首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although riparian buffers are an important aspect of forest management in the boreal forest of Canada, little is known about the habitat conditions within buffers, due in part to complex edge effects in response to both the upland clearcut and the stream. We investigated microclimatic conditions and bryophyte growth and vitality in seven locations between the stream edge and 60 m into the upland undisturbed conifer forests and at the clearcut sites with riparian buffer 30 km northwest of Thunder Bay, Ontario, Canada. We hypothesized that the growth and vitality of a pleurocarpous moss, Hylocomium splendens, and an acrocarpous moss, Polytrichum commune, would be directly related to the microclimatic gradients detected. We further hypothesized that sensitivity of the bryophytes to environmental factors will vary depending on their life form type, i.e., pleurocarpous moss will respond differently than the acrocarpous moss. Both bryophyte species were transplanted in pots and placed at 10-m intervals along 60-m transects perpendicular to the stream across the buffer and undisturbed sites. Bryophyte growth, cover, and vitality, as well as microclimatic parameters and plant cover, were measured over the summer in 2003. The riparian buffers were simultaneously affected by microclimatic gradients extending from both the clearcut edge and the riparian-upland ecotonal edge. Both bryophyte species responded to changes in the microclimatic conditions. However, vapor pressure deficit (VPD) was the most important factor influencing the growth of H. splendens, whereas for P. commune growth soil moisture was most important. Our study confirms earlier findings that interior forest bryophytes such as H. splendens can be used as indicators to monitor edge effects and biodiversity recovery following forest harvesting. We demonstrate that growth and vitality of these bryophytes reflect the prevailing near-ground microclimatic conditions at the forest edges. Abundance estimates of such bryophytes can be used to determine the depth of edge effects across both ecotonal edges (e.g., riparian-upland forest edge) and anthropogenically created edges (e.g., clearcut edge). Forest management practices must consider depth of edge in determining the appropriate width of riparian buffers that would be necessary to sustain biodiversity and associated values at the land/water interface.  相似文献   

2.
Allochthonous subsidies of organic material can profoundly influence population and community structure; however, the role of consumers in the processing of these inputs is less understood but may be closely linked to community and ecosystem function. Inputs of drift macrophytes subsidize sandy beach communities and food webs in many regions. We estimated feeding rates of dominant sandy beach consumers, the talitrid amphipods (Megalorchestia corniculata, in southern California, USA, and Talitrus saltator, in southern Galicia, Spain), and their impacts on drift macrophyte subsidies in field and laboratory experiments. Feeding rate varied with macrophyte type and, for T. saltator, air temperature. Size-specific feeding rates of talitrid amphipods were greatest on brown macroalgae (Macrocystis, Egregia, Saccorhiza and Fucus). Rates for large individuals of both species ranged from ∼40 mg wet wt individual−112 h−1 on brown macroalgae to negligible feeding by M. corniculata on a vascular plant (surfgrass). Amphipod growth rates were also greatest on Macrocystis and lowest on surfgrass, Phyllospadix. For a Californian beach with substantial inputs of macrophyte wrack (>70 kg wet wt m−1 month−1 in summer), we estimated that the population of talitrid amphipods could process an average of 55% of the palatable Macrocystis input. Our results indicate that talitrid amphipod populations can have a significant impact on drift macrophyte processing and fate and that the quantity and composition of drift macrophytes could, in turn, limit populations of beach consumers.  相似文献   

3.
● Emotional responses to visibility-reducing haze was assessed in a controlled lab. ● Valence and arousal have non-linear responses to pollution-caused low visibility. ● Repetitive exposure aggravates negative emotions in severely polluted conditions. ● Emotional bias to pollution relates with gender, decisiveness, attitude to clean air. A growing number of studies have shown that impaired visibility caused by particulate matter pollution influences emotional wellbeing. However, evidence is still scant on how this effect varies across individuals and over repetitive visual exposure in a controlled environment. Herein, we designed a lab-based experiment (41 subjects, 6 blocks) where participants were presented with real-scene images of 12 different PM2.5 concentrations in each block. Emotional valence (negative to positive) and arousal (calm to excited) were self-rated by participants per image, and the response time for each rating was recorded. We find that as pollution level increases from 10 to 260 µg/m3, valence scores decrease, whereas arousal scores decline first and then bounce back, following a U-shaped trend. When air quality deteriorates, individual variability decreases in hedonic valence but increases in arousal. Over blocks, repetitive visual exposure increases valence at a moderate pollution level but aggravates negative emotions in severely polluted conditions (> 150 µg/m3). Finally, we find females, people who are slow in making responses, and those who are highly aroused by clean air tend to express more negative responses (so-called negativity bias) to ambient pollution than their respective counterparts. These results provide deeper insights into individual-level emotional responses to dirty air in a controlled environment. Although the findings in our pilot study should only be directly applied to the conditions assessed herein, we introduce a framework that can be replicated in different regions to assess the impact of air pollution on local emotional wellbeing.  相似文献   

4.
In situ persistence of coastal marsh habitat as sea level rises depends on whether macrophytes induce compensatory accretion of the marsh surface. Experimental planters in two North Carolina marshes served to expose two dominant macrophyte species to six different elevations spanning 0.75 m (inundation durations 0.4–99 %). Spartina alterniflora and Juncus roemerianus exhibited similar responses—with production in planters suggesting initial increases and then demonstrating subsequent steep declines with increasing inundation, conforming to a segment of the ecophysiological parabola. Projecting inundation levels experienced by macrophytes in the planters onto adjacent marsh platforms revealed that neither species occupied elevations associated with increasing production. Declining macrophyte production with rising seas reduces both bioaccumulation of roots below-ground and baffle-induced sedimentation above-ground. By occupying only descending portions of the parabola, macrophytes in central North Carolina marshes are responding to rising water levels by progressive declines in production, ultimately leading to marsh drowning.  相似文献   

5.
Predators sometimes provide biotic resistance against invasions by nonnative prey. Understanding and predicting the strength of biotic resistance remains a key challenge in invasion biology. A predator's functional response to nonnative prey may predict whether a predator can provide biotic resistance against nonnative prey at different prey densities. Surprisingly, functional responses have not been used to make quantitative predictions about biotic resistance. We parameterized the functional response of signal crayfish (Pacifastacus leniusculus) to invasive New Zealand mud snails (Potamopyrgus antipodarum; NZMS) and used this functional response and a simple model of NZMS population growth to predict the probability of biotic resistance at different predator and prey densities. Signal crayfish were effective predators of NZMS, consuming more than 900 NZMS per predator in a 12-h period, and Bayesian model fitting indicated their consumption rate followed a type 3 functional response to NZMS density. Based on this functional response and associated parameter uncertainty, we predict that NZMS will be able to invade new systems at low crayfish densities (< 0.2 crayfish/m2) regardless of NZMS density. At intermediate to high crayfish densities (> 0.2 crayfish/m2), we predict that low densities of NZMS will be able to establish in new communities; however, once NZMS reach a threshold density of -2000 NZMS/m2, predation by crayfish will drive negative NZMS population growth. Further, at very high densities, NZMS overwhelm predation by crayfish and invade. Thus, interacting thresholds of propagule pressure and predator densities define the probability of biotic resistance. Quantifying the shape and uncertainty of predator functional responses to nonnative prey may help predict the outcomes of invasions.  相似文献   

6.
Doucett RR  Marks JC  Blinn DW  Caron M  Hungate BA 《Ecology》2007,88(6):1587-1592
Understanding river food webs requires distinguishing energy derived from primary production in the river itself (autochthonous) from that produced externally (allochthonous), yet there are no universally applicable and reliable techniques for doing so. We compared the natural abundance stable isotope ratios of hydrogen (deltaD) of allochthonous and autochthonous energy sources in four different aquatic ecosystems. We found that autochthonous organic matter is uniformly far more depleted in deuterium (lower deltaD values) than allochthonous: an average difference of approximately 100% per hundred. We also found that organisms at higher trophic levels, including both aquatic invertebrates and fish, have deltaD values intermediate between aquatic algae and terrestrial plants. The consistent differences between leaves and algae in deltaD among these four watersheds, along with the intermediate values in higher trophic levels, indicate that natural abundance hydrogen isotope signatures are a powerful tool for partitioning energy flow in aquatic ecosystems.  相似文献   

7.
Pettit NE  Naiman RJ 《Ecology》2007,88(8):2094-2104
Piles of large wood (LW) deposited by major floods in river corridors can interact with naturally occurring wildfires from uplands to impact the regeneration of riparian vegetation. This study examines the spatial and short-term temporal response of riparian vegetation and soil nutrients to fire along the Sabie River, South Africa, with special emphasis on the effects of burned LW piles. At the study site there were 112 species of plants recorded with 28% of species restricted to the burned plots. As expected, vegetation cover was significantly lower in burned plots as compared with the unburned plots 12 months postfire. There was a significant influence of LW on species richness with fewer species recorded in the LW plots. For both fire and LW treatments, plant cover showed a significant change over three years. After an initial increase from 12 to 24 months (postfire) there was a decline in plant cover after 36 months. Species community composition was distinctly different between burned and unburned plots 12 months postfire, and the presence of LW affected species composition for burned plots but not for unburned ones. Time series ordination of LW plots highlighted the changes in species composition over the three years of sampling. Of trees with accumulations of LW within 5 m of their base, 48% had been killed by fire as compared to only 4% with no LW accumulations in close proximity. Soil-available P was significantly higher in the burned plots and even higher with burned LW while there were no effects on soil total N. There was also a significant positive trend between available P in soils and plant vegetation cover. Soil-exchangeable K was also significantly higher and total C significantly lower in the burned and LW plots. Burned plots also had significantly higher soil electrical conductivity (EC) and soil pH. The patchy nature of the studied fire, whose complexity is exacerbated by the distribution of flood deposited LW, acted to create a mosaic of alternate successional states as the riparian community recovers from flooding and the subsequent fire. We suspect that the resultant heterogeneity will increase ecosystem resilience by providing flexibility in the form of more options for a system response to subsequent disturbances.  相似文献   

8.
Hoekman D  Dreyer J  Jackson RD  Townsend PA  Gratton C 《Ecology》2011,92(11):2063-2072
Aquatic insects are a common and important subsidy to terrestrial systems, yet little is known about how these inputs affect terrestrial food webs, especially around lakes. Myvatn, a lake in northern Iceland, has extraordinary midge (Chironomidae) emergences that result in large inputs of biomass and nutrients to terrestrial arthropod communities. We simulated this lake-to-land resource pulse by collecting midges from Myvatn and spreading their dried carcasses on 1-m2 plots at a nearby site that receives very little midge deposition. We hypothesized a positive bottom-up response of detritivores that would be transmitted to their predators and would persist into the following year. We sampled the arthropod community once per month for two consecutive summers. Midge addition resulted in significantly different arthropod communities and increased densities of some taxa in both years. Detritivores, specifically Diptera larvae, Collembola, and Acari increased in midge-addition plots, and so did some predators and parasitoids. Arthropod densities were still elevated a year after midge addition, and two years of midge addition further increased the density of higher-order consumers (e.g., Coleoptera and Hymenoptera). Midge addition increased arthropod biomass by 68% after one year and 108% after two years. By manipulating the nutrient pulse delivered by midges we were able to elucidate food web consequences of midge deposition and spatial and temporal dynamics that are difficult to determine based on comparative approaches alone. Resources cross ecosystem boundaries and are assimilated over time because of life-history strategies that connect aquatic and terrestrial food webs and these systems cannot be fully understood in isolation from each other.  相似文献   

9.
河流滨岸带作为一种典型的开放系统,在受到外界干扰的条件下极易被外来植物所入侵并受到严重影响。以上海青浦区为例,通过对河流滨岸带生态系统入侵植物分布及现状调查,以及对两种入侵植物:白花三叶草(Trifolium repens)和加拿大一枝黄花(Solidago canadensis)群落的物种多样性及其土壤特性的实证研究,探讨外来植物入侵对河流滨岸带生态系统造成的影响。结果表明:目前该地区河流滨岸带外来入侵植物共有14科24种,其科、种数分别占到该生态系统所有植物的48.3%与26.1%。入侵植物白花三叶草与加拿大一枝黄花在春、秋两季均显著降低了河流滨岸带植物群落的物种多样性。此外,两种人侵植物也对当地河流滨岸及土壤特性造成了不同程度的影响,其中对土壤含水量、pH值的影响最为显著。该研究填补了平原河网地区河流滨岸带生态系统外来植物入侵研究的空白,有助于今后开展对该生态系统的评价、恢复及管理工作。  相似文献   

10.
Martin TE 《Ecology》2007,88(2):367-380
The consequences of climate change for ecosystem structure and function remain largely unknown. Here, I examine the ability of climate variation to explain long-term changes in bird and plant populations, as well as trophic interactions in a high-elevation riparian system in central Arizona, USA, based on 20 years of study. Abundances of dominant deciduous trees have declined dramatically over the 20 years, correlated with a decline in overwinter snowfall. Snowfall can affect overwinter presence of elk, whose browsing can significantly impact deciduous tree abundance. Thus, climate may affect the plant community indirectly through effects on herbivores, but may also act directly by influencing water availability for plants. Seven species of birds were found to initiate earlier breeding associated with an increase in spring temperature across years. The advance in breeding time did not affect starvation of young or clutch size. Earlier breeding also did not increase the length of the breeding season for single-brooded species, but did for multi-brooded species. Yet, none of these phenology-related changes was associated with bird population trends. Climate had much larger consequences for these seven bird species by affecting trophic levels below (plants) and above (predators) the birds. In particular, the climate-related declines in deciduous vegetation led to decreased abundance of preferred bird habitat and increased nest predation rates. In addition, summer precipitation declined over time, and drier summers also were further associated with greater nest predation in all species. The net result was local extinction and severe population declines in some previously common bird species, whereas one species increased strongly in abundance, and two species did not show clear population changes. These data indicate that climate can alter ecosystem structure and function through complex pathways that include direct and indirect effects on abundances and interactions of multiple trophic components.  相似文献   

11.
Dying leaves ofSpartina alterniflora Loisel (hereafterSpartina) do not undergo abscission and consequently are at least partially degraded while remaining attached to the shoot, i.e., under conditions which may be very different from those occurring in litterbags used to measure decomposition ofSpartina at the sediment surface. Attached living and dead leaves in high-marsh areas are subject to grazing by the abundant gastropodLittorina irrorata Say (hereafterLittorina), a salt marsh periwinkle. In 1986, nitrogen assimilation from living and standing-deadSpartina byLittorina was examined in Sapelo Island (Georgia, USA) salt marshes by labelling plants with the stable nitrogen isotope15N and measuring the transfer into grazing snails in the field. The initial label of ca 8% total plant nitrogen declined to ca 1% over 5 mo, perhaps due to label dilution by less enriched nitrogen taken up and translocated from below- to above-groundSpartina biomass. Snails incorporatedSpartina-derived nitrogen into tissues at rates equal to 10 to 20% of total snail nitrogen 30-d–1 in summer and fall, and 2 to 5% 30-d–1 in winter. In the absence of measurable growth, these high nitrogen incorporation rates may indicate a large reproductive effort, or substantial turnover of somatic tissue nitrogen. The annual total assimilation ofSpartina-derived nitrogen was equal to theLittorina-nitrogen biomass. Assimilation of nitrogen in the presence of livingSpartina material (dead material removed) was reduced substantially below that in the presence of intact plants (living and dead material present).Littorina populations at abundances found in Georgia would assimilate ca 3.4% of above-groundSpartina-nitrogen production annually in high-marsh, short-Spartina areas. Based on preliminary estimates of nitrogen assimilation efficiency, 13.2 to 27.2% of short-Spartina production could be ingested annually by Georgia populations ofLittorina. Most of this ingestion would be concentrated in the summer and early fall, when monthly ingestion could equal 100% of deadSpartina biomass. The impact of grazing byLittorina onSpartina decomposition may be greatest on these early-senescing leaves. Grazing may have little impact on the early stages of decomposition of the bulk of the shoots that senesce later in fall, but may be important in the later stages of decomposition of dead shoots that persist through winter until the following spring and summer.  相似文献   

12.
Brandt M  Witman JD  Chiriboga AI 《Ecology》2012,93(4):868-878
Theory and experiments indicate that changes in consumer diversity affect benthic community structure and ecosystem functioning. Although the effects of consumer diversity have been tested in the laboratory and the field, little is known about effects of consumer diversity in the subtidal zone, one of the largest marine habitats. We investigated the grazing effects of sea urchins on algal abundance and benthic community structure in a natural subtidal habitat of the Galápagos Islands. Three species of urchins (Eucidaris, Lytechinus, and Tripneustes) were manipulated in inclusion cages following a replacement design with three levels of species richness (one, two, and three species) with all possible two-species urchin combinations. Identity was the main factor accounting for changes in the percentage of substrate grazed and benthic community structure. Two out of the three two-species assemblages grazed more than expected, suggesting a richness effect, but analyses revealed that this increased grazing was due to a sampling effect of the largest and commercially valued urchin species, Tripneustes. Benthic community structure in treatments with Eucidaris, Lytechinus, and Tripneustes alone was significantly different at the end of the experiment, suggesting that resource use differentiation occurred. Communities in Tripneustes enclosures were characterized by abundant crustose coralline algae and grazed substrate, while those without it contained abundant green foliose algae (Ulva sp.). An unexpected emergent property of the system was that the most species-rich urchin assemblage underyielded, grazing less than any other assemblage with Tripneustes, effectively reversing its dominant influence observed in the two-species treatments. While further experiments are needed to discern the mechanisms of underyielding, it may be related to changing interspecific interactions as richness increases from two to three species or to density-dependent Tripneustes grazing. This study highlights the general importance of evaluating consumer richness effects across the entire range of species richness considered, as the performance of the most species-rich consumer assemblage could not be predicted by manipulations of intermediate levels of consumer species richness.  相似文献   

13.
Climate change is likely to impact terrestrial and aquatic ecosystems via numerous physical and biological mechanisms. This study outlines a framework for projecting potential impacts of climate change on lakes using linked environmental models. Impacts of climate drivers on catchment hydrology and thermal balance in Onondaga Lake (New York State) are simulated using mechanistic models HSPF and UFILS4. Outputs from these models are fed into a lake ecosystem model, developed in AQUATOX. Watershed simulations project increases in the magnitude of peak flows and consequent increases in catchment nutrient export as the magnitude of extreme precipitation events increases. This occurs concurrently with a decrease in annual stream discharge as a result of increased evapotranspiration. Simulated lake water temperatures increase by as much as 5 °C during the 2040-2069 time period, accompanied by a prolonging of the duration of summer stratification. Projected changes include shifts in the timing of nutrient cycling between lake sediments and water column. Plankton taxa projected to thrive under climate change include green algae and Bosmina longirostris. Responses for species at higher trophic levels are mixed. Benthic macroinvertebrates may either prosper (zebra mussels) or decline (chironomids), while fish (e.g., gizzard shad) exhibit high seasonal variability without any clear trend.  相似文献   

14.
Research into the effects of ocean acidification (OA) on marine organisms has greatly increased during the past decade, as realization of the potential dramatic impacts has grown. Studies have revealed the multifarious responses of organisms to OA conditions, indicating a high level of intra- and interspecific variation in species’ ability to accommodate these alterations. If we are to provide policy makers with sound, scientific input regarding the expected consequences of OA, we need a broader understanding of these predicted changes. As a group of 20 multi-disciplinary postgraduate students from around the globe, with a study focus on OA, we are a strong representation of ‘next generation’ scientists in this field. In this unique cumulative paper, we review knowledge gaps in terms of assessing the biological impacts of OA, outlining directions for future research.  相似文献   

15.
Historical patterns of water source use by trees inferred from long-term records of tree-ring stable isotopic content could assist in evaluating the impact of human alterations to natural stream flow regimes (e.g., water impoundments, stream flow diversions, and groundwater extraction). Our objective was to assess the utility of the hydrogen stable isotopic composition (SD) of tree rings as an index of historical water source use by riparian trees. We investigated the influence of site conditions that varied in climate and hydrology on the relationship between deltaD of Populus xylem water (deltaD(xyl)) and tree-ring cellulose (deltaD(cell)). deltaD(xyl) and deltaD(cell) were strongly correlated across sites (r2 = 0.89). However, the slope of this relationship was less than 1, indicating that factors other than deltaD(xyl) influenced deltaD(cell). Inverse modeling with an isotopic fractionation model for tree-ring cellulose suggested that the lack of one-to-one correspondence between deltaD(xyl) and deltaD(cell) was due to the influence of the hydrogen isotopic content of the atmospheric water vapor (deltaD(atm)). Empirically measured values of deltaD(cell) were typically within the seasonal range of deltaD(cell) predicted from the fractionation model. Sensitivity analyses showed that changes in deltaD(xyl) generally had a greater influence at high-elevation montane sites, whereas deltaD(xyl) and deltaD(atm) had about equal influence on deltaD(cell) at low-elevation desert sites. The intrasite relationship between deltaD(cell) and deltaD(xyl) among individual trees was poor, perhaps because of the within-site spatial variation in hydrologic conditions and associated tree physiological responses. Our study suggests that historical variation in deltaD(cell) of Populus provides information on historical variation in both time-integrated water source use and atmospheric conditions; and that the influence of atmospheric conditions is not consistent over sites with large differences in temperature and humidity. Reconstruction of xylem water sources of Populus in riparian ecosystems from deltaD(cell) will be more direct at higher elevation mountain sites than at low-elevation desert sites.  相似文献   

16.
Monitoring responses by birds to restoration of riparian vegetation is relatively cost-effective, but in most assessments species-specific abundances, not demography, are monitored. Data on birds collected during the nonbreeding season are particularly lacking. We captured birds in mist nets and resighted banded birds to estimate species richness and diversity, abundance, demographic indexes, and site-level persistence of permanent-resident and overwintering migrants in remnant and restored riparian sites in California. Species richness in riparian remnants was significantly higher than in restored sites because abundances of uncommon permanent residents were greater in remnants. Species richness of overwintering migrants did not differ between remnants and restored sites. Responses among overwintering migrants (but not permanent residents) to remnant and restored riparian sites differed. Capture rates were higher in remnant or restored riparian sites for 7 of 10 overwintering migratory species. For Lincoln's Sparrows (Melospiza lincolnii) and White-crowned Sparrows (Zonotrichia leucophrys) proportions of older birds were significantly higher in remnants, even though capture rates of these species were higher in restored sites. Overwinter persistence of 4 migrant species was significantly higher in remnant than in restored sites. A higher proportion of Hermit Thrushes (Catharus guttatus, 56.3%), older Fox Sparrows (Passerella iliaca, 57.1%), Lincoln's Sparrows (59.7%), and White-crowned Sparrows (67.8%) persisted in remnants than restored sites. Our results suggest restored riparian sites provide habitat for a wide variety of species in comparable abundances and diversity as occurs in remnant riparian sites. Our demographic and persistence data showed that remnants supported some species and age classes to a greater extent than restored sites.  相似文献   

17.
Assisted migration is a controversial conservation measure that aims to protect threatened species by moving part of their population outside its natural range. Although this could save species from extinction, it also introduces a range of risks. The magnitude of the threat to recipient ecosystems has not been investigated quantitatively, despite being the most common criticism leveled at the action. We used an ensemble modeling framework to estimate the risks of assisted migration to existing species within ecosystems. With this approach, we calculated the consequences of an assisted migration project across a very large combination of translocated species and recipient ecosystems. We predicted the probability of a successful assisted migration and the number of local extinctions would result from establishment of the translocated species. Using an ensemble of simulated 15-species recipient ecosystems, we estimated that translocated species will successfully establish in 83% of cases if introduced to stable, high-quality habitats. However, assisted migration projects were estimated to cause an average of 0.6 extinctions and 5% of successful translocations triggered 4 or more local extinctions. Quantifying the impacts to species within recipient ecosystems is critical to help managers weigh the benefits and negative consequences of assisted migration.  相似文献   

18.
Weather anomalies have a range of adverse contemporaneous impacts on health and socio-economic outcomes. This paper tests if temperature anomalies around the time of birth can have long-term impacts on individuals' economic productivity. Using unique data sets on historical weather and earnings, place and date of birth of all 1.5 million formal employees in Ecuador, we find that individuals who have experienced in-utero temperatures that are 1 °C above average are less educated and earn about 0.7% less as adults. Results are robust to alternative specifications and falsification tests and suggest that warming may have already caused adverse long-term economic impacts.  相似文献   

19.
Hulvey KB  Zavaleta ES 《Ecology》2012,93(2):378-388
The effects of declining plant biodiversity on ecosystem processes are well studied, with most investigations examining the role of species richness declines rather than declines of species abundance. Using grassland mesocosms, we examined how the abundance of a native, resident species, Hemizonia congesta (hayfield tarweed), affected exotic Centaurea solstitialis (yellow starthistle) invasion. We found that progressive H. congesta abundance declines had threshold effects on invasion resistance, with initial declines resulting in minor increases in invasion and subsequent declines leading to accelerating increases in invader performance. Reduced invasion resistance was explained by increased resource availability as H. congesta declined. We also found evidence that resident abundance might indirectly affect invasion by mediating invader impact on resident competitors; C. solstitialis disproportionately reduced H. congesta biomass in low-abundance rather than high-abundance populations. H. congesta's direct and indirect effects on invasion resistance illustrate that an individual species' declining abundance can have accelerating, deleterious effects on ecosystem functions of conservation value.  相似文献   

20.
The natural flow regimes of rivers worldwide have been heavily altered through anthropogenic activities, and dams in particular have a pervasive effect on riverine ecosystems. Flow-regulation effects of dams negatively affect species diversity and abundance of a variety of aquatic animals, including invertebrates and fishes. However, the effects on semiaquatic animals are relatively unknown. We conducted anuran calling surveys at 42 study locations along the Broad and Pacolet Rivers in South Carolina to address the potential effects of flow regulation by damming on anuran occupancy and abundance. We estimated occupancy and abundance with Program PRESENCE. Models incorporated distance upstream and downstream from the nearest dam as covariates and urbanization pressure as an alternative stressor. Distance from dam was associated with occupancy of 2 of the 9 anuran species in our analyses and with abundance of 6 species. In all cases, distance downstream from nearest dam was a better predictor of occupancy and abundance than distance upstream from nearest dam. For all but one species, distance downstream from nearest dam was positively correlated with both occupancy and abundance. Reduced occupancy and abundance of anurans likely resulted from downstream alterations in flow regime associated with damming, which can lead to reduced area of riparian wetlands that serve as anuran breeding habitat. Our results showed that damming has a strong negative effect on multiple anuran species across large spatial extents and suggest that flow regulation can affect semiaquatic animals occupying riparian zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号