首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The vertical concentration profiles and source contributions of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in respirable particle samples (PM4) collected at 10, 100, 200 and 300-m altitude from the Milad Tower of Tehran, Iran during fall and winter were investigated. The average concentrations of total PAHs and total n-alkanes were 16.7 and 591 ng/m3, respectively. The positive matrix factorization (PMF) model was applied to the chemical composition and wind data to apportion the contributing sources. The five PAH source factors identified were: ‘diesel’ (56.3 % of total PAHs on average), ‘gasoline’ (15.5 %), ‘wood combustion, and incineration’ (13 %), ‘industry’ (9.2 %), and ‘road soil particle’ (6.0 %). The four n-alkane source factors identified were: ‘petrogenic’ (65 % of total n-alkanes on average), ‘mixture of petrogenic and biomass burning’ (15 %), ‘mixture of biogenic and fossil fuel’ (11.5 %), and ‘biogenic’ (8.5 %). Source contributions by wind sector were also estimated based on the wind sector factor loadings from PMF analysis. Directional dependence of sources was investigated using the conditional probability function (CPF) and directional relative strength (DRS) methods. The calm wind period was found to contribute to 4.4 % of total PAHs and 5.0 % of total n-alkanes on average. Highest average concentrations of PAHs and n-alkanes were found in the 10 and 100 m samples, reflecting the importance of contributions from local sources. Higher average concentrations in the 300 m samples compared to those in the 200 m samples may indicate contributions from long-range transport. The vertical profiles of source factors indicate the gasoline and road soil particle-associated PAHs, and the mixture from biogenic and fossil fuel source-associated n-alkanes were mostly from local emissions. The smaller average contribution of diesel-associated PAHs in the lower altitude samples also indicates that the restriction of diesel-fueled vehicle use in the central area of Tehran has been effective in reducing the PAHs concentration.  相似文献   

2.
The wintertime concentrations and diel cycles of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) associated to atmospheric particulate matter with aerodynamic diameter lesser than 10 μm were determined at the biggest student residence in Algeria located in Bab-Ezzouar, 15 km southeast from Algiers city area. Samplings were carried out from December 2009 to March 2010, and organic compounds were characterized using gas chromatography coupled with mass spectrometric detection. Volatile PAHs were also monitored inside some student residence rooms in order to evaluate the impact of indoor air pollution to student health. For the sake of comparison, aerial concentrations of n-alkanes and PAHs were determined in parallel in the Oued Smar industrial zone and two suburban areas, all located in Algiers. Total concentrations recorded in CUB1 student residence ranged from 101 to 204 ng?m?3 for n-alkanes and from 8 to 87 ng?m?3 for PAHs. Diel cycles have shown that, while concentrations of n-alkanes peaked at morning and afternoon–evening and dropped at night, those of PAHs exhibited higher levels at morning and night and lower levels at afternoon–evening, likely due to the reactivity of some PAHs. As expected, the indoor levels of PAHs were larger than in the outdoor of the student residence and were of serious health concern. Overall, the concentrations of n-alkanes and PAHs were as high as those observed in the industrial zone and higher than the two suburban sites.  相似文献   

3.
Organic carbon (OC), elemental carbon (EC), and 90 organic compounds (36 polycyclic aromatic hydrocarbons [PAHs], 25 n-alkane homologues, 17 hopanes, and 12 steranes) were concurrently quantified in atmospheric particulate matter of PM2.5 and PM10. The 24-hr PM samples were collected using Harvard Impactors at a suburban site in Doha, Qatar, from May to December 2015. The mass concentrations (mean ± standard deviation) of PM2.5 and PM10 were 40 ± 15 and 145 ± 70 µg m?3, respectively, exceeding the World Health Organization (WHO) air quality guidelines. Coarse particles comprised 70% of PM10. Total carbonaceous contents accounted for 14% of PM2.5 and 10% of PM10 particulate mass. The major fraction (90%) of EC was associated with the PM2.5. In contrast, 70% of OC content was found in the PM2.5–10 fraction. The secondary OC accounted for 60–68% of the total OC in both PM fractions, indicating photochemical conversions of organics are much active in the area due to higher air temperatures and solar radiations. Among the studied compounds, n-alkanes were the most abundant group, followed by PAHs, hopanes, and steranes. n-Alkanes from C25 to C35 prevailed with a predominance of odd carbon numbered congeners (C27–C31). High-molecular-weight PAHs (5–6 rings) also prevailed, within their class, with benzo[b + j]fluoranthene (Bb + jF) being the dominant member. PAHs were mainly (80%) associated with the PM2.5 fraction. Local vehicular and fugitive emissions were predominant during low-speed southeasterly winds from urban areas, while remote petrogenic/biogenic emissions were particularly significant under prevailing northwesterly wind conditions.

Implications: An unprecedented study in Qatar established concentration profiles of EC, OC, and 90 organic compounds in PM2.5 and PM10. Multiple tracer organic compounds for each source can be used for convincing source apportionment. Particle concentrations exceeded WHO air quality guidelines for 82–96% of the time, revealing a severe problem of atmospheric PM in Doha. Dominance of EC and PAHs in fine particles signifies contributions from combustion sources. Dependence of pollutants concentrations on wind speed and direction suggests their significant temporal and spatial variability, indicating opportunities for improving the air quality by identifying sources of airborne contaminants.  相似文献   


4.
Polycyclic aromatic hydrocarbons (PAHs) associated with the inhalable fraction of particulate matter were determined for 1 year (2009–2010) at a school site located in proximity of industrial and heavy traffic roads in Delhi, India. PM10 (aerodynamic diameter ≤10 μm) levels were ~11.6 times the World Health Organization standard. Vehicular (59.5 %) and coal combustion (40.5 %) sources accounted for the high levels of PAHs (range 38.1–217.3 ng m?3) with four- and five-ring PAHs having ~80 % contribution. Total PAHs were dominated by carcinogenic species (~75 %) and B[a]P equivalent concentrations indicated highest exposure risks during winter. Extremely high daily inhalation exposure of PAHs was observed during winter (439.43 ng day?1) followed by monsoon (232.59 ng day?1) and summer (171.08 ng day?1). Daily inhalation exposure of PAHs to school children during a day exhibited the trend school hours?>?commuting to school?>?resting period in all the seasons. Vehicular source contributions to daily PAH levels were significantly correlated (r?=?0.94, p?<?0.001) with the daily inhalation exposure level of school children. A conservative estimate of ~11 excess cancer cases in children during childhood due to inhalation exposure of PAHs has been made for Delhi.  相似文献   

5.
Air particulate matter (PM) samples were collected in Singapore from 21 to 29 October 2010. During this time period, a severe regional smoke haze episode lasted for a few days (21–23 October). Physicochemical and toxicological characteristics of both haze and non-haze aerosols were evaluated. The average mass concentration of PM2.5 (PM with aerodynamic diameter of ≤2.5 μm) increased by a factor of 4 during the smoke haze period (107.2 μg/m3) as compared to that during the non-smoke haze period (27.0 μg/m3). The PM2.5 samples were analyzed for 16 priority polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental Protection Agency and 10 transition metals. Out of the seven PAHs known as potential or suspected carcinogens, five were found in significantly higher levels in smoke haze aerosols as compared to those in the background air. Metal concentrations were also found to be higher in haze aerosols. Additionally, the toxicological profile of the PM2.5 samples was evaluated using a human epithelial lung cell line (A549). Cell viability and death counts were measured after a direct exposure of PM2.5 samples to A459 cells for a period of 48 h. The percentage of metabolically active cells decreased significantly following a direct exposure to PM samples collected during the haze period. To provide further insights into the toxicological characteristics of the aerosol particles, glutathione levels, as an indirect measure of oxidative stress and caspase-3/7 levels as a measure of apoptotic death, were also evaluated.  相似文献   

6.
An indoor/outdoor monitoring programme of PM10 was carried out in two sports venues (a fronton and a gymnasium). Levels always below 50 μg m?3 were obtained in the fronton and outdoor air. Due to the climbing chalk and the constant process of resuspension, concentrations above 150 μg m?3 were registered in the gymnasium. The chalk dust contributed to CO3 2? concentrations of 32?±?9.4 μg m?3 in this sports facility, which represented, on average, 18 % of the PM10 mass. Here, the carbonate levels were 128 times higher than those registered outdoors. Much lower concentrations, around 1 μg m?3, were measured in the fronton. The chalk dust is also responsible for the high Mg2+ concentrations in the gym (4.7?±?0.89 μg m?3), unfolding a PM10 mass fraction of 2.7 %. Total carbon accounted for almost 30 % of PM10 in both indoor spaces. Aerosol size distributions were bimodal and revealed a clear dependence on physical activities and characteristics of the sports facilities. The use of climbing chalk in the gymnasium contributed significantly to the coarse mode. The average geometric mean diameter, geometric standard deviation and total number of coarse particles were 0.77 μm, 2.79 cm?3 and 28 cm?3, respectively.  相似文献   

7.
In an effort to assess the occurrence and sources of polycyclic aromatic hydrocarbons (PAHs) in the ambient air of Riyadh, Saudi Arabia, PM10 samples were collected during December 2010. Diagnostic PAH concentration ratios were used as a tool to identify and characterize the PAH sources. The results reflect high PM10 and PAH concentrations (particulate matter (PM)?=?270–1,270 μg/m3). The corresponding average PAH concentrations were in the range of 18?±?8 to 1,003?±?597 ng/m3 and the total concentrations (total PAHs (TPAHs) of 17 compounds) varied from 1,383 to 13,470 ng/m3 with an average of 5,871?±?2,830 ng/m3. The detection and quantification limits were 1–3 and 1–10 ng/ml, respectively, with a recovery range of 42–80 %. The ratio of the sum of the concentrations of the nine major non-alkylated compounds to the total (CPAHs/TPAHs) was 0.87?±?0.10, and other ratios were determined to apportion the PM sources. The PAHs found are characteristic for emissions from traffic with diesel being a predominant source.  相似文献   

8.
Abstract

Air samples of particulate matter (PM) with an aerodynamic diameter less than 10 µm (PM10) were collected from six sites in Bangkok, Thailand, using high-volume air samplers. Daily samples were taken at intervals of 12 days from November 1999 to November 2000. Size-selected sampling using a multislit Andersen size-fractionated cascade impactor was undertaken at one site in central Bangkok to identify particulate size distribution. The annual average PM10 concentration at all six sites exceeded the Thailand National Ambient Air Quality Standard (NAAQS) of 50 µg/m3. The daily PM10 concentrations at heavy traffic roadside areas ranged between 30 and 160 µg/m3. The highest PM10 level occurred during the winter period (November–February), which is the dry season. From our results, which are based on a 1-yr survey, it can be observed that the particulate concentrations are associated with traffic volumes and seasonal factors (temperature and rainfall). The relative importance of size fractions in contributing to PM load is presented and discussed. Twenty polycyclic aromatic hydro-carbons (PAHs) associated with PM have been identified and quantified. The summed PAHs based on the 20 species had an average concentration of 60 ng/m3. Benzo(e)pyrene, indeno(123cd)pyrene, and benzo(ghi)perylene were the major compounds with average concentrations of 8, 10, and 13 ng/m3, respectively. Results indicate that more than 97% of PAHs were found in the small particulate size range of <0.95 µm.  相似文献   

9.
Ambient concentrations of n-alkanes with carbon number ranging from 17 to 36 were determined for PM2.5 samples collected in Taipei city during September 1997–February 1998. The measured concentrations of particulate n-alkanes were in the range of 69–702 ng m−3, considerably higher than the concentration levels observed in Los Angeles and Hong Kong. The concentration distributions of n-alkanes homologues obtained in this study exhibited peaks at C19, C24 or C25. This suggests that fossil fuel utilization, such as vehicular exhaust and lubricant residues, was an important contributor to the Taipei aerosol. Source apportionment of PM2.5 was conducted using carbon preference index (CPI, defined as the ratio of the total concentration of particulate n-alkanes with odd carbon number to that with even carbon number) and U : R ratio (the concentration ratio of unresolved components to resolved components obtained from chromatograms). The low CPI value (0.9–1.9) and high U : R ratio (2.6–6.4) for each sample further confirmed that fossil fuel utilization was the major source of n-alkanes in ambient PM2.5 of Taipei city. Estimates from these results showed that 69–93% of the n-alkanes in PM2.5 of the Taipei aerosol originated from vehicular exhaust. The higher concentration level of particulate n-alkanes in the Taipei aerosol was mainly a result of vehicular emissions.  相似文献   

10.
Journey-time exposures to particulate air pollution were investigated in Leicester, UK, between January and March 2005. Samples of TSP, PM10, PM2.5, and PM1 were simultaneously collected using light scattering devices whilst journeys were made by walking an in-car. Over a period of two months, 33 pairs of walking and in-car measurements were collected along two circular routes. Average exposures while walking were seen to be higher than those found in-car for each of the particle fractions: average walking to in-car ratios were 1.2 (± 0.6), 1.5 (± 0.6), 1.3 (± 0.6), and 1.4 (± 0.6) μg m−3 for coarse (TSP–PM10), intermediate (PM10–PM2.5), fine (PM2.5–PM1), and very fine particles (PM1), respectively. Correlations between walking and in-car exposures were seen to be weak for coarse particles (r=0.10, p=0.58), moderate for the intermediate particles (r=0.49, p<0.01) but strong for fine (r=0.89, p<0.01) and very fine (r=0.90, P<0.01) particles. PM10 exposures while walking were on average 70% higher than a nearby roadside fixed-site monitor whilst in-car exposures were 25% higher than the same fixed-site monitor. Particles with an aerodynamic diameter of less than 2.5 μm were seen to be highly correlated between walking and in-car particle exposures and a rural fixed-site monitor about 30 km south of Leicester.  相似文献   

11.
Atmospheric particulate matter (PM) abundance, mass size distribution (MSD) and chemical composition are parameters relevant for human health effects. The MSD and phase state of semivolatile organic pollutants were determined at various polluted sites in addition to the PM composition and MSD. The distribution pattern of pollutants varied from side to side in correspondence to main particle sources and PM composition. Levels of particle-associated polycyclic aromatic hydrocarbons (PAHs) were 1–30 ng m?3 (corresponding to 15–35 % of the total, i.e., gas and particulate phase concentrations), of polychlorinated biphenyls (PCBs) were 2–11 pg m?3 (4–26 % of the total) and of DDT compounds were 2–12 pg m?3 (4–23 % of the total). The PM associated amounts of other organochlorine pesticides were too low for quantification. The organics were preferentially found associated with particles <0.45 μm of aerodynamic equivalent diameter. The mass fractions associated with sub-micrometer particles (PM0.95) were 73–90 %, 34–71 % and 36–81 % for PAHs, PCBs and DDT compounds, respectively. The finest particles fraction had the highest aerosol surface concentration (6.3–29.7)×10?6 cm?1 (44–70 % of the surface concentration of all size fractions). The data set was used to test gas-particle partitioning models for semivolatile organics for the first time in terms of the organics' MSD and size-dependent PM composition. The results of this study prove that at the various sites particles with diverse size, matrix composition, amount of contaminants and toxicological effects occur. Legislative regulation based on gravimetric determination of PM mass can clearly be insufficient for assessment.  相似文献   

12.
PM2.5 and PM2.5–10 aerosol samples were collected in four seasons during November 2010, January, April, and August 2011 at 13 urban/suburban sites and one background site in Western Taiwan Straits Region (WTSR), which is the coastal area with rapid urbanization, high population density, and deteriorating air quality. The 10 days average PM2.5 concentrations were 92.92, 51.96, 74.48, and 89.69 μg/m3 in spring, summer, autumn, and winter, respectively, exceeding the Chinese ambient air quality standard for annual average value of PM2.5 (grade II, 35 μg/m3). Temporal distribution of water-soluble inorganic ions (WSIIs) in PM2.5 was coincident with PM2.5 mass concentrations, showing highest in spring, lowest in summer, and middle in autumn and winter. WSIIs took considerable proportion (42.2~50.1 %) in PM2.5 and PM2.5–10. Generally, urban/suburban sites had obviously suffered severer pollution of fine particles compared with the background site. The WSIIs concentrations and characteristics were closely related to the local anthropogenic activities and natural environment, urban sites in cities with higher urbanization level, or sites with weaker diffuse condition suffered severer WSIIs pollution. Fossil fuel combustion, traffic emissions, crustal/soil dust, municipal constructions, and sea salt and biomass burnings were the major potential sources of WSIIs in PM2.5 in WTSR according to the result of principal component analysis.  相似文献   

13.
Arsenic is a toxic element that affects human health and is widely distributed in the environment. In the area of study, the main Spanish and second largest European industrial ceramic cluster, the main source of arsenic aerosol is related to the impurities in some boracic minerals used in the ceramic process. Epidemiological studies on cancer occurrence in Spain points out the study region as one with the greater risk of cancer. Concentrations of particulate matter and arsenic content in PM10 and PM2.5 were measured and characterized by ICP-MS in the area of study during the years 2005–2010. Concentrations of PM10 and its arsenic content range from 27 to 46 μg/m3 and from 0.7 to 6 ng/m3 in the industrial area, respectively, and from 25 to 40 μg/m3 and from 0.7 to 2.8 ng/m3 in the urban area, respectively. Concentrations of PM2.5 and its arsenic content range from 12 to 14 μg/m3 and from 0.5 to 1.4 ng/m3 in the urban background area, respectively. Most of the arsenic content is present in the fine fraction, with ratios of PM2.5/PM10 in the range of 0.65–0.87. PM10, PM2.5, and its arsenic content show a sharp decrease in recent years associated with the economic downturn, which severely hit the production of ceramic materials in the area under study. The sharp production decrease due to the economic crisis combined with several technological improvements in recent years such as substitution of boron, which contains As impurities as raw material, have reduced the concentrations of PM10, PM2.5, and As in air to an extent that currently meets the existing European regulations.  相似文献   

14.
Size distribution and selected element concentrations of atmospheric particulate matter (PM) were investigated in the Venice Lagoon, at three sites characterised by different anthropogenic influence. The PM10 samples were collected in six size fractions (10-7.2, 7.2-3.0, 3.0-1.5, 1.5-0.95; 0.95-0.49 and <0.49 μm) with high volume cascade impactors, and the concentration of 17 elements (Al, As, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, V, Zn) was determined by inductively coupled plasma quadrupole mass spectroscopy. More than 1 year of sampling activities allowed the examination of seasonal variability in size distribution of atmospheric particulates and element contents for each site.At all the stations, particles with an aerodynamic diameter <3 μm were predominant, thus accounting for more than 78% of the total aerosol mass concentration. The highest PM10 concentrations for almost all elements were found at the site which is more influenced by industrial and urban emissions. Similarity in size distribution of elements at all sites allowed the identification of three main behavioural types: (a) elements found mainly within coarse particles (Ca, Mg, Na, Sr); (b) elements found mainly within fine particles (As, Cd, Ni, Pb, V) and (c) elements with several modes spread throughout the entire size range (Co, Cu, Fe, K, Zn, Mn).Factor Analysis was performed on aerosol data separately identified as fine and coarse types in order to examine the relationships between the inorganic elements and to identify their origin. Multivariate statistical analysis and assessment of similarity in the size distribution led to similar conclusions on the sources.  相似文献   

15.
The gas/particle partitioning coefficient K p , of a semivolatile compound is a key parameter for its atmospheric fate. The most complete method of predicting K p for polycyclic aromatic hydrocarbons (PAHs) is offered by the dual model, as it describes both the adsorption on soot and absorption into organic matter processes. However, experimental and model data exist almost exclusively for PAHs. In order to bridge this gap, experimental data on the phase partitioning of both PAHs and n-alkanes were collected at an urban and a remote site. Moreover, all the necessary parameters (e.g., octanol–air and soot–air partitioning coefficients) for the dual model have been collected and updated or (if missing) estimated for the first time. The results point out that both absorption and adsorption seem to contribute to the partitioning of PAHs and n-alkanes. However, it seems that the dual model always underestimates the particle sorption not only for PAHs but also for n-alkanes.  相似文献   

16.
Atmospheric particulate matter (PM) is hypothesized to increase the risk of myocardial infarction (MI). However, the epidemiological evidence is inconsistent. We identified 33 studies with more than 4 million MI patients and applied meta-analysis and meta-regression to assess the available evidence. Twenty-five studies presented the effects of the PM level on hospitalization for MI patients, while eight studies showed the effects on mortality. An increase in PM10 was associated with hospitalization and mortality in myocardial infarction patients (RR per 10 μg/m3?=?1.011, 95 % CI 1.006–1.016; RR per 10 μg/m3?=?1.008, 95 % CI 1.004–1.012, respectively); PM2.5 also increased the risk of hospitalization and mortality in MI patients (RR per 10 μg/m3?=?1.024, 95 % CI 1.007–1.041 for hospitalization and RR per 10 μg/m3?=?1.012, 95 % CI 1.010–1.015 for mortality). The results of the cumulative meta-analysis indicated that PM10 and PM2.5 were associated with myocardial infarctionwith the addition of new studies each year. In conclusion, short-term exposure to high PM10 and PM2.5 levels revealed to increase risk of hospitalization and mortality for myocardial infarction. Policy support of pollution control and individual protection was strongly recommended.  相似文献   

17.
Considering tobacco smoke as one of the most health-relevant indoor sources, the aim of this work was to further understand its negative impacts on human health. The specific objectives of this work were to evaluate the levels of particulate-bound PAHs in smoking and non-smoking homes and to assess the risks associated with inhalation exposure to these compounds. The developed work concerned the application of the toxicity equivalency factors approach (including the estimation of the lifetime lung cancer risks, WHO) and the methodology established by USEPA (considering three different age categories) to 18 PAHs detected in inhalable (PM10) and fine (PM2.5) particles at two homes. The total concentrations of 18 PAHs (ΣPAHs) was 17.1 and 16.6 ng m?3 in PM10 and PM2.5 at smoking home and 7.60 and 7.16 ng m?3 in PM10 and PM2.5 at non-smoking one. Compounds with five and six rings composed the majority of the particulate PAHs content (i.e., 73 and 78 % of ΣPAHs at the smoking and non-smoking home, respectively). Target carcinogenic risks exceeded USEPA health-based guideline at smoking home for 2 different age categories. Estimated values of lifetime lung cancer risks largely exceeded (68–200 times) the health-based guideline levels at both homes thus demonstrating that long-term exposure to PAHs at the respective levels would eventually cause risk of developing cancer. The high determined values of cancer risks in the absence of smoking were probably caused by contribution of PAHs from outdoor sources.  相似文献   

18.
The mass concentration of carbonaceous species, organic carbon (OC), and elemental carbon (EC) using a semicontinuous thermo-optical EC-OC analyzer, and black carbon (BC) using an Aethalometer were measured simultaneously at an urban mega city Delhi in Ganga basin from January 2011 to May 2012. The concentrations of OC, EC, and BC exhibit seasonal variability, and their concentrations were ~2 times higher during winter (OC 38.1?±?17.9 μg m?3, EC 15.8?±?7.3 μg m?3, and BC 10.1?±?5.3 μg m?3) compared to those in summer (OC 14.1?±?4.3 μg m?3, EC 7.5?±?1.5 μg m?3, and BC 4.9?±?1.5 μg m?3). A significant correlation between OC and EC (R?=?0.95, n?=?232) indicate their common emission sources with relatively lower OC/EC ratio (range 1.0–3.6, mean 2.2?±?0.5) suggests fossil fuel emission as a major source of carbonaceous aerosols over the station. On average, mass concentration of EC was found to be ~38 % higher than BC during the study period. The measured absorption coefficient (babs) was significantly correlated with EC, suggesting EC as a major absorbing species in ambient aerosols at Delhi. Furthermore, the estimated mass absorption efficiency (σabs) values are similar during winter (5.0?±?1.5 m2 g?1) and summer (4.8?±?2.8 m2 g?1). Significantly high aerosol loading of carbonaceous species emphasize an urgent need to focus on air quality management and proper impact assessment on health perspective in these regions.  相似文献   

19.
The size distribution of ambient air particles and associated organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) including hexachlorocyclohexanes (HCHs), DDT and metabolites, etc., was investigated at a traffic-impacted site of Thessaloniki, Greece. Investigation took place during wintertime of 2006 at two heights above ground: at the street level (1.5 m) and at the rooftop level (15 m). Size-resolved samples (<0.95 μm, 0.95–1.5 μm, 1.5–3 μm, 3–7.5 μm and >7.5 μm) were concurrently collected from the two height levels using five-stage high volume cascade impactors. At both heights, particle mass exhibited bimodal distribution with peaks in the 0.95–1.5 μm and the 3–7.5 μm size fractions, whereas most organic pollutants exhibited one peak at 0.95–1.5 μm. Apart from the 0.95–1.5 μm fraction, particle concentrations of all size ranges were significantly higher at the street level than at the rooftop as a result of more intensive vehicular emissions and road dust resuspension. On the contrary, the concentrations of most organic pollutants did not differentiate significantly between the two elevations.  相似文献   

20.
This study characterized the dry deposition flux and dry deposition velocity (Vd) of metallic elements attached on particulate matter. Specifically, large particles (>10 μm), coarse particles (10 μm~2.5 μm), and fine particles (<2.5 μm) were studied at the Gong Ming Junior High School (Taichung Airport) and Taichung Harbor sampling sites in central Taiwan. Ambient air samples were collected to determine total suspended particulate matter (TSP), dry deposition plate (DDP), Vd, coarse particulate matter (PM2.5–10) and fine particulate matter (PM2.5), and metallic elements concentrations at the Airport and Taichung Harbor sites between June 17, 2013, and November 14, 2013. The results revealed that the average TSP, DDP, Vd, PM2.5–10, and PM2.5 particulate at the Airport were 54.55 (μg/m3), 902.25 (μg/m2-min), 17.11 (m/sec), 0.003 (μg/m3), and 0.010 (μg/m3), respectively; while these values at Taichung Harbor were 63.66 (μg/m3), 539.69 (μg/m2-min), 9.94 (m/sec), 0.003 (μg/m3), and 0.014 (μg/m3), respectively. In addition, the results showed that the average Cu and Pb concentrations were higher than Cr, Ni, and Cd for both the airport and harbor sampling sites. Furthermore, Cr, N, Cu, Cd, and Pb had the highest average concentrations versus those reported for other study areas, with one exception: The results obtained in Kacanik, Kosovo, during 2005. The average metallic elements concentrations order was Cu > Pb > Cr > Ni > Cd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号