the column efficiency was determined as 99 %. The Thomas model showed excellent fit to the dynamic dye adsorption data obtained from the confirmatory experiment. Thereby, it was concluded that the current investigation gives valuable insights for designing and establishing a continuous wastewater treatment plant. 相似文献
6.
采用静态实验方法研究了白云石对水溶液中Cu2+、Pb2+的吸附特性,通过批实验考察了反应时间、溶液初始浓度、pH值、离子强度、温度以及固液比等因素对吸附的影响,探讨了白云石对Cu2+、Pb2+的吸附动力学、热力学规律及其反应机制。实验结果显示:白云石对Cu2+、Pb2+的吸附在24 h达到平衡,对Pb2+的吸附量大于Cu2+,伪二级和双常数动力学方程分别能较好地拟合白云石对Cu2+、Pb2+的吸附;在一定条件下,白云石对Cu2+、Pb2+的去除率与溶液初始浓度呈反比,与固液比呈正比;吸附等温方程符合Langmuir模型,为单分子层吸附;溶液pH值对吸附行为影响显著,在溶液pH=6~7时,吸附效果最好,离子强度对吸附影响甚微;白云石对Cu2+、Pb2+的吸附属于吸热反应,反应自发进行,高温促进白云石的吸附行为。 相似文献
7.
用CTMAB(十六烷三甲基溴化铵)对陶粒进行改性,以卡马西平(CBZ)为目标污染物,研究了吸附去除饮用水中CBZ的性能并探讨了其应用的可行性。通过滤料吸附去除CBZ的动态实验,发现改性陶粒的去除效果优于陶粒。进水CBZ浓度为2 μg·L-1时,改性陶粒对CBZ的去除率最高为50%,陶粒最高的去除率为40%。研究了滤料再生对吸附性能的影响,发现陶粒和改性陶粒对CBZ的去除均随再生次数的增加而降低,改性陶粒的去除效果仍优于陶粒,改性陶粒的使用期限更长久。讨论了修正前后的Thomas模型,推导得到能更准确描述穿透曲线的Thomas模型取值范围。滤料穿透曲线用原始Thomas模型能很好地计算的速率常数kTh和平衡吸附量q0。利用原始Thomas模型也能较为准确地预测滤柱的穿透时间。 相似文献
8.
9.
The adsorption of volatile organic compounds (VOCs), exemplified by benzene and methylethylketone (MEK), onto seven different types of activated carbon was investigated. Results show that for benzene adsorption the adsorption characteristic energy, enthalpy, free energy and entropy are in the range 17.12-36.86, -20.8 to -44.7, -11.89 to -16.22 kJ/mole and -29.4 to -85.3 J/mole/K, respectively. For the adsorption of MEK, the adsorption characteristic energy, enthalpy, free energy and entropy are in the range 14.47-32.34, -18.3 to -40.8, -10.78 to -15.56 kJ/mole and -24.8 to approximately -60.3 J/mole/K, respectively. The adsorption enthalpy can be calculated indirectly from statistical thermodynamic method and directly from the immersion enthalpy method. The adsorption characteristic energy is calculated by the Dubinin-Astokhov equation. The free energy is calculated by the measured equilibrium adsorption constant. 相似文献
10.
Tao Hua Richard J. Haynes Ya-Feng Zhou 《Environmental science and pollution research international》2018,25(34):34053-34062
When low-cost adsorbents are being used to remove contaminant ions (e.g. arsenate, vanadate, and molybdate) from wastewater, competitive adsorption/desorption are central processes determining their removal efficiency. Competitive adsorption of As, V, and Mo was investigated using equimolar oxyanion concentrations in single, binary, and tertiary combinations in adsorption isotherm and pH envelope studies while desorption of previously adsorbed oxyanions was examined in solutions containing single and binary oxyanion combinations. The low-cost adsorbent materials used were alum water treatment sludge (amorphous hydroxy-Al) and bauxite ore (crystalline Al oxides). Adsorption isotherm and pH envelope studies showed that Mo had only a small effect in decreasing adsorption of As and V but V and As had substantial and similar effects in reducing adsorption of the other. As had a greater effect than V in reducing adsorption of Mo and it was concluded that the affinity of oxyanions for the surfaces of water treatment sludge and bauxite followed the order As > V >> Mo. In 0.3 M NaCl electrolyte, desorption of previously adsorbed oxyanions amounted to 0.3–3.4% for V and As, and 11–20% for Mo. As had approximately four times greater effect than Mo in increasing desorption of V while V had about three times the effect of Mo in increasing desorption of As. Thus, the order of oxyanions in inducing desorption of the other oxyanions (i.e. As on V and As) was the same as that for adsorption selectivity: As > V >> Mo. Water treatment sludge was a more effective adsorbent than bauxite because it had a greater adsorption capacity for all three anions and, in addition, they were held more strongly so desorption in the background electrolyte was proportionately less. It was concluded that at similar molar concentrations, arsenate would tend to reduce adsorption of vanadate as well as displace vanadate already held on adsorbent surfaces while both anions will compete effectively with molybdate. The limiting factor for simultaneous removal of As, V, and Mo from multielement solutions by adsorption will therefore be the removal of Mo. 相似文献
11.
Shanshan Li Chen Zhang Meng Wang Yu Li 《Environmental science and pollution research international》2014,21(1):399-406
Improved multiple regression adsorption models (IMRAMs) was developed to estimate the adsorption capacity of the components [Fe oxides (Fe), Mn oxides (Mn), organic materials (OMs), residuals] in surficial sediments for multi-heavy metal Zn and Cu. IMRAM is an improved version over MRAM, which introduces a computer program in the model developing process. As MRAM, Zn(Cu) IMRAM, and Cu(Zn) IMRAM again confirmed that there is significant interaction effects that control the adsorption of compounded Zn and Cu, which was neglected by additional adsorption model. The verification experiment shows that the relative deviation of the IMRAMs is less than 13 %. It is revealed by the IMRAMs that Mn, which has the greatest adsorption capability for compounded Zn and Cu (54.889 and 161.180 mg/l, respectively), follows by interference adsorption capacity of Fe/Mn (?1.072 and ?24.591 mg/l respectively). Zn and Cu influence each other through different mechanisms. When Zn is the adsorbate, compounded Cu mainly affects the adsorption capacities of Fe/Mn and Fe/Mn/OMs; while when Cu is the adsorbate, compounded Zn mainly exerts its effect on Mn, Fe/Mn, and Mn/OMs. It also shows that the compounded Zn or Cu weakened the interference adsorption of Fe/Mn, and meanwhile, strengthened the interference adsorption of Mn/OMs. 相似文献
12.
An investigation was made on the adsorption and kinetics of photodegradation of potassium hydrogenphthalate in an aqueous suspension of TiO(2). Two models, Langmuir and Freundlich, were used to describe the adsorption process and the model proposed by Langmuir-Hinshelwood (L-H) was employed to describe the kinetics of the photodecomposition reactions of hydrogenphthalate. The results of the adsorptions were fitted to the models proposed by Langmuir and Freundlich. Adsorption was found to be a function of the temperature, with adsorption capacity increasing from 2.4 to 4.5 mg/g when the temperature rose from 20 to 30 degrees C. The kinetic model indicates that the rate constant, k, of the first order reaction, is high in the 10.0 to 100 mg/l interval, which is coherent with the low value of the adsorption constant, K. The results fitted to the L-H model led to an equation that, within the range of concentrations studied here, theoretically allows one to evaluate the photodegradation rate. 相似文献
13.
S. Nethaji A. Sivasamy R. Vimal Kumar A. B. Mandal 《Environmental science and pollution research international》2013,20(6):3670-3678
Char was obtained from lotus seed biomass by a simple single-step acid treatment process. It was used as an adsorbent for the removal of malachite green dye (MG) from simulated dye bath effluent. The adsorbent was characterized for its surface morphology, surface functionalities, and zero point charge. Batch studies were carried out by varying the parameters such as initial aqueous pH, adsorbent dosage, adsorbent particle size, and initial adsorbate concentration. Langmuir and Freundlich isotherms were used to test the isotherm data and the Freundlich isotherm best fitted the data. Thermodynamic studies were carried out and the thermodynamic parameters such as ?G, ?H, and ?S were evaluated. Adsorption kinetics was carried out and the data were tested with pseudofirst-order model, pseudosecond-order model, and intraparticle diffusion model. Adsorption of MG was not solely by intraparticle diffusion but film diffusion also played a major role. Continuous column experiments were also conducted using microcolumn and the spent adsorbent was regenerated using ethanol and was repeatedly used for three cycles in the column to determine the reusability of the regenerated adsorbent. The column data were modeled with the modeling equations such as Adam-Bohart model, Bed Depth Service Time (BDST) model, and Yoon-Nelson model for all the three cycles. 相似文献
14.
Lafrance P Villeneuve JP Mazet M Ayele J Fabre B 《Environmental pollution (Barking, Essex : 1987)》1991,72(4):331-344
The quantitative determination of pesticide binding to dissolved humic substances is relevant to both water treatment operation using activated carbon adsorption process and the application of transport models that predict the environmental distribution patterns of a given hydrophobic contaminant. In this study and in a first set of experiments, the extent of binding between (i) three pesticides of environmental concern, aldicarb, lindane and pentachlorophenol, and (ii) dissolved commercial humic acid and soil extracted fulvic acid, was determined using dialysis experiments and water solubility enhancement tests. In a second set of experiments, the influence of dissolved humic substances or pesticide on the retention of the other co-adsorbate onto activated carbon was investigated in binary systems. It was found that association was negligible for aldicarb and that the pesticide sorption onto activated carbon was not affected by humic acid (8.5 mg liter(-1) DOC). The association constants K for lindane and pentachlorophenol were identical in the presence of fulvic acid (logK=4.1) but lower than that observed with humic acid. In the presence of humic acid, binding affinity for pentachlorophenol (logK=4.6) was higher than the one observed for lindane (logK=4.4), despite its much higher water solubility. This observation suggests that the aromatic character of the pentachlorophenol molecule contributes to association interactions with humic acid. From co-adsorption experiments onto activated carbon it was found that fulvic acid (7.7 mg litre(-1) DOC) slightly enhances sorption kinetics of pentachlorophenol. Lindane (1 mg litre(-1)) does not affect sorption kinetics for fulvic acid but markedly enhances both the sorption kinetics and adsorptive capacity for humic acid. Activated carbon retention of dissolved humic substances or pesticide appears to be enhanced by the association potential that exists between these co-adsorbates in some binary systems. 相似文献
15.
Wang Tongtong Husein Dalal Z. 《Environmental science and pollution research international》2023,30(4):8928-8955
Environmental Science and Pollution Research - Extensive studies have shown that doping can enhance the properties of graphene, but the application to real industrial wastewater treatment and... 相似文献
16.
The sorption behaviour of the severely toxic heavy metal thallium (Tl) as a monovalent cation onto three representative materials (goethite, pyrolusite and a natural sediment sampled from a field site) was examined as a function of pH in the absence and presence of two natural humic acids (HAs), using 204Tl(I) as a radiotracer. In order to obtain a basic understanding of trends in the pH dependence of Tl(I) sorption with and without HA, sorption of HAs and humate complexation of Tl(I) as a function of pH were investigated as well. In spite of the low complexation between Tl(I) and HAs, the presence of HAs results in obvious alterations of Tl(I) sorption onto pyrolusite and sediment. An influence on Tl(I) sorption onto goethite was not observed. Predictions of Kd (distribution coefficient) for Tl(I) on goethite in the presence of HAs, based on a linear additive model, agree well with the experimental data, while a notable disagreement occurs for the pyrolusite and sediment systems. Accordingly, it is suggested that HAs and goethite may act as a non-interacting sorbent mixture under the given conditions, but more complex interactions may take place between the HAs and the mineral phases of pyrolusite or sediment. 相似文献
17.
Tomic Antonija Cvetnic Matija Kovacic Marin Kusic Hrvoje Karamanis Panagiotis Bozic Ana Loncaric 《Environmental science and pollution research international》2022,29(58):87628-87644
Environmental Science and Pollution Research - The study of the structural features affecting the adsorption of organics, especially contaminants of emerging concern (CECs), onto TiO2 P25 in... 相似文献
18.
Rajeev Jain Pooja Sharma Shalini Sikarwar 《Environmental science and pollution research international》2013,20(3):1493-1502
The presence of dyes in water is undesirable due to the toxicological impact of their entrance into the food chain. Owing to the recalcitrant nature of dyes to biological oxidation, a tertiary treatment like adsorption is required. In the present study, unsaturated polyester resin (UPR) has been used as a sorbent in the treatment of dye-contaminated water. Different concentrations of Tropaeoline 000 containing water were treated with UPR. The preliminary investigations were carried out by batch adsorption to examine the effects of pH, adsorbate concentration, adsorbent dosage, contact time, and temperature. A plausible mechanism for the ongoing adsorption process and thermodynamic parameters have also been obtained from Langmuir and Freundlich adsorption isotherm models. Thermodynamic parameter showed that the sorption process of Tropaeoline 000 onto activated carbon (AC) and UPR were feasible, spontaneous, and endothermic under studied conditions. The estimated values for (ΔG) are ?10.48?×?103 and ?6.098?×?103 kJ mol?1 over AC and UPR at 303 K (30 °C), indicating towards a spontaneous process. The adsorption process followed pseudo-first-order model. The mass transfer property of the sorption process was studied using Lagergren pseudo-first-order kinetic models. The values of % removal and k ad for dye systems were calculated at different temperatures (303–323 K). The mechanism of the adsorption process was determined from the intraparticle diffusion model. 相似文献
19.
In the present study, a hydrophilic bifunctional polymeric resin (LS-2) with sulfonic groups was synthesized, and the adsorption performance of three aniline compounds, aniline, 4-methylaniline, and 4-nitroaniline onto LS-2 was compared with that on the commercial Amberlite XAD-4. The uptake of the aniline compounds on LS-2 is a procedure of coexistence of physisorption and chemisorption and obeys the pseudo-second order rate equation, while the uptake of the compounds on XAD-4 is merely a physical adsorption and follows the pseudo-first order rate equation. All the isothermal data fit well with the Freundlich model, and the values of K(F) of the compounds adsorbing on LS-2 are much higher than those on XAD-4 suggesting the higher adsorbing capacities on LS-2 than those on XAD-4, which may be attributed to the microporous structure and the polar groups on the network of LS-2 resin. Dynamic adsorption and desorption studies for aniline on LS-2 show that the breakthrough adsorption capacity and the total adsorption capacity are 0.96 and 1.24 mmol per milliliter resin, respectively. Nearly 100% regeneration efficiency for the adsorbent was achieved by 5% hydrochloric acid. 相似文献
20.
为考察高分子纳米微球对微污染物镉的吸附性能,以高分子空心微球为吸附剂,以废水镉微污染物为吸附对象,探讨高分子空心微球的重金属吸附性能,重点考察水热时间和水热温度对高分子微球表面基团的影响。结果表明:水热温度升高,高分子微球出现粘连;当水热温度为180℃,水热时间为4 h时,镉微污染物去除率最佳。强酸性条件有利于高分子微球吸附镉微污染物,当pH4时,镉微污染物去除率超过95%;而中碱性条件的去除率不超过70%。高分子空心微球镉离子吸附过程不属于放热过程,最大吸附量超过75 mg·g~(-1)。经盐酸再生利用时,高分子空心微球的镉吸附率没有出现下降,超过95%以上。高分子微球对微污染物镉具有良好的吸附性能。 相似文献