首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Radiotracers were used to study processes controlling the accumulation and elimination of vanadium in the Mediterranean mussel Mytilus galloprovincialis. Vanadium uptake rates varied inversely with both salinity and vanadium concentration in water, but were independent of temperature. After a 3 wk exposure to 48V, the highest concentration factors were found in the byssus (1900) with much lower values computed for shell ( 70) and soft tissues (5). More than 90% of the total 48V accumulated was fixed to shell, suggesting that uptake is primarily a result of surface sorption processes. Much of the vanadium in shell was firmly bound to the periostracum and was not easily removed by acid leaching. Food-chain experiments indicated that the assimilation coefficient for ingested vanadium is low (7%) and that the assimilated fraction is rapidly excreted from the mussel. These findings coupled with knowledge of in situ and experimentally-derived vanadium concentration-factors have allowed a preliminary assessment of the relative importance of the food and water pathways in the contamination of mussels under conditions of acute and chronic exposure. Contaminated mussels transferred to clean sea water lost 48V at rates that depended upon temperature but were largely unaffected by either salinity or by vanadium levels in mussel tissues. Total vanadium depuration was slow and was governed by loss from a slowly-exchanging compartment with a characteristic half-time of about 100 d. Individual mussel tissues were analyzed for stable vanadium and the possibility of using these tissues, particularly the byssus, as bioindicators of ambient vanadium levels in the marine environment is also discussed.  相似文献   

2.
Vanadium-48 (as vanadate) was used to study the uptake, tissue distribution, depuration and food-chain transfer of vanadium through 3 species of echinoderms: the seastar Marthasterias glacialis L., the sea urchin Paracentrotus lividus Lmk. and the holothurian Holothuria forskali D.Ch.; all were collected from the littoral zone near Monaco. Uptake by all species was relativelyslow; after 3 wk exposure, isotopic equilibrium had not been reached and whole-body concentration factors ranged from 5 and 7 in the holothurian and sea urchin, respectively, to 18 in the seastar. Sixty-three to 77% of the incorporated radiotracer was associated with the body wall or test, suggesting surface sorption as the principal mechanism governing uptake from water. Stable vanadium measurements confirmed the preponderance of this element in the external hard parts of the echinoderms; however, concentration factors based on stable vanadium levels were significantly higher than those measured experimentally. Subsequent vanadium depuration rates were also species-dependent, with biological half-times for loss ranging from approximately 50 d in the sea urchin and holothurian to 123 d in the seastar. Food-chain transfer experiments indicated that seastars can assimilate and retain a large fraction of the vanadium ingested with food whereas sea urchins appear to lack this capability. The relative importance of the water and food input pathway in achieving vanadium levels in echinoderms is discussed in light of results of 48V distribution in experimental individuals and stable vanadium distribution in samples from the natural environment.  相似文献   

3.
Red sea breams were kept at 20°C without food at 3 salinities (full sea water, 950 mOsm kg-1; 2/3 sea water, 640 mOsm kg-1; 1/3 sea water, 330 mOsm kg-1). In fish adapted to all 3 salinities, starvation resulted in marked decline of plasma FFA and -hydroxybutyrate and liver glycogen levels but plasma glucose and lactate concentrations were maintained. These findings suggest that with the onset of starvation, enhanced hepatic glycogenolysis and decreased fat utilization occurred. Fish, adapted to full and 2/3 sea water, could not survive for more than 19 d without food. However, fish adapted to 1/3 sea water could tolerate 27 d of starvation. Enhanced survival during starvation in 1/3 sea water was observed to be associated with maintenance of plasma protein and elevation of hepatic glucose-6-phosphate dehydrogenase activity. It is suggested that sea breams be transferred to an iso-osmotic medium whenever the threat of starvation prevails, but this suggestion has yet to be evaluated in economic terms.Please communicate with Dr. Norman Y. S. Woo  相似文献   

4.
Macrofauna living on subtidal rocks reefs in southern California excrete ammonium, a potentially important nutrient for benthic algae. Ammonium excretion rates of eleven macroinvertebrate and five fish taxa were determined from a total of 324 in situ incubations conducted between October 1984 and August 1985 at 14 to 17 m depths off Santa Catalina Island, California. Total ammonium excretion ranged from over 100 mol h-1 by the kelp bass Paralabrax clathratus to less than 0.1 mol h-1 by the gastropod Conus californicus. Weight-specific ammonium excretion generally ranged from 0.5 to 4 mol g-1 h-1 in invertebrates and from 3 to 7 mol g-1 h-1 in fishes. Intraspecific excretion rates varied substantially. Coefficient of variation of excretion rates were higher than reported for laboratory studies and multiple regression indicated that 50 to 90% of the variation in ammonium excretion rates of five species studied in detail could not be explained by the combined variation in dry weight, water temperature, time of day, and incubation dates. The excretion data, along with estimates of population densities and size-frequency distributions, indicate that benthic macrofauna release a total of 25 to 30 mol NH 4 + m-2 h-1 both day and night. The species that generally make the largest contributions are a gobiid fish (Lythrypnus dalli), followed by three gastropods (Astraea undosa, Tegula eiseni, and T. aureotincta) and a sea urchin (Centrostephanus coronatus). The amount of ammonium excreted by these macrofauna on rocky reefs is insignificant compared to our previously published data on the nighttime excretion of blacksmith (Chromis punctipinnis), a pomacentrid fish that feeds in the water column during the day and shelters on the reef at night. Including blacksmiths, we estimate that the amount released by rocky-reef macrofauna at night is >280 mol m-2 h-1, a rate that is similar to that for many other marine communities. Additional studies are required to determine if benthic algae utilize ammonium released by these macrofauna, especially at night.Contribution No. 58 of the Ocean Studies Institute; Contribution No. 123 of the Catalina Marine Science Center  相似文献   

5.
Radiotracer experiments were performed (February–April, 1982) to study the assimilation and metabolism of the transuranium nuclide americium-241 in the marine teleosts Serranus scriba (Linnaeus, 1758) and Scorpaena notata Rafinesque, 1810, caught off the Monaco coast. Fish fed with 241Am-labelled food showed that assimilation of this radionuclide takes place through the gastrointestinal walls and that the small fraction accumulated is incorporated mainly in the skin, muscle and skeleton. Gut-transfer coefficients were similar in both species and averaged 0.7% (range 0.1 to 1.7%) of the ingested activity. The calculated biological half-lives for loss of the absorbed fraction ranged between 49 and 61 d for Serranus scriba and 12 and 117 d for Scorpaena notata. Results from an intramuscular injection experiment indicated that 241Am was retained mainly in the liver, skin and skeleton; the fraction accumulated by muscle was very low. Liver displayed a relatively short biological half-time for 241Am loss of roughly 24 d. Routes of 241Am excretion from the teleosts appear to be through the kidneys, gills and feces with bile serving as a possible excretion route from the liver. From the limited amount of published information available for comparison, experimental evidence is presented which suggests that 241Am taken up via the food chain is more biologically available to marine fish than is plutonium.  相似文献   

6.
The fate of nitrate in sediments from seagrass (Zostera capricorni Aschers.) beds of Moreton Bay on the subtropical eastern coast of Queensland, Australia, was investigated. Added nitrate was metabolised at rates of 0.4 to 3.4 g N cm-3 d-1 when sediments were incubated under anaerobic conditions with a large excess of nitrate. The potential rate of nitrate utilization was as rapid in sediments from subtidal bare areas as from adjacent seagrass beds. Ammonium was produced rapidly from15N-nitrate by microbial action in all the subtidal sediments examined. After 12 h of incubation, 13 to 28% of the15N initially added as labelled nitrate was detected as labelled ammonium in the sediments. Denitrification, although not measured directly, appeared to be a relatively minor fate of nitrate. Benthic microbes took up large amounts of15N but only after a delay of 6 h; this pattern could have been due to induction and synthesis of the enzymes necessary for nitrate uptake, and the assimilation of labelled ammonium. Under field conditions, assimilation by seagrasses and denitrification by bacteria were probably not significant sinks for nitrate in comparison with uptake by benthic microbes and dissimilatory reduction to ammonium.  相似文献   

7.
Liu  Yanjun  Zhou  Qingxin  Xu  Jie  Xue  Yong  Liu  Xiaofang  Wang  Jingfeng  Xue  Changhu 《Environmental geochemistry and health》2016,38(1):111-122

The objective of this study is to investigate the levels, inter-species-specific, locational differences and seasonal variations of vanadium in sea cucumbers and to validate further several potential factors controlling the distribution of metals in sea cucumbers. Vanadium levels were evaluated in samples of edible sea cucumbers and were demonstrated exhibit differences in different seasons, species and sampling sites. High vanadium concentrations were measured in the sea cucumbers, and all of the vanadium detected was in an organic form. Mean vanadium concentrations were considerably higher in the blood (sea cucumber) than in the other studied tissues. The highest concentration of vanadium (2.56 μg g−1), as well as a higher degree of organic vanadium (85.5 %), was observed in the Holothuria scabra samples compared with all other samples. Vanadium levels in Apostichopus japonicus from Bohai Bay and Yellow Sea have marked seasonal variations. Average values of 1.09 μg g−1 of total vanadium and 0.79 μg g−1 of organic vanadium were obtained in various species of sea cucumbers. Significant positive correlations between vanadium in the seawater and V org in the sea cucumber (r = 81.67 %, p = 0.00), as well as between vanadium in the sediment and V org in the sea cucumber (r = 77.98 %, p = 0.00), were observed. Vanadium concentrations depend on the seasons (salinity, temperature), species, sampling sites and seawater environment (seawater, sediment). Given the adverse toxicological effects of inorganic vanadium and positive roles in controlling the development of diabetes in humans, a regular monitoring programme of vanadium content in edible sea cucumbers can be recommended.

  相似文献   

8.
Č. Lucu 《Marine Biology》1973,18(2):140-145
Influence of calcium on sodium fluxes was investigated in the brackish-water crab Carcinus mediterraneus Csrn., after activation of sodium regulatory mechanisms, during longterm acclimation in diluted (15.9 S) sea water. The 22Na outflux constants measured in whole crabs are noticeably lower (0.188 to 0.374h-1) in diluted sea water enriched by calcium (5.8 to 10.4 mM Ca2+/l), than in ordinary diluted sea water (0.545 h-1). The sodium-outflux constants in hemolymph, gills and muscle show the same trend of slower exchange of 22Na in calcium-enriched sea water. In ordinary sea water, the total sodium-outflux rate from the hemolymph amounts to 46.31 M Na/g/h, while in calcium-enriched sea water (8.23 mM Ca2+/l) it is inhibited, amounting to 13.86 M Na/g/h. Sodium and potassium concentrations of intracellular muscles in diluted sea water enriched with calcium and control diluted sea water are similar. The outflux of intracellular sodium from the muscle amounts to 2.84 M Na/g/h in crabs acclimated to diluted sea water.  相似文献   

9.
Abstract: A sea cage, sometimes referred to as a net pen, is an enclosure designed to prevent farm fish from escaping and to protect them from large predators, while allowing a free flow of water through the cage to carry away waste. Farm fish thus share water with wild fish, which enables transmission of parasites, such as sea lice, from wild to farm and farm to wild fishes. Sea lice epidemics, together with recently documented population‐level declines of wild salmon in areas of sea‐cage farming, are a reminder that sea‐cage aquaculture is fundamentally different from terrestrial animal culture. The difference is that sea cages protect farm fish from the usual pathogen‐control mechanisms of nature, such as predators, but not from the pathogens themselves. A sea cage thus becomes an unintended pathogen factory. Basic physical theory explains why sea‐cage aquaculture causes sea lice on sympatric wild fish to increase and why increased lice burdens cause wild fish to decline, with extirpation as a real possibility. Theory is important to this issue because slow declines of wild fish can be difficult to detect amid large fluctuations from other causes. The important theoretical concepts are equilibrium, host‐density effect, reservoir‐host effect, and critical stocking level of farmed fish (stocking level at which lice proliferate on farm fish even if wild fish are not present to infect them). I explored these concepts and their implications without mathematics through examples from salmon farming. I also considered whether the lice‐control techniques used by sea‐cage farmers (medication and shortened grow‐out times) are capable of protecting wild fish. Elementary probability showed that (where W is the abundance of wild fish, W* is the prefarm abundance, F is the abundance of farm fish, and is the ratio of lice per farm fish to lice per wild fish). Declines of wild fish can be reduced by short growing cycles for farm fish, medicating farm fish, and keeping farm stocking levels low. Declines can be avoided only by ensuring that wild fish do not share water with farmed fish, either by locating sea cages very far from wild fish or through the use of closed‐containment aquaculture systems. These principles are likely to govern any aquaculture system where cage‐protected farm hosts and sympatric wild hosts have a common parasite with a direct life cycle.  相似文献   

10.
This paper presents the results of an investigation from 1980 to 1985 on the content of 210Po in sea water and its accumulation in southern Baltic plankton. The mean value of the 210Po concentration in sea water has been determined to be about 0.5 mBq dm-3, with the proportion of the dissolved forms being ca 80%. It has been proved that 210Po is accumulated by plankton organisms. The mean 210Po concentration factors calculated on the basis of its content in plankton fall within the range from 5×103 to 4.2×104 and increase as follows: phytoplankton210Po concentration in mesozooplankton collected at the Slupsk Trough and the Gdask Basin have been observed. The above differences have been related to intense blue-green alga blooming in the Gdask Basin.  相似文献   

11.
The sporophore of the fungusAmanita muscaria L. contains greatiy elevated levels of cadmium (29.9 g g–1 dwt) and vanadium (344.9 g g–1 dwt) in comparison with the soil in a birch woodland (total (HNO3-extractabie Cd 0.4 g g–1 dwt, V 11.7 g g–1 dwt). The significance of this remarkable concentration of normally rare and dispersed elements in terms of their circulation in the woodland has been investigated. Both elements are released from sporophore tissue in a form which can be taken up by a test plant (lettuce), cultivated in the woodland soil amended with different quantities of sporophore tissue, Cadmium levels in all plant tissues were elevated in comparison to the non-amended controls; only root vanadium levels responded to the amendment of the soil. The results are discussed in terms of their significance for the natural cycling of both elements. It is calculated that an abundant population of sporophores could circulate 1.4% of the total cadmium and 0.65% of the total vanadium pool found in the litter layer and 0–5 cm soil horizon in the sampled woodland over a period of 14 days (mean life span of a sporophore).  相似文献   

12.
Interactions of marine plankton with transuranic elements   总被引:2,自引:0,他引:2  
In a series of laboratory experiments, the biokinetics of 241Am, an important transuranium element, was studied in Meganyctiphanes norvegica, a euphausiid common in the northwestern Mediterranean. The euphausiids accumulated Am from water by passive adsorption onto exoskeletons, achieving wet weight concentration factors on the order of 102 after 1 wk exposure; concentration factors varied inversely with the size of the euphausiids and linearly with their surface area:wet weight ratios. Essentially all (96±10%) of the Am taken up from water was associated with the exoskeleton, so that negligible Am was retained by the euphausiids after molting. The retention half-time of Am in molts was 2.9 d. Euphausiids could also concentrate Am from feeding suspensions by ingesting Am-labelled diatom cells, although there was negligible Am assimilation (3±2% after 4 d feeding); after passage through the gut, virtually all (99%) of the ingested Am was defecated within 1 wk. The retention half-time of Am in fecal pellets was 41 and 51 d at 13° and 5°C, respectively. In oceanic waters, where the preponderance of 241Am is in the dissolved phase, uptake of Am from water by euphausiids would be the dominant route of bioaccumulation. The results underscore the importance of sinking biogenic debris from zooplankters in mediating the vertical transport of Am in the sea. Given their retention half-times for 241Am and their rapid sinking rates, fecal pellets and discarded molts have the potential to deliver most of their Am to the sediments.  相似文献   

13.
Accumulation of the bi-cyclic aromatic hydrocarbon 14C-1-naphthalene in adult female Calanus helgolandicus Claus and adult female Eurytemora affinis Poppe in sea water concentrations of hydrocarbon ranging from 0.2 to 992 g/l was studied during exposure periods of up to 15 days as part of an investigation of the possible effects on marine zooplankton of persistent exposure to low levels of petroleum hydrocarbons. With both species the body levels of radioactivity increased rapidly during the first few days of the exposure period, but after exposure for 7 to 8 days to sea water containing 50 g hydrocarbon/l an equilibrium condition was approached; in some experiments where E. affinis was exposed to 1.0 and 10 g hydrocarbon/l for 15 days there was no further increase in body levels of radioactivity after 7 to 8 days. Using a low concentration of hydrocarbon (1 g/l), the quantity of radioactivity accumulated after 10 days was found to be nearly fifty times greater in the smaller species, E. affinis, than in C. helgolandicus, when expressed in terms of body weight. After they had been exposed to the hydrocarbon for several days the copepods contained a considerable proportion of radioactivity that was no longer identifiable as naphthalene and was presumably present as metabolites. Radioactivity accumulated in the copepods after several days was rapidly lost after they were transferred to uncontaminated sea water: e.g. C. helgolandicus lost nearly 90% of its body level of radioactivity in 24 h. Thereafter the rate of loss was greatly reduced, and 5% of the original body level of radioactivity still remained in the copepods at the end of 11 days. Experiments on the breakdown of naphthalene added at low concentrations to sea water samples containing natural microbial populations indicated degradation rates of 0.1 to 0.2 g/l/24 h in oceanic water, and 2.6 g/l/24 h in inshore water samples. The results are discussed in terms of the possible transfer of hydrocarbon to a higher trophic level in areas subjected to constant low-level inputs of petroleum hydrocarbons.  相似文献   

14.
Phytoplankton intracellular nitrate concentrations have been monitored in a 56-h experiment on a shipboard culture of surface sea water from an upwelling region. These measurements were related to parameters of biomass (particulate nitrogen) and nitrate assimilation using the 15N isotope technique and the nitrate reducase (NR) assay. The procedure for measuring cellular nitrate concentrations is described. This parameter exhibited diurnal variations, ranging from 3.1 to 20.6 ng-at nitrate per g-at particulate nitrogen, and could be correlated positively with NR activity. Nitrogen budgets show that NR activity represents only 12% of nitrate incorporation in organic phytoplankton material when nitrate is available in the sea water. However, upon depletion of the environmental nitrate (zero uptake), NR activity can fully account for the decrease of internal nitrate. From the results, it seems that internal nitrate content is a better index of nitrate consumption by marine phytoplankton than the external concentration of nitrate-nitrogen.  相似文献   

15.
Water, proteins and total free amino acids were estimated in different tissues of the euryhaline fish Tilapia mossambica after adaptation to various strenghts of sea water. The water content did not vary significantly in any tissue on salinity adaptation. The soluble and insoluble proteins displayed a general and considerable decrease in muscle, liver and heart; the decrease in the soluble fraction in the heart and the proteins of the muscle in 75% sea water (100% sea water=32.5 S) were significant. The gill proteins did not alter with salinity; the kidney proteins tended to increase slightly in 100% sea water (SW). The total free amino-acid content decreased insignificantly in all tissues on adaptation to 25% SW; in higher salinities, however, the content increased significantly. This increase was sudden and steep in 50% SW, and gradual and less steep in 75 and 100% SW. It is suggested that constancy in water content may contribute to the great adaptability of T. mossambica to heterosmotic media, and that the total free amino acids may be involved in isosmotic intracellular regulation. The possibility of amino acid increase as a result of protein breakdown is also indicated.  相似文献   

16.
The role of organic solutes in the osmotic adjustment processes of the marine macroalga Enteromorpha intestinalis (L.) Link was investigated in 1986, using fresh samples collected from mid-shore rock pools at Tayport, Fife, Scotland. Natural-abundance 13C nuclear magnetic-resonance spectroscopy revealed -dimethylsulphoniopropionate (DMSP) to be the only major low molecular weight organic osmolyte present. However, on transfer to a hypersaline medium (300% sea water; 100%=35 S), tissue sucrose and proline levels increased markedly, while DMSP remained constant. Recovery of optimal photosynthetic activity and increases in inorganic ion levels occurred over a similar time scale to the changes in sucrose and proline (within 48 h), indicating that these two organic solutes are involved in hyperosmotic adjustment in E. intestinalis while DMSP is not. Freshly-collected plants transferred to 300% sea water medium in the dark showed no significant increases in organic osmolytes. In contrast, starch-enrichment (16 d continuous illumination) led to enhanced synthesis of sucrose and proline in the light and in darkness, but tissue DMSP levels showed no variation throughout. These observations suggest that DMSP is not involved in short-term osmoacclimation in E. intestinalis.  相似文献   

17.
RNA-DNA ratio: an index of larval fish growth in the sea   总被引:1,自引:0,他引:1  
Data on water temperature, RNA-DNA ratio, and growth of eight species of temperate marine fish larvae reared in the laboratory were fit to the equation: $$G_{pi} = 0.93{\text{ }}\operatorname{T} + 4.75{\text{ RNA - DNA}} - 18.18$$ where Gpi is the protein growth rate in % d-1 and T is the water temperature. Water temperature and larval RNA-DNA ratio explained 92% of the variability in growth rate of laboratory-reared larvae. The model is useful over the entire range of feeding levels (starvation to excess), temperatures (2° to 20°C) and fish species studied. Estimates of recent growth of larval cod, haddock, and sand lance caught at sea based on water temperature and RNA-DNA ratio ranged from negative to 26% d-1. These data demonstrate the importance of food availability in larval fish mortality and suggest that short-term growth under favorable conditions may be considerably higher than expected from long-term indicators. RNA-DNA ratio analysis offers new possibilities for understanding larval growth and mortality, and their relation to environmental variability.  相似文献   

18.
Primary production at Antarctic coastal sites is contributed from sea ice algae, phytoplankton and benthic algae. Oxygen microelectrodes were used to estimate sea ice and benthic primary production at several sites around Casey, a coastal area in eastern Antarctica. Maximum oxygen export from sea ice was 0.95 mmol O2 m−2 h−1 (~11.7 mg C m−2 h−1) while from the sediment it was 6.08 mmol O2 m−2 h−1 (~70.8 mg C m−2 h−1). When the ice was present O2 export from the benthos was either low or negative. Sea ice algae assimilation rates were up to 3.77 mg C (mg Chl-a)−1 h−1 while those from the benthos were up to 1.53 mg C (mg Chl-a)−1 h−1. The contribution of the major components of primary productivity was assessed using fluorometric techniques. When the ice was present approximately 55–65% of total daily primary production occurred in the sea ice with the remainder unequally partitioned between the sediment and the water column. When the ice was absent, the benthos contributed nearly 90% of the primary production.  相似文献   

19.
Aplodactylus punctatus is a temperate berbivorous fish that changes from an omnivorous to a herbivorous diet and increases its ability ot assimilate algae as it grows. To investigate whether this dietary shift is related to size-specific differences in energetic demands imposed by metabolism and the amount of assimilated energy, oxygen consumption ( ) was determined experimentally in 12 specimens ranging in size from 62 to 545 g. increased allometrically with body size from 8.41 to 55.95 mg O2 individual-1 h-1. Individual energetic requirements were 2.8 to 33.7 kJ d-1. The assimilated energy was estimated, taking into consideration: (1) the energetic value of the most important alga in the diet (Lessonia trabeculata); (2) size-specific differences in assimilation rates for fish fed on this alga; (3) size-specific differences in throughput time and in the amount of food in a full gut. Comparison of the energy required and the assimilated energy revealed that fishes of < 22 to 29 cm total length had a negative energetic balance when consuming algae exclusively. This may explain the reliance of smallA. punctatus on more easily-digested invertebrates. The largest individuals can meet their energetic demands by consuming algae alone, apparently because of their higher assimilation capability. InA. punctatus, changing energetic requirements and capacities for algal assimilation may be responsible for the observed ontogenetic change in diet.  相似文献   

20.
Alkanes and alkenes in marine benthic algae   总被引:2,自引:0,他引:2  
Saturated and olefinic hydrocarbons were determined in additional species of benthic marine algae from the Cape Cod (Massachusetts, USA) area (see: Youngblood et al., 1971). The distribution of homologous and isomeric olefins was studied in plants of different age and in morphologically different parts of the same specimen. With two minor exceptions, only normal alkanes and alkenes are present. The methylene-interrupted C19- and C21-polyolefins are particularly abundant; 1-heneicosahexaene and the corresponding pentaene are common to all brown algae, while the corresponding 3-isomers occur in green algae. The hydrocarbon concentration, the alkene-to-alkane ratio and the polyolefin content are highest in young plants or in rapidly growing tissues of older plants. This suggests a deeper involvement in cell biochemistry of straight-chain hydrocarbons than previously considered. The biosynthesis of the plant polyolefins remains to be explored; no immediately obvious precursors of the 1-polyolefins were found among the algal fatty acids. The hydrocarbon composition of these benthic algae differs greatly from that of fossil fuels in its simplicity and predominately unsaturated nature. The separation of the isomers by gas chromatography and their structural elucidation by mass spectrometry, alone and in combination with hydrogenation and ozonolysis, are discussed.Contribution No. 3155 of the Woods Hole Oceanographic Institution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号