首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intermittent exposure of tomato plants (cv. Pusa Ruby) to SO(2) at 286 microg m(-3) (3 h every heavy third day for 75 days) induced slight chlorosis of leaves. At 571 microg m(-3), considerable chlorosis with browning developed on the foliage. These symptoms were more pronounced and appeared earlier on SO(2)-exposed plants infected with Meloidogyne incognita race 1 (Mi), especially in post- and concomitant-inoculation exposures. Mi and/or SO(2) significantly reduced different parameters of plant growth. Synergistic (positive) interactions between SO(2) and Mi occurred in concomitant- and post-inoculation exposures at 286 and 571 microg m(-3), respectively. In other treatments, an antagonistic (negative) interaction was observed. However, in a few cases, additive effects of SO(2) and Mi were also recorded. Intensity of root-knot (galling) was enhanced at both concentrations of SO(2), while reproduction (egg mass production) of Mi was enhanced in concomitant-inoculation exposures at 286 microg m(-3) and inhibited at 571 micro m(-3). Exposure to SO(2) and/or Mi decreased the number and size of stomata but increased the number and length of trichomes on both the leaf surfaces. Stomatal aperture was significantly wider in the plants exposed to 571 microg SO(2) m(-3) alone and in pre-, post-, and concomitant-inoculation exposures at 286 or 571 microg m(-3). Stomatal aperture was directly related to foliar injury and reductions in growth, yield, and leaf pigments.  相似文献   

2.
Time-dependent changes in enzymatic and non-enzymatic antioxidants, and lipid peroxidation were investigated in roots of rice (Oryza sativa) grown hydroponically with Cd, with or without pretreatment of salicylic acid (SA). Exposure to 50 microM Cd significantly decreased root growth, and activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), but increased the concentrations of H(2)O(2), malondialdehyde (MDA), ascorbic acid (AsA), glutathione (GSH) and non-protein thiols (NPT). However, pretreatment with 10 microM SA enhanced the activities of antioxidant enzymes and the concentrations of non-enzymatic antioxidants, but lowered the concentrations of H(2)O(2) and MDA in the Cd-stressed rice compared with the Cd treatment alone. Pretreatment with SA alleviated the Cd-induced inhibition of root growth. The results showed that pretreatment with SA enhanced the antioxidant defense activities in Cd-stressed rice, thus alleviating Cd-induced oxidative damage and enhancing Cd tolerance. The possible mechanism of SA-induced H(2)O(2) signaling in mediating Cd tolerance was discussed.  相似文献   

3.
In vitro experiments were conducted to investigate the effects of abscisic acid (ABA) and Cd on antioxidative defense systems and indole-3-acetic acid (IAA) oxidase during adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings. The exogenous ABA significantly enhanced the number and fresh weight of the adventitious roots. CdCl2 strongly inhibited adventitious rooting. Pretreatment with 10 μM ABA clearly alleviated the inhibitory effect of Cd on rooting. ABA significantly reduced superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, as well as the levels of glutathione (GSH) and ascorbic acid (ASA) during adventitious rooting. ABA strongly increased IAA-oxidase activity during the induction (0–12 h) and expression (after 48 h) phases and increased the phenols levels. Cd treatment significantly reduced the activities of SOD, APX, POD, and IAA oxidase, as well as GSH level. Cd strongly increased ASA levels. ABA pretreatment counteracted Cd-induced alterations of certain antioxidants and antioxidative enzymes, e.g., remarkably rescued APX and POD activities, reduced the elevated SOD and CAT activities and ASA levels, and recovered the reduced GSH levels, caused by Cd stress. Thus, the physiological effects of the combination of ABA and Cd treatments were opposite of those obtained with Cd treatment alone, suggesting that ABA involved in the regulation of antioxidative defense systems and the alleviation of wounding- and Cd-induced oxidative stress.  相似文献   

4.
Bioaccumulation and physiological effects of mercury in Sesbania drummondii   总被引:1,自引:0,他引:1  
Israr M  Sahi S  Datta R  Sarkar D 《Chemosphere》2006,65(4):591-598
The accumulation of mercury and its effect on growth, photosynthesis and antioxidative responses were studied in Sesbania drummondii seedlings. Mercury concentration in shoots as well as in the roots increased with increasing Hg concentrations in the growth solution. The accumulation of Hg was more in roots than shoots. At 100 mg l-1 Hg concentration, shoots accumulated 998 mg Hg kg -1 dry weight (dw) while roots accumulated 41,403 mg Hg kg-1 dw. Seedlings growth was not significantly affected at lower concentrations of Hg. A concentration of 100 mg l-1 Hg inhibited growth by 36.8%, with respect to control. Photosynthetic activity was assessed by measuring chlorophyll a fluorescence by determination of Fv/Fm and Fv/Fo values. Photosynthetic integrity was not affected up to 50 mg l-1 Hg concentration, however, concentrations higher than 50 mg l-1 affected photosynthetic integrity. Sesbania responded to Hg induced oxidative stress by modulating non-enzymatic antioxidants [glutathione (GSH) and non-protein thiols (NPSH)] and enzymatic antioxidants: superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR). Glutathione content and GSH/GSSG ratio increased up to a concentration of 50 mg l-1 while slight down at 100 mg l-1 Hg. The content of NPSH significantly increased with increasing Hg concentrations in the growth medium. The activities of antioxidative enzymes, SOD, APX and GR followed the same trends as antioxidants first increased up to a concentration of 50 mg l-1 Hg and then slight decreased. The results of present study suggest that Sesbania plants were able to accumulate and tolerate Hg induced stress using an effective antioxidative defense mechanisms.  相似文献   

5.
6.
Coontail (Ceratophyllum demersum L.) plants when exposed to various concentrations of Pb (1-100microM) for 1-7days, exhibited both phytotoxic and tolerance responses. The specific responses were function of concentration and duration. Plants accumulated 1748mugPbg(-1) dw after 7d which reflected its metal accumulation ability, however most of the metal (1222microgg(-1) dw, 70%) was accumulated after 1d exposure only. The toxic effect and oxidative stress caused by Pb were evident by the reduction in biomass and photosynthetic pigments and increase in malondialddehyde (MDA) content and electrical conductivity with increase in metal concentration and exposure duration. Morphological symptoms of senescence phenomena such as chlorosis and fragmentation of leaves were observed after 7d. The metal tolerance and detoxification strategy adopted by the plant was investigated with reference to antioxidant system and synthesis of phytochelatins. Protein and antioxidant enzymes viz., superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (GPX, EC 1.11.1.7) ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6) and glutathione reductase (GR, EC 1.6.4.2) showed induction at lower concentration and duration followed by decline. All enzymes except GPX showed maximum activity after 1d. An increase in cysteine, non-protein thiols (NP-SH) and glutathione (GSH) content was observed at moderate exposure conditions followed by decline. Phytochelatins (PC(2) and PC(3)) were synthesized to significant levels at 10 and 50microM Pb with concomitant decrease in GSH levels. Thus production of PCs seems important for the detoxification of metal, however it may lead to depletion of GSH and consequently oxidative stress. Results suggest that plants responded positively to moderate Pb concentrations and accumulated high amount of metal. Due to metal accumulation coupled with detoxification potential, the plant appears to have potential for its use as phytoremediator species in aquatic environments having moderate pollution of Pb.  相似文献   

7.
Ten open-top chambers were used to obtain SO(2) concentration-response relationships for growth in wheat cv. Banks, and to study the associated sulphur accumulation. Two-week-old seedlings were exposed to 0.004, 0.042, 0.121, 0.256 or 0.517 microl litre(-1) SO(2) for 79 days, 4 h per day. Response variables measured included height, shoot weight, development stage, tiller number, ear weight per plant, average ear weight, total ear number and shoot sulphur concentration. All growth parameters were significantly negatively affected by SO(2) concentrations above and including 0.042 microl litre(-1). A highly significant positive correlation existed between shoot sulphur concentration and ambient SO(2) concentration.  相似文献   

8.
Wu FB  Chen F  Wei K  Zhang GP 《Chemosphere》2004,57(6):447-454
Hydroponic experiment was carried out to study the effect of three Cd levels on glutathione (GSH), free amino acids (FAA), and ascorbic acid (ASA) concentration in the different tissues of 2 barley cultivars with different Cd tolerance. Cadmium concentration in both roots and shoots increased with external Cd level, while biomass and ASA concentration declined, and Wumaoliuling, a Cd-sensitive genotype was more affected than ZAU 3, a Cd-tolerant genotype. The effect of Cd on GSH concentration was dose- and time-dependent. In the 5 d exposure, root GSH concentration increased in 0.5 microM Cd treatment compared with control, but decreased significantly in 5 microM Cd treatment, irrespective of genotypes. However, in the 10 d exposure, GSH concentration in all plant tissues decreased with increasing Cd levels in the culture medium, and Wumaoliuling was much more affected than ZAU 3. Cadmium treatment greatly altered FAA concentration and composition in plants. The effect of Cd on glutathione (Glu) concentration in roots varied with genotypes. ZAU 3 showed a steady increase in root Glu concentration in both 0.5 and 5 microM Cd treatments, while Wumaoliuling was decreased by 38.0% in 5 microM Cd treatment, compared with the control. The results indicate that GSH and ASA are attributed to Cd tolerance in barley plants, and the relative less reduction in GSH concentration in ZAU 3 under Cd stress relative to the control may account for its higher Cd tolerance.  相似文献   

9.
Bean plants have been fumigated for 1 h with 300 or 1000 nl litre(-1) SO(2). Dependent on the SO(2) concentration, we observed an evolution of ethane the leaves. Even with 1000 nl litre(-1) SO(2) the evolution lasted for only 4 h. Pretreatment of single leaves with the radical scavenger ethoxyquin prevented this SO(2)-induced ethane formation. Another indication for the initiation of radicalic peroxidative processes by SO(2) was obtained by the manipulation of the endogenous antioxidants vitamin C and glutathione. An increase of both compounds by application of precursors of both biosynthetic pathways could completely suppress peroxidative ethane evolution. We also found a very good quantitative correlation between endogenous glutathione and ethane formation after SO(2) treatment. During these peroxidative processes, several cell components like fatty acids, chlorophylls, carotenoids and vitamin C were decreased. Based on our results, a mechanism for SO(2) induction of radical reactions leading to peroxidation and the role of endogenous antioxidants are discussed.  相似文献   

10.
Wu H  Zhang R  Liu J  Guo Y  Ma E 《Chemosphere》2011,83(4):599-604
The study was undertaken to evaluate the effects of malathion and chlorpyrifos on acetylcholinesterase (AChE), esterase (EST) activity and antioxidant system after topical application with different concentration to Oxya chinensis. The results showed that malathion and chlorpyrifos inhibited EST, AChE activity and increased malondialdehyde (MDA) contents. A change in superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GR) activity combined with reduced glutathione (GSH) and total glutathione (tGSH) contents was found in O. chinensis after malathion and chlorpyrifos treatments. Malathion and chlorpyrifos increased SOD and CAT activity compared with the control. With the concentrations increasing, SOD and CAT activity showed the similar tendency, namely, SOD and CAT activity increased at the lower concentrations and decreased at the higher concentrations. The results showed that malathion and chlorpyrifos decreased significantly GR activity. GST and GPx activity at the studied concentrations of chlorpyrifos was lower than that of the control. However, no significance was observed. GPx and GST activity in malathion treated grasshoppers showed a biphasic response with an initial increase followed by a decline in its activity. Malathion and chlorpyrifos decreased GSH contents and the ratio of GSH/GSSG. The present findings indicated that the toxicity of malathion and chlorpyrifos might be associated with oxidative stress.  相似文献   

11.
Two experiments were conducted in male SD rats (225-250 g) to determine changes in the activities of endogenous antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and concentrations of glutathione (GSH) in tissues after exposure to low doses of endosulfan and chlorpyrifos using a whole body exposure technique. In both experiments, 6 rats/group were exposed 3 hr/day, 5 days/week for 30 days to: 0 (control), 5, 10, 20, 40 and 60% of LD50 of either pesticide in 50% ethanol; actual concentrations were: endosulfan = 0, 0.5, 1.0, 2.0, 4.0, 6.0 mg/250 g body weight; chlorpyrifos = 0, 1.9, 3.8, 7.6, 15.2, and 22.8 mg/250 g body weight. Endosulfan decreased erythrocyte SOD by 21% in all groups and chlorpyrifos increased SOD by 18% in groups 40 and 60. Liver SOD was 12%-20% lower after endosulfan exposure; lung SOD was altered: endosulfan decreased activity by 21% and 51% and chlorpyrifos by 58 and 75% in the 40 and 60 groups, respectively (P < or = 0.05). Both pesticides increased plasma GPX activity at lower levels and reduced it by 26% and 19% in groups 40 and 60, respectively (P < or = 0.05). Liver GPX increased in the 60 group and lung GPX declined between 20% and 38% after endosulfan exposure. GSH in the liver and lung: endosulfan reduced GSH by about 30% at lower levels and increased by 41% or 70% at higher levels; chlorpyrifos decreased GSH by 28-40% in 20 and 60 groups, respectively (P < or = 0.05). Exposure to low, increasing levels of endosulfan and chlorpyrifos can differentially modify endogenous antioxidants SOD, GPX and GSH, which may lead to the development of oxidative stress in some tissues.  相似文献   

12.
The present study aimed to establish the seasonal variations in the redox potential ranges of young Tibouchina pulchra plants growing in the Cubatão region (SE Brazil) under varying levels of oxidative stress caused by air pollutants. The plants were exposed to filtered air (FA) and non-filtered air (NFA) in open-top chambers installed next to an oil refinery in Cubatão during six exposure periods of 90 days each, which included the winter and summer seasons. After exposure, several analyses were performed, including the foliar concentrations of ascorbic acid and glutathione in its reduced (AsA and GSH), total (totAA and totG) and oxidized forms (DHA and GSSG); their ratios (AsA/totAA and GSH/totG); the enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR); and the content of malondialdehyde (MDA). The range of antioxidant responses in T. pulchra plants varied seasonally and was stimulated by high or low air pollutant concentrations and/or air temperatures. Glutathione and APX were primarily responsible for increasing plant tolerance to oxidative stress originating from air pollution in the region. The high or low air temperatures mainly affected enzymatic activity. The content of MDA increased in response to increasing ozone concentration, thus indicating that the pro-oxidant/antioxidant balance may not have been reached.  相似文献   

13.
The effects of mercuric chloride (Hg) on lipid peroxidation (LPO), glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione (GSH) levels in different organs of mice (CD-1) were evaluated. Mice were exposed (2 days/week) to 0.0 (control), 0.8 (low) and 8.0 (mid) and 80.0 (high) gHg/kg/day for 2 weeks. The high dose group was excluded from the study due to high mortality. LPO levels in kidney, testis and epididymus at low and mid doses; GR and GPx levels in testis at mid dose; SOD levels in brain and testis at both doses, liver and epididymus at mid dose; GSH levels in testis at both doses were significantly increased compared to their controls. However, the GR levels in kidney at both doses and in epididymus at mid dose; GPx levels in kidney and epididymus and SOD levels in kidney at both the doses; GSH levels in epididymus at mid dose were significantly decreased compared to their control. Body weight gain and food efficiency were significantly reduced (p<0.05) in mid dose. These results indicated that Hg treatment enhanced LPO in all tissues, but showed significant enhancement only in kidney, testis and epididymus suggesting that these organs were more susceptible to Hg toxicity. The increase in antioxidant enzyme levels in testis could be a mechanism protecting the cells against reactive oxygen species.  相似文献   

14.
Pea aphids feeding from birth to maturity on pea plants (Pisum sativum) exposed to SO(2) concentrations of 50 nl litre(-1) or 80 nl litre(-1) showed a significant 19% increase in the rate of nymph production during the reproductive period, compared to control aphids feeding on plants in charcoal-filtered air. The higher nymph production resulted in a mean 4.6% increase in the intrinsic rate of population increase (rm). In longer term glasshouse fumigation experiments pea aphid populations were, on average, 1.8 times greater on pea plants in ambient air plus 45 nl litre(-1) SO(2) than in ambient air alone. Aphid infestation in ambient air caused a 42% reduction in pea yield and affected most plant parameters adversely. Ambient air plus SO(2) had no direct effect on yield, but, in combination with aphid infestation, a further 10% reduction in yield was recorded.  相似文献   

15.
In view of the present increasing trends of anthropogenic emissions of carbon dioxide (CO2) and sulphur dioxide (SO2) throughout the world, the present study was aimed at investigating the long-term influence of elevated concentrations of CO2 and SO2, singly and in combination on the physiological and biochemical characteristics of two cultivars of wheat (Triticum aestivum L. cv. Malviya 234 and HP1209). For this purpose, the plants were grown in open top chambers under field conditions and were fumigated with 600 ppm CO2, 0.06 ppm SO2 and 600 ppm CO2 + 0.06 ppm SO2 separately for 8 h daily (0800-1600 h) from germination to grain maturity. The individual treatment of SO2 advers#ely affected both the cultivars of wheat by reducing protein and starch contents. The respiration rate, total soluble sugars and total phenolics, however, increased in response to SO2. Stimulation of photosynthesis rate and reduction in stomatal conductance and transpiration rate were observed under CO2 treatment. Concentrations of total soluble sugars, starch and total phenolics increased in response to CO2 and CO2 + SO2 treatments. In combined treatment, CO2 modified the plant response to SO2 in both the cultivars. Elevated CO2 increased the photosynthesis rate under combined treatment. Higher levels of starch and soluble sugars under combined treatment provided extra carbon for SO2 detoxification. The pattern of intraspecific response of wheat to different treatments was more or less similar, but the magnitude of response differed significantly.  相似文献   

16.
One-month old horsegram (Macrotyloma uniflorum (Lam.) Verdc. cv VZM1) and bengalgram (Cicer arietinum L. cv Annogiri) were exposed to different regimes of lead stress as Pb(NO3)2 at 0, 200, 500 and 800 ppm concentrations. The extent of oxidative damage as the rate of lipid peroxidation, antioxidative response and the accumulation of lead in roots and shoots of both plants were evaluated after 12 days of lead stress. Lead (Pb) treated plants showed increased levels of lipid peroxidation as evidenced from the increased malondialdehyde content coupled with the increase in the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR), glutathione S-transferase (GST) compared to control (untreated) plants. Lead stress caused significant changes in the activity of antioxidative enzymes. The effect of lead was found to be concentration dependent. Higher concentration of lead (800 ppm) resulted 2- to 3-fold increase in SOD, catalase and peroxidase activities, 3- to 5-fold increase in GR activity and 3- to 4-fold increase in GST activity in roots and leaves of both horsegram and bengalgram plants. Lead stress caused a significant increase in the rate of peroxidation as showed in the levels of malondialdehyde content in roots and leaves of both plant species. Horsegram registered lower Pb accumulation than bengalgram, however localization of Pb was greater in roots than leaves in both plants. In general, lipid peroxide levels and antioxidative enzyme activities were higher in horsegram than bengalgram and also more in roots than leaves which best concordance with the lead contents of both the plants and organs. These results suggest that Pb toxicity causes oxidative stress in plants and the antioxidative enzymes SOD, CAT, POD, GR, GST could play a pivotal role against oxidative injury.  相似文献   

17.
To study the impact of SO(2) and SO(2) + ascorbic acid on growth and partitioning of dry matter in Trigonella foenum-graecum L., two-week-old plants were exposed to SO(2) for 2 h daily over a 42 day period. One of the exposed sets was treated with ascorbic acid. Plants were grown in a wire house and unexposed plants were used as controls for comparison. The parameters measured, such as dry weights of leaf, stem and root per plant, were found to be lower in the exposed sets than in the controls. The reductions were greater in dry weights of stem and root as compared with weights of leaves, indicating that the partitioning of the dry matter was altered. Greater amounts of soluble sugars and starch in the leaves of exposed plants, compared with the stem, also revealed that translocation was hampered. Reductions were greater in fruiting than in flowering, suggesting that fruit abortion was high. Although ascorbic acid treatment could mitigate the effect of SO(2), the differences were not found to be statistically significant. Significant changes were seen in fruit yield, suggesting that the effect of ascorbic acid is cumulative. The impact of SO(2) and SO(2) + ascorbic acid on partitioning of dry matter to different 'sinks' is discussed.  相似文献   

18.
The effects of mercuric chloride (Hg) on lipid peroxidation (LPO), glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione (GSH) levels in different organs of mice (CD-1) were evaluated. Mice were exposed (2 days/week) to 0.0 (control), 0.8 (low) and 8.0 (mid) and 80.0 (high) gHg/kg/day for 2 weeks. The high dose group was excluded from the study due to high mortality. LPO levels in kidney, testis and epididymus at low and mid doses; GR and GPx levels in testis at mid dose; SOD levels in brain and testis at both doses, liver and epididymus at mid dose; GSH levels in testis at both doses were significantly increased compared to their controls. However, the GR levels in kidney at both doses and in epididymus at mid dose; GPx levels in kidney and epididymus and SOD levels in kidney at both the doses; GSH levels in epididymus at mid dose were significantly decreased compared to their control. Body weight gain and food efficiency were significantly reduced (<0.05) in mid dose. These results indicated that Hg treatment enhanced LPO in all tissues, but showed significant enhancement only in kidney, testis and epididymus suggesting that these organs were more susceptible to Hg toxicity. The increase in antioxidant enzyme levels in testis could be a mechanism protecting the cells against reactive oxygen species.  相似文献   

19.
A series of experiments was carried out in controlled environment cabinets to investigate the effects of SO(2) dose on the mean relative growth rate (MRGR) of pea aphids, Acyrthosiphon pisum, feeding on the pea plant, Pisum sativum. There was a significant linear increase in the MRGR of aphids feeding on SO(2)-fumigated plants, relative to control aphids feeding on plants in charcoal-filtered air. The increase in MRGR reached a maximum of 11% at SO(2) concentrations between 90 and 110 nl litre(-1). MRGR declined at higher SO(2) concentrations until above 220 nl litre(-1) it was below that of the controls. The dose-response curve is discussed in relation to reported changes in the nitrogen metabolism of plants subject to air pollution, the response of aphids to host plant nitrogen and possible toxic effects of high concentrations of SO(2) on the aphid.  相似文献   

20.
The redox state of glutathione and ascorbate as well as the activity of superoxide dismutase classes were determined in leaves of Arabidopsis thaliana grown for seven days in the nutrient solution containing 0, 5 and 50 microM Cd or Cu excess. A decrease in GSH/GSSG ratio was found in plants under Cd and Cu stress. In the plants exposed to Cu stress the activity of all SOD classes increased. However, in the plants treated with Cd the activity of FeSOD and MnSOD was elevated, but CuZnSOD activity was diminished in comparison with control. In these plants the activity of SOD classes was dependent on both the GSH/GSSG and AA/DHA ratios, while in those exposed to Cu excess - on the GSH/GSSG ratio. Differences were shown in the changes both in redox state and activity of SOD classes caused by the metals differing in physiochemical properties. Moreover, relationships between changes in SOD class activities and ROS levels were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号