首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采用改进液相化学还原法制备纳米Pd/Fe双金属颗粒,研究其钯化率为0.045%和0.135%的条件下分别对3种单氯酚(2-CP、3-CP和4-CP)和3种二氯酚(2,3-DCP、2,4-DCP和2,6-DCP)的脱氯反应。结果表明,合成的纳米Pd/Fe颗粒分散性良好,粒径分布介于25~40nm。纳米Pd/Fe双金属颗粒对单氯酚及二氯酚具有良好的去除效果,3种单氯酚和3种二氯酚的脱氯难易程度分别为2-CP〉4-CP〉3-CP和2,6-DCP〉2,4-DCP〉2,3-DCP,脱氯反应均符合拟一级反应动力学方程。通过还原脱氯实验揭示了分子中氯原子的化学环境对还原脱氯过程具有明显影响。  相似文献   

2.
采用置换沉积法制备了纳米钯/铝双金属催化剂,氢解还原去除水相中难降解有毒有机物3-氯酚(3-CP),考察了溶液pH、钯负载量、纳米钯/铝双金属投加量、反应温度对脱氯效果的影响并解析相关反应机制。结果表明:(1)初始pH 3.0时,沉积液中93.25%(质量分数,下同)~96.67%的钯可有效负载于铝材上。(2)在pH为3.0、纳米钯/铝双金属投加量为2g/L、钯负载量为1.16%(质量分数)、反应温度为25℃下降解初始摩尔浓度为0.389mmol/L的3-CP,反应终了时脱氯率在99%以上。利用纳米钯/铝双金属降解氯代有机污染物具有高效低耗的优势,在实际应用上具有较好的前景。  相似文献   

3.
Ni/Fe双金属降解四氯化碳和四氯乙烯的对比试验   总被引:3,自引:0,他引:3  
以四氯化碳(CT)和四氯乙烯(PCE)为目标污染物,以批试验方法研究Ni/Fe双金属对CT和PCE的还原性脱氯.结果表明:Ni/Fe双金属可有效去除水中的CT和PCE;Ni/Fe双金属对CT和PCE的降解反应均符合准一级反应动力学方程;在相似的反应条件下,Ni/Fe双金属对CT和PCE脱氯的反应速率常数(kobs)之比为1.48和1.67,说明Ni/Fe双金属对CT的脱氯速率要快于对PCE的脱氯速率;Ni/Fe双金属可对PCE完全脱氯,但对CT脱氯过程中产生少量三氯甲烷(TCM).  相似文献   

4.
钯/铝双金属体系对3-氯酚的脱氯降解   总被引:1,自引:0,他引:1  
研究了钯/铝双金属体系对水相中3-氯酚的催化脱氯降解效果,通过置换沉积制备了钯/铝双金属颗粒,考察了该双金属颗粒的稳定性以及溶液pH和钯负载量对脱氯效果的影响。结果表明,pH在4.0以下的酸性条件,钯负载量在1.43%时,可实现水相中3-氯酚的有效脱氯,反应30 min后0.389 mmol/L的3-氯酚转化率可达99%以上,产物主要为苯酚,而钯/铝颗粒在重复测试中能保持较好的稳定性,这与铝基材表面自发形成的氧化膜有关。钯/铝材料表征的结果表明,钯颗粒高度分散在铝基材表面,并极大地提高了铝基材的表面积,从而有助于后续的脱氯反应。  相似文献   

5.
以250W照明金属卤化物灯为光源,研究了水中雌酮(E1)在UV-Vis/Fe(Ⅲ)/H2O2体系中的光降解;考查了初始pH、Fe(Ⅲ)、H2O2、E1初始浓度对E1光降解的影响。结果表明,UV-Vis/Fe(Ⅲ)/H2O2体系能有效地光降解E1,在[Fe(Ⅲ)30-20.8μmol/L、[H2O2]0=1664μmol/L、pH=3.0时,光照160min,18.5btmol/L E1的光降解率可达98.4%;在pH3.0~8.0范围内,pH初始值越小,E1降解率越大,反应初始速率越大;实验条件下,Fe(Ⅲ)、H2O2初始浓度越大,E1降解率越大,反应初始速率越大;E1初始浓度越低,E1降解率越大,反应初始速率越小。pH=3.0,实验浓度范围内的表观动力学方程为:dCE1/dt=0.00093[H2O2]^0.47[Fe(Ⅲ)]^0.62[E1]0.24;Fe(Ⅲ)是影响反应速率的主要浓度因素。  相似文献   

6.
在常温常压下利用零价铁(Fe0)还原土壤中的2-氯硝基苯(o-CNB),研究反应条件对还原率的影响以及反应产物在不同反应阶段的变化.GC-MS检测结果显示,o-CNB在还原过程中先生成2-氯亚硝基苯,最终生成2-氯苯胺.反应时间、Fe0用量、温度和土壤初始pH值等均会对o-CNB的还原率产生影响,其中土壤初始pH值控制在偏酸性、土壤温度较高时能显著提高其还原率.当o-CNB的初始浓度约为2.5×10-6 mol/g,Fe0加入量是25 mg/g时,经过4 h反应,o-CNB的还原率可达99%以上.此外,还初步探讨了Fe0还原o-CNB的反应机理.  相似文献   

7.
以钛酸四丁酯为前驱体,粉煤灰合成沸石为载体,采用溶胶-凝胶方法,在低温条件下制备了稀土铈掺杂的TiO2光催化剂。利用SEM—EDS、XRD、FTIR对催化剂进行了分析和表征。以高压汞灯为灯源,对多环芳烃菲、荧蒽的降解进行了研究。实验考查了稀土铈掺杂质量分数、催化剂用量、溶液pH、目标物初始质量浓度等因素对光催化降解的影响,研究了其光降解动力学。结果表明,当稀土铈含量为0.5%,催化剂用量为3g/L,pH偏碱性时,催化效果最佳。光催化反应符合Langmuir—Hinshelwood动力学规律,菲、荧蒽的降解过程符合一级反应动力学,反应速率常数分别为0.0126min^-1,0.0099min^-1。  相似文献   

8.
以表面活性剂TritonX-100(TX-100)为洗脱剂,某有机氯农药(organochlorinepesticides,OCPs)污染场地土壤为对象,七氯、氯丹和灭蚁灵为目标污染物,研究微米Cu/Fe双金属对污染土壤洗脱液中OCPs的降解效果。考察了洗脱液中OCPs初始浓度、洗脱液pH值、微米零价铁加入量和cu负载量对Cu/Fe去除OCPs效果的影响。结果表明,微米Cu/Fe可以有效的去除土壤洗脱液中目标污染物。当微米零价铁加入量为1.0g(25g/L),cu负载量为1.0%,洗脱液pH值为6.89时,Cu/Fe对2号土壤洗脱液中七氯、γ-氯丹、α-氯丹和灭蚁灵的去除效果最好,去除率分别为100.0%、99.3%、80.8%和71.1%。洗脱液中OCPs初始浓度越低,微米零价铁加入量越大,Cu/Fe对OCPs去除率越高;偏酸性条件有利于Cu/Fe对γ-氯丹和灭蚁灵的去除,而α-氯丹在中性条件下去除效果最好;1号土壤和2号土壤洗脱液的最佳铜负载量分别为2.O%和1.0%。  相似文献   

9.
利用液相还原法制备了纳米零价铁(nZVI)、纳米钯铁双金属(Pd/Fe)、羧甲基纤维素(CMC)改性nZVI(CMC-Fe)和CMC改性钯铁双金属(CMC-Pd/Fe)4种铁基纳米材料,并用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对其进行了表征。研究了这4种材料对水中2,4-二氯苯酚(2,4-DCP)的表观去除率,考察了铁基纳米材料投加量、Pd负载量、溶液初始pH及污染物浓度等因素对CMC-Pd/Fe去除2,4-DCP的影响,并探讨了可能的作用机理。结果表明,在4种材料中,CMC修饰的CMC-Pd/Fe的分散性最好,粒径明显小于未用CMC修饰的nZVI和Pd/Fe。4种材料对2,4-DCP的表观去除率为CMC-Pd/Fe>CMC-Fe>Pd/Fe>nZVI。随着CMC-Pd/Fe投加量和Pd负载量的增加,CMC-Pd/Fe对2,4-DCP的表观去除率增大,而随着2,4-DCP浓度的升高,CMC-Pd/Fe对2,4-DCP的表观去除率下降。当溶液初始pH=3、5和7时,CMC-Pd/Fe对2,4-DCP的表观去除率分别为94.34%、99.50%和96.62%;...  相似文献   

10.
超声波和零价铁联用对氯代苯酚脱氯降解作用的研究   总被引:2,自引:1,他引:1  
赵保卫  周怡  赵艺 《环境工程学报》2009,3(11):1973-1976
采用超声波和零价铁联用对氯代有机物3氯苯酚(CP)、2,4-二氯苯酚(DCP)和2,4,6-三氯苯酚(TCP)模拟废水进行了脱氯处理研究。以单因素法, 考察了铁粉初始投加量、溶液的初始浓度、超声波功率和溶液的pH值等因素对氯代酚降解的影响,并探讨了降解反应动力学。结果表明,超声波和零价铁联用对氯酚具有显著的降解效果,当水样初始浓度为25 mg/L,溶液pH呈弱酸性,超声波功率为200 W时,氯代酚的脱氯效率达到最大值。降解反应符合准一级反应,CP、DCP和TCP的反应速率常数分别0.0613 h-1、0.374 h-1和0.197 h-1。  相似文献   

11.
Concentrations of different chlorinated compounds were measured in mussels incubated in two polluted watercourses, a river (the River Kymijoki) and a lake (Lake Vanaja) for four weeks in summer 1995. The sum concentrations of polychlorinated phenols (PCP) and biphenyls (PCB) were both about 1 μg/g lipid weight (lw) in Lake Vanaja mussels, while in the River Kymijoki mussels PCPs were non-detectable and PCBs were measured 120 ng/g lIw. The concentrations of toxic polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners ranged between <17 and 370 pg/g Iw in Lake Vanaja mussels and between <38 and 11,000 pg/g lw in the River Kymijoki mussels. Polychlorinated diphenyl ethers (PCDE) were detected in the mussels incubated in the River Kymijoki (0.4–1.1 ng/g Iw), but not in those incubated in Lake Vanaja. Polychlorinated phenoxyanisoles (PCPA) were measured 33 ng/g lw and polychlorinated phenoxyphenols (PCPP) 300 ng/g lw in the mussels incubated in the River Kymijoki. PCPAs were also detected in reference samples, which were sediment and pike from the River Kymijoki and Baltic salmon, seal and white-tailed sea eagle.  相似文献   

12.
Book review     
The Pesticide Manual ‐ A World Compendium, 8th Edition, C.R. Worthing, Editor and S.B. Walker, Assistant Editor, British Crop Protection Council, BCPC Publications Sales, Bear Farm, Binfield, Bracknell, Berkshire RG12 5QE, England. 1987, 1100 pp., UK £50; Overseas £56. ISBN 0–948404–01–9.  相似文献   

13.
Organochlorine compounds in a three-step terrestrial food chain   总被引:1,自引:0,他引:1  
The concentrations of 15 organochlorine chemicals (PCBs and pesticides) were studied in a Central European oak wood food chain system: Great tit (Parus major), caterpillars (Tortrix viridana, Operophtera brumata, Erannis defoliaria), and oak-leaves (Quercus robur). Juvenile tits receive organochlorines from the mother via egg transfer and, eventually to a greater extent, from the caterpillar food source during nestling period. The concentrations of PCB 153 (2,2′,4,4′,5,5′-hexachlorobiphenyl, the most abundant in this study) was found in leaf material at ca. 1 ng/g, in caterpillars 10 ng/g, and in bird eggs 170 ng/g on an average and on a dry mass basis.  相似文献   

14.
Abstract

The active ingredients in commercial formulations of malathion, oxamyl, carbaryl, diazinon, and chlorpyrifos diluted to “spray tank”; concentrations with buffered distilled or natural water of pH 4–9 were stable for at least 24 hr. Formulations of trichlorfon were not stable at pH 7 or above but disappearance rates were slower than for the pure chemical in homogeneous solution. Cupric ion was observed to be an effective catalyst for the hydrolysis of a variety of pure organophosphorus insecticides but did not catalyze hydrolysis of the active ingredients of the formulations examined. Increasing the dilution of the formulation increased the susceptibility of malathion, oxamyl, and carbaryl to hydrolysis.  相似文献   

15.
Abstract

The pH‐disappearance rate profiles were determined at ca. 25°C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water‐ethanol (99: 1 v/v). Half‐lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (>1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1–2 days for trichlorfon and oxamyl to >1 year for fensulfothion and cyper‐methrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.  相似文献   

16.
The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween 80) and sodium dihexyl sulfosuccinate (Aerosol MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl(2) yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (>30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR=1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (<5%) occurring when the total trapping number exceeded 2 x 10(-5). These findings demonstrate the ability of Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple aggressive mass removal followed by enhanced bioremediation to treat chlorinated solvent source zones.  相似文献   

17.
Abstract

One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food—the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239, 240Pu, and241 Am in soils (0‐ to 12‐in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 μSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 μSv). Soil‐to‐nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.  相似文献   

18.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

19.
Abstract

Five organophosphorous insecticides: Leptophos, EPN, Cyano‐fenphos, trichloronate and salithion proved to cause irreversible ataxia not only to chicken but also to mice and sheep. TOCP was included as a reference. Cyanofenphos blocked the catecholamine B‐receptor binding activity with 3H‐norepinephrine at a level similar to that of the specific inhibitor propranolol in the mouse heart preparation. In the lamb heart preparation, the B‐receptor was more sensitive to Leptophos, salithion and TOCP than to propranolol. The six compounds and their oxons were screened for their in‐vitro inhibition to monamine oxidase (MAO), acetyl cholinesterase (AChE) and neurotoxic esterase (NTE) in the brain of either mouse, lamb or chicken. It is believed that their AChE inhibition stands for their acute toxicity, while NTE inhibition is responsible for their paralytic ataxia.  相似文献   

20.
Background, Aims and Scope The global problem concerning contamination of the environment as a consequence of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contributes to a variety of health effects such as decline in mental, cognitive and physical health of the individual. An alternative way of reducing Pb concentration from the soil is through phytoremediation. Phytoremediation is an alternative method that uses plants to clean up a contaminated area. The objectives of this study were: (1) to determine the survival rate and vegetative characteristics of three grass species such as vetivergrass, cogongrass and carabaograss grown in soils with different Pb levels; and (2) to determine and compare the ability of the three grass species as potential phytoremediators in terms of Pb accumulation by plants. Methods The three test plants: vetivergrass (Vetiveria zizanioides L.); cogongrass (Imperata cylindrica L.); and carabaograss (Paspalum conjugatum L.) were grown in individual plastic bags containing soils with 75 mg kg−1 (37.5 kg ha−1) and 150 mg kg−1 (75 kg ha−1) of Pb, respectively. The Pb contents of the test plants and the soil were analyzed before and after experimental treatments using an atomic absorption spectrophotometer. This study was laid out following a 3 × 2 factorial experiment in a completely randomized design. Results On the vegetative characteristics of the test plants, vetivergrass registered the highest whole plant dry matter weight (33.85–39.39 Mg ha−1). Carabaograss had the lowest herbage mass production of 4.12 Mg ha−1 and 5.72 Mg ha−1 from soils added with 75 and 150 mg Pb kg−1, respectively. Vetivergrass also had the highest percent plant survival which meant it best tolerated the Pb contamination in soils. Vetivergrass registered the highest rate of Pb absorption (10.16 ± 2.81 mg kg−1). This was followed by cogongrass (2.34 ± 0.52 mg kg−1) and carabaograss with a mean Pb level of 0.49 ± 0.56 mg kg−1. Levels of Pb among the three grasses (shoots + roots) did not vary significantly with the amount of Pb added (75 and 150 mg kg−1) to the soil. Discussion Vetivergrass yielded the highest biomass; it also has the greatest amount of Pb absorbed (roots + shoots). This can be attributed to the highly extensive root system of vetivergrass with the presence of an enormous amount of root hairs. Extensive root system denotes more contact to nutrients in soils, therefore more likelihood of nutrient absorption and Pb uptake. The efficiency of plants as phytoremediators could be correlated with the plants’ total biomass. This implies that the higher the biomass, the greater the Pb uptake. Plants characteristically exhibit remarkable capacity to absorb what they need and exclude what they do not need. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metals from root to shoots. Combination of high metal accumulation and high biomass production results in the most metal removal from the soil. Conclusions The present study indicated that vetivergrass possessed many beneficial characteristics to uptake Pb from contaminated soil. It was the most tolerant and could grow in soil contaminated with high Pb concentration. Cogongrass and carabaograss are also potential phytoremediators since they can absorb small amount of Pb in soils, although cogongrass is more tolerant to Pb-contaminated soil compared with carabaograss. The important implication of our findings is that vetivergrass can be used for phytoextraction on sites contaminated with high levels of heavy metals; particularly Pb. Recommendations and Perspectives High levels of Pb in localized areas are still a concern especially in urban areas with high levels of traffic, near Pb smelters, battery plants, or industrial facilities that burn fuel ending up in water and soils. The grasses used in the study, and particularly vetivergrass, can be used to phytoremediate urban soil with various contaminations by planting these grasses in lawns and public parks. ESS-Submission Editor: Dr. Willie Peijnenburg (wjgm.peijnenburg@rivm.nl)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号