首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lethal doses (LD50s) of fluorinated, chlorinated, brominated, and iodinated benzene, phenol, and diphenyl ether in mice were ascertained respectively under the consistent condition. The acute toxicity of four benzenes orders in fluorobenzene (FB)?<?iodobenzene?<?chlorobenzene≈bromobenzene, that of four phenols orders in 4-iodophenol≈4-bromophenol?<?4-chlorophenol (4-MCP)?<?4-fluorophenol (4-MFP), and that of four diphenyl ethers orders in 4,4′-iododiphenyl ether?<?4,4′-difluorodiphenyl ether?<?4,4′-dichlorodiphenyl ether≈4,4′-dibromodiphenyl ether. General behavior adverse effects were observed, and poisoned mouse were dissected to observe visceral lesions. FB, 4-MCP, and 4-MFP produced toxic faster than other halogenated benzenes and phenols, as they had lower octanol–water partition coefficients. Pathological changes in liver and liver/kidney weight changes were also observed. Hepatic superoxide dismutase, catalase activities, and malondialdehyde level were tested after a 28-day exposure, which reflects a toxicity order basically consistent with that reflected by the LD50s. By theoretical calculation and building models, the toxicity of benzene, phenol, and diphenyl ether were influenced by different structural properties.  相似文献   

2.
Diphenyl ether and its derivatives are widely used in the industry of spices, dyes, agrochemicals, and pharmaceuticals. Following the previous study, we selected 4,4′-dihydroxydiphenyl ether, 4,4′-difluorodiphenyl ether, 4,4′-dichlorodiphenyl ether, and 4,4′-dibromodiphenyl ether as research objects. The LC50 (96 h) values for these compounds in adult zebrafish were determined with the acute test. Also, developmental toxicities of the four substances to zebrafish embryos were observed at 24, 48, 72, and 96 hpf. All the LC50 (96 h) values of these compounds were between 1 and 10 mg/L, suggesting that they all had moderate toxicity to adult zebrafish. The embryonic test demonstrated that with increasing doses, 4,4′-dihydroxydiphenyl ether decreased the hatching rate, while 4,4′-difluorodiphenyl ether, 4,4′-dichlorodiphenyl ether, and 4,4′-dibromodiphenyl ether delayed the hatching time but had little effect on final hatchability at 96 hpf. All of these compounds inhibited larval growth, especially 4,4′-dihydroxydiphenyl ether. Exposure to these chemicals induced embryo yolk sac and pericardial edema. Spine deformation was visible in hatched larvae after 96 hpf 4,4′-dihydroxydiphenyl ether exposure, while tail curvature was observed for the halogenated compounds. The overall results indicated that 4,4′-dihydroxydiphenyl ether, 4,4′-difluorodiphenyl ether, 4,4′-dichlorodiphenyl ether, and 4,4′-dibromodiphenyl ether all had significant toxicity on adult and embryonic zebrafish.  相似文献   

3.
Polybrominated diphenyl ethers (PBDEs) were measured in sewage sludge samples collected from major wastewater treatment plants in Guangdong Province, South China. Concentrations of ∑39PBDE (all 39 compounds including tri- to hepta- PBDE congeners except for BDE-209) ranged from 3.6 to 428 ng/g dw with a mean value of 67.4 ng/g dw and a median value of 25.9 ng/g dw, and those of BDE-209 ranged from 9.9 to 5,010 ng/g dw (mean 1,024 ng/g dw and median 824 ng/g dw). The PBDE mixtures detected were mainly comprised of penta-, octa-, and deca-BDEs, with deca-BDE as the dominant constituent. The most abundant congeners, excluding BDE-209, were BDE-47, BDE-99, and BDE-183. Good correlations were found among the concentrations of BDE-47, BDE-99, BDE-100, BDE-138, and BDE-154 (r?>?0.8). However, poor correlations were found between the concentrations of BDE-209 and all other congeners (r?<?0.3). This fact suggests that most tri- to hepta-BDEs detected did not originate from decomposition of deca-BDE. The estimated annual emission of ∑allPBDEs, ∑39PBDEs, penta-BDE, octa-BDE, and deca-BDE to the Pearl River Delta environment (PRD), based on the sludge samples analyzed, amounts to 232, 20.2, 5.5, 1.7, and 212 kg per year, implicating sewage sludge as a significant source of PBDEs to the PRD environment.  相似文献   

4.
Fourteen and 17 sediment samples were collected from three main rivers of Shanghai in July and November, respectively. Eight polybrominated diphenyl ether (PBDE) congeners (BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-183, and BDE-209) were detected in these samples to clarify the pollution status in the metropolis. Instrumental analyses showed that the concentrations of ∑8PBDEs ranged from 10.97 to 64.05 ng/g dry weight (dw), with an average value of 29.71 ng/g dw. BDE-209 was the predominant congener accounting for more than 97 % of total PBDEs, followed by BDE-47 and BDE-99. Remarkable spatial and seasonal distributions of PBDE concentrations were observed, suggesting that local sources, seasonal climates, and hydrologic conditions might be the influencing factors. Moderate correlations (r 2?=?0.28–0.51, p?<?0.05) were found between total organic carbon and PBDEs, which indicated that organic carbon content influenced the distributions of PBDEs in sediment of Shanghai at some extent. Hazard quotients revealed PBDEs posed no potential risk to benthic organisms in the study area at present.  相似文献   

5.
Darnerud PO  Risberg S 《Chemosphere》2006,62(3):485-493
The distribution of polybrominated diphenyl ether (PBDE) congeners was followed in C57BL mice. The animals were subjected to whole-body autoradiography using (14)C-labelled 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',3,4,4'-pentabromodiphenyl ether (BDE-85) and 2,2',4,4',5-pentabromodiphenyl ether (BDE-99). Labelled BDE-85 and -99 were also used in quantitative studies on milk transfer and tissue concentrations during the neonatal period (12-15 days post partum), by use of liquid scintillation technique. The results show that in adult mice the studied PBDEs were effectively taken up, retained in fatty tissues and concentrated in some specific organs, i.e. the liver, adrenal cortex, ovary, lung and (initially) the brain. At longer post-injection time, the concentration in most tissues was considerably lower, and radioactivity was mainly found in fat depots and the liver. No significant difference in distribution between the three studied congeners was observed. Following maternal exposure, the foetal uptake was limited. On the other hand, during lactation a considerable fraction of the dose (about 20% of the studied penta-BDEs) given to the dam was transferred to the offspring. As in several cases the presently observed organ accumulation corresponds with earlier reports on PBDE effects in the same organs, the present results should be taken into consideration in the risk assessment of this compound group.  相似文献   

6.
Sorption-desorption behavior of polybrominated diphenyl ethers in soils   总被引:1,自引:0,他引:1  
Polybrominated diphenyl ethers (PBDEs) are flame retardants that are commonly found in commercial and household products. These compounds are considered persistent organic pollutants. In this study, we used 4,4′-dibromodiphenyl ether (BDE-15) as a model compound to elucidate the sorption and desorption behavior of PBDEs in soils. The organic carbon-normalized sorption coefficient (KOC) of BDE-15 was more than three times higher for humin than for bulk soils. However, pronounced desorption hysteresis was obtained mainly for bulk soils. For humin, increasing concentration of sorbed BDE-15 resulted in decreased desorption. Our data illustrate that BDE-15 and probably other PBDEs exhibit high sorption affinity to soils. Moreover, sorption is irreversible and thus PBDEs can potentially accumulate in the topsoil layer. We also suggest that although humin is probably a major sorbent for PBDEs in soils, other humic materials are also responsible for their sequestration.  相似文献   

7.
Commercial octabromodiphenyl ether mixtures, containing hexabromodiphenyl ethers and heptabromodiphenyl ethers were listed in Annex A of the Stockholm Convention on May 2009 (Fourth Conference of the Parties) (UNEP, 2009a). Four compounds are specifically mentioned: 2,2′,4,4′,5,5′-hexabromodiphenyl ether (BDE-153), 2,2′,4,4′,5,6′-hexabromodiphenyl ether (BDE-154), 2,2′,3,3′,4,5′,6-heptabromodiphenyl ether (BDE-175), and 2,2′,3,4,4′,5′,6-heptabromodiphenyl ether (BDE-183). Presumably they were identified as key components of commercial mixtures and found to be present in environmental samples. However, since BDE-175 and BDE-183 co-elute on common HRGC columns, the presence of BDE-175 as an important component in technical octa-BDE mixtures has not been illustrated. The successful HRGC/LRMS separation of a 1:1 mixture of BDE-175 and BDE-183, as well as 1H NMR analysis of technical material, has allowed us to confirm that this congener is not present in technical products (e.g. Great Lakes DE-79™) in quantifiable amounts.  相似文献   

8.
Kuramochi H  Maeda K  Kawamoto K 《Chemosphere》2007,67(9):1858-1865
The aqueous solubilities (S(w)) at various temperatures from 283 K to 308 K and 1-octanol/water partition coefficients (K(ow)) for four polybrominated diphenyl ethers (PBDEs: 4,4'-dibromodiphenyl ether (BDE-15), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), and 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153)) were measured by the generator column method. The S(w) and K(ow) data revealed the effect of bromine substitution and basic structure on S(w) and K(ow). To estimate the infinite dilution activity coefficients (gamma(i)(w,infinity)) of the PBDEs in water from the S(w) data, enthalpies of fusion and melting points for those compounds were measured with a differential scanning calorimeter. Henry's Law constants (H(w)) of the PBDEs were derived from the determined gamma(i)(w,infinity) and literature vapor pressure data. Some physicochemical characteristics of PBDEs were also suggested by comparing the present property data with that of polychlorinated dibenzo-p-dioxins, brominated phenols and brominated benzenes in past studies. Furthermore, in order to represent different phase equilibria including solubility and partition equilibrium for other brominated aromatic compounds using the UNIFAC model, a pair of UNIFAC group interaction parameters between the bromine and water group were determined from the S(w) and K(ow) data of PBDEs and brominated benzenes. The ability of the determined parameters to represent both properties of brominated aromatics was evaluated.  相似文献   

9.
Xin J  Liu X  Jiang L  Li M 《Chemosphere》2012,87(5):477-482
Three loamy-clay soil samples (LC1-3) with different properties were collected as the geosorbents to preliminarily investigate the sorption and desorption of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in single system and binary system with the presence of decabromodiphenyl ether (BDE-209), which can provide information in order to further understand the sorption mechanisms and evaluate the adsorption sites. A concentration of 10 μg L−1 BDE-209 suppressed the sorption of BDE-47, and the trend became more and more significant with the increase of BDE-47 equilibrium concentration, however, BDE-47 caused no competitive effect on BDE-209 sorption, which was related with the better accessibility of more hydrophobic molecules to adsorption sites. In the binary system, nonlinearity of the BDE-47 sorption isotherms for the three samples changed in different ways, which originated from the varied soil properties. Desorption hysteresis was observed in all cases, which was estimated due to irreversible surface adsorption between sorbent and sorbate. BDE-209 made desorption of BDE-47 more hysteretic from soil samples, which was estimated to be ascribed to the accelerated sorbent state transition and new sites creation caused by BDE-209 sorption.  相似文献   

10.
A rhizobox experiment was conducted to investigate degradation of decabromodiphenyl ether (BDE-209) in the rhizosphere of ryegrass and the influence of root colonization with an arbuscular mycorrhizal (AM) fungus. BDE-209 dissipation in soil varied with its proximity to the roots and was enhanced by AM inoculation. A negative correlation (P < 0.001, R2 = 0.66) was found between the residual BDE-209 concentration in soil and soil microbial biomass estimated as the total phospholipid fatty acids, suggesting a contribution of microbial degradation to BDE-209 dissipation. Twelve and twenty-four lower brominated PBDEs were detected in soil and plant samples, respectively, with a higher proportion of di- through hepta-BDE congeners in the plant tissues than in the soils, indicating the occurrence of BDE-209 debromination in the soil-plant system. AM inoculation increased the levels of lower brominated PBDEs in ryegrass. These results provide important information about the behavior of BDE-209 in the soil-plant system.  相似文献   

11.
Faeces from day 1-5 of orally administered 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in rat have been analysed for hydroxylated metabolites. Six hydroxylated tetrabrominated diphenyl ethers, as well as three hydroxylated tribrominated diphenyl ethers found, were structurally identified. They were 2'-hydroxy-2,4,4'-tribromodiphenyl ether, 3'-hydroxy-2,4,4'-tribromodiphenyl ether, 4'-hydroxy-2,2',4-tribromodiphenyl ether, 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether, 2'-hydroxy-2,3',4,4'-tetrabromodiphenyl ether, 3-hydroxy-2,2',4,4'-tetrabromodiphenyl ether, 5-hydroxy-2,2',4,4'-tetrabromodiphenyl ether, 4'-hydroxy-2,2',4,5'-tetrabromodiphenyl ether and 4-hydroxy-2,2',3,4'-tetrabromodiphenyl ether. The analysis was performed using gas chromatography-mass spectrometry (GC-MS). The identification of the hydroxylated polybrominated diphenyl ether (OH-PBDE) metabolites in the rat faeces was supported by similar relative retention times (RRTs) versus 2,2',3,4,4',5-hexabromodiphenyl ether (BDE-138) on two columns of different polarities compared to the authentic references. The identification of the OH-PBDE metabolites was also supported by full scan electron ionisation mass spectra. Two of the identified OH-PBDE metabolites have identical structures as natural products, which previously have been isolated from marine sponges and an ascidian.  相似文献   

12.
Based on previous findings in dietary studies with carp (Cyprinus carpio), we investigated the mechanism of 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) debromination to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) using liver and intestinal components. In vitro aerobic and anaerobic experiments tested the ability of carp intestinal microflora to debrominate BDE-99. No debromination of BDE-99 to BDE-47 was observed in microfloral samples; therefore, carp enzymatic pathways were assessed for debromination ability. After sixty-min incubation, intestine and liver microsomes exhibited 83+/-34% and 106+/-18% conversions, respectively, of BDE-99 to BDE-47; with no significant (p>0.05) difference between organ debromination capabilities. Microsomal incubations with BDE-99, enzyme cofactors and competing substrates assessed the potential mechanisms of debromination. The presence of NADPH in the microsomal assay did not significantly (p>0.05) affect BDE-99 debromination, which suggest that cytochrome P450 enzymes are not the main debrominating pathway for BDE-99. Co-incubation of BDE-99 spiked microsomes with reverse thyronine (rT3) significantly (p<0.05) decreased the debromination capacity of intestinal microsomes indicating the potential of catalytic mediation via thyroid hormone deiodinases. The significant findings of this study are that intestinal microflora are not responsible for BDE-99 debromination, however, it is an endogenous process which occurs with approximately equal activity in intestine and liver microsomes and it can be inhibited by rT3.  相似文献   

13.
Polybrominated diphenyl ethers (PBDEs) have been used extensively as brominated flame retardants (BFRs) in textiles, upholstery and electronics. They are ubiquitous contaminants in wildlife and humans. A low concentration of nonabrominated diphenyl ethers (nonaBDEs) is present in commercial DecaBDE and they are also abiotic and biotic debromination products of decabromodiphenyl ether (BDE-209). The objective of the present work was to develop methods for synthesis of the three nonaBDEs, 2,2',3,3',4,4',5,5',6-nonabromodiphenyl ether (BDE-206), 2,2',3,3',4,4',5,6,6'-nonabromodiphenyl ether (BDE-207) and 2,2',3,3',4,5,5',6,6'-nonabromodiphenyl ether (BDE-208), with the intention of making them available as authentic standards for analytical, toxicological and stability studies, as well as studies regarding physical-chemical properties. Two methods were developed, one based on perbromination of phenoxyanilines and the other via reductive debromination of BDE-209 by sodium borohydride followed by chromatographic separation of the three nonaBDE isomers formed. An additional nonabrominated compound, 4'-chloro-2,2',3,3',4,5,5',6,6'-nonabromodiphenyl ether (Cl-BDE-208), was also synthesized in the present work. Cl-BDE-208, prepared by the perbromination of 4-chlorodiphenyl ether, may be used as an internal standard in analysis of highly brominated diphenyl ethers. BDE-206, BDE-207, BDE-208 and Cl-BDE-208 were characterized by 1H NMR, 13C NMR, electron ionization mass spectra and by their melting points. The structures of all three nonaBDEs have been characterized previously by X-ray crystallography.  相似文献   

14.
Smeds A  Saukko P 《Chemosphere》2003,53(9):1123-1130
Brominated flame retardants and phenolic compounds, of which several have been shown to exhibit endocrine disrupting effects, were screened in extracts of Finnish human adipose tissue samples. The samples were collected during autopsy from 39 subjects, of which 23 were males and 16 females. The samples were homogenised and extracted, and then cleaned-up by preparative gel permeation chromatography. The phenolic compounds were determined in silylated extracts. A total of 21 individual compounds were analysed in the extracts by gas chromatography-mass spectrometry (HRGC-LRMS) in the selected ion monitoring mode. The most commonly occurring compounds were 4-octylphenol diethoxylate, 4,4'-dihydroxybiphenyl, and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), but also some other alkylphenols, pentabromophenol, and 2,2',4,4',5-penta- and 2,2',4,4',5,5'-hexabromodiphenyl ether could be detected in 1-6 samples. The concentrations were ranging from trace amounts to 71 ng/g of lipid weight. The mean concentration of BDE-47 was 1.20 ng/g lipids, however, in 15 of the samples the concentration was below the detection limit. Compared to other European studies the average concentration of BDE-47 obtained in this study is at the lower end of the reported concentrations.  相似文献   

15.
Concentrations of two types of brominated flame-retardants (BFRs); polybrominated diphenyl ethers (PBDEs) and polybrominated biphenyls (PBBs) were determined in a single age class of lake trout (Salvelinus namaycush) collected from the Laurentian Great Lakes in 1997. Mean concentrations of total PBDE were highest in samples from Lake Ontario at 95+/-22 ng/g wet weight (ww) or 434+/-100 ng/g lipid weight (lw) while the lowest concentrations were observed in Lake Erie lake trout (27+/-8.6 ng/g ww, 117+/-37 ng/g lw). In all samples, the predominant PBDE congeners were 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), and 2,2',4,4', 6-pentabromodiphenyl ether (BDE-100), which are the primary components of the commonly used penta-BDE formulation flame retardant. Lake trout collected from Lake Huron had the highest concentrations of PBBs (3.1+/-1.7 ng/g ww, 15+/-8.5 ng/g lw), while the lowest levels were detected in fish from Lake Superior (0.25+/-0.13 ng/g ww, 1.7+/-0.89 ng/g lw). In all lake trout samples, 2,2',4,4',5,5'-hexabromobiphenyl (BB-153), a major constituent of the flame-retardant FireMaster BP-6, was the predominant PBB congener.  相似文献   

16.
The mass transport budgets of 1,1,1-trichloro-2,2-bis(chlorophenyl)ethane (p,p′-DDT) and decabromodiphenyl ether (BDE-209) in the Pearl River Delta, South China were calculated based on previously collected data. Residual p,p′-DDT, mostly related to historical use, has largely settled into soil (780,000 kg), while the soil BDE-209 inventory (44,000 kg) is considerably smaller. Conversely, large amounts of BDE-209 currently used in numerous commercial products have resulted in a much higher atmospheric depositional flux of BDE-209 (28,100 kg/yr) relative to p,p′-DDT (310 kg/yr). The soil inventory of p,p′-DDT is predicted to decrease to half of its current value after 22 years, and the percent area containing soil p,p′-DDT at levels exceeding the effects range-medium (27 ng/g) will decrease from 40% to 20%. Finally, soil BDE-209 inventory will reach an equilibrium value of 940 tons in ∼60 years, when BDE-209 levels in 50% of soil will be above an equivalent risk guideline value (125 ng/g).  相似文献   

17.
Indoor dust samples were collected from 40 homes in Kocaeli, Turkey and were analyzed simultaneously for 14 polybrominated diphenyl ethers (PBDEs) and 16 poly aromatic hydrocarbons (PAHs) isomers. The total concentrations of PBDEs (Σ14PBDEs) ranged from 29.32 to 4790 ng g?1, with a median of 316.1 ng g?1, while the total indoor dust concentrations of 16 PAHs (Σ16PAHs) extending over three to four orders of magnitude ranged from 85.91 to 40,359 ng g?1 with a median value of 2489 ng g?1. Although deca-PBDE products (BDE-209) were the principal source of PBDEs contamination in the homes (median, 138.3 ng g?1), the correlation in the homes was indicative of similar sources for both the commercial penta and deca-PBDE formulas. The PAHs diagnostic ratios indicated that the main sources of PAHs measured in the indoor samples could be coal/biomass combustion, smoking, and cooking emissions. For children and adults, the contributions to ∑14PBDEs exposure were approximately 93 and 25 % for the ingestion of indoor dust, and 7 and 75 % for dermal contact. Exposure to ∑16PAHs through dermal contact was the dominant route for both children (90.6 %) and adults (99.7 %). For both groups, exposure by way of inhalation of indoor dust contaminated with PBDEs and PAHs was negligible. The hazard index (HI) values for BDE-47, BDE-99, BDE-153, and BDE-209 were lower than the safe limit of 1, and this result suggested that none of the population groups would be likely to experience potential health risk due to exposure to PBDEs from indoor dust in the study area. Considering only ingestion + dermal contact, the carcinogenic risk levels of both B2 PAHs and BDE-209 for adults were 6.2 × 10?5 in the US EPA safe limit range while those for children were 5.6 × 10?4 and slightly higher than the US EPA safe limit range (1 × 10?6 and 1 × 10?4). Certain precautions should be considered for children.  相似文献   

18.
Decabromodiphenyl ether (BDE-209) is a brominated flame retardant and a priority contaminant. Currently, little information is available about its significance in the environment, specifically about its susceptibility to aerobic biotransformation at low temperature. In this work, five phylogenetically diverse BDE-209-degrading bacterial strains were isolated from river sediments of northern China. These strains were distributed among four different genera—Acinetobacter, Pseudomonas, Bacillus and Staphylococcus. All five isolates were capable of growing on BDE-209, among which two isolates show better growth. By detailed morphological, physiological, and biochemical characteristics and 16S rDNA sequence analysis, the two strains were identified and named as Staphylococcus haemolyticus LY1 and Bacillus pumilus LY2. The two bacteria can grow in mineral salt medium containing BDE-209 substrate across the temperatures ranging from 2.5 to 35 °C, with an optimum temperature of 25 °C which could be considered as psychrotrophs accordingly. The degradation experiment showed that more than 70.6 and 85.5 % of 0.5 mg/L BDE-209 were degraded and the highest mineralization efficiencies of 29.8 and 39.2 % were achieved for 0.5 mg/L BDE-209 by S. haemolyticus LY1 and B. pumilus LY2, respectively. To the best of our knowledge, this is the first demonstration for the biodegradation of BDE-209 by two psychrotrophic bacteria isolated from environment.  相似文献   

19.
The present study shows the occurrence of 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether (BDE-209) in microbial biofilms of Pyrenean and Tatra high mountain lakes despite its low vapor pressure and high hydrophobicity. Aerosol air transport is therefore a feasible mechanism for BDE-209 accumulation in sites up to 2688 m above sea level. This compound and other PBDEs exhibit altitudinally-dependent distribution involving higher concentrations with increasing mountain lake elevation. However, the apparently very high enthalpies of the concentration gradients observed, including BDE-209, suggest that bacterial anaerobic debromination also plays a significant role in the resulting altitudinal distributions. This microbial mechanism explains the relative abundances of PBDEs and their within lake differences between rocky and sediment microbial biofilms, thereby showing that the altitudinal pattern observed is not purely due to water temperature control on bacterial activity but also to changes in the availability of anaerobic microenvironments which increase with increasing lake productivity at lower altitudes.  相似文献   

20.
Harrad S  Abdallah MA 《Chemosphere》2011,82(9):1240-1245
Polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), and tetrabromobiphenol-A (TBBP-A) were measured in a preliminary study of dust from passenger cabins and trunks of 14 UK cars. Concentrations in cabin dust of HBCDs, TBBP-A, and BDEs 47, 85, 99, 100, 153, 154, 183, 196, 197, 202, 203, 206, 207, 208, and 209 exceeded significantly (p < 0.05) those in trunk dust. Sampling cabin dust thus appears to provide a more accurate indicator of human exposure via car dust ingestion than trunk dust. Elevated cabin concentrations are consistent with greater in-cabin use of BFRs. In five cars, while no significant differences (p > 0.05) in concentrations of HBCDs and most PBDEs were detected in dust sampled from four different seating areas; concentrations of TBBP-A and of PBDEs 154, 206, 207, 208, and 209 were significantly higher (p < 0.05) in dust sampled in the front seats. Possible photodebromination of BDE-209 was indicated by significantly higher (p < 0.05) concentrations of BDE-202 in cabin dust. In-vehicle exposure via dust ingestion to PBDEs, HBCDs and TBBP-A exceeded that via inhalation. Comparison with overall exposure via diet, dust ingestion, and inhalation shows while in-vehicle exposure is a minor contributor to overall exposure to BDE-99, ΣHBCDs, and TBBP-A, it is a significant pathway for BDE-209.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号