首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Power conversion efficiency of p-i-n type macrocrystalline silicon (µc-Si:H) solar cells has been analyzed in terms of sequential processes of photo-induced electron transfer. The effect of the excitonic state on the charged carrier generation has been studied compared to a conventional scheme in which only charged carriers are taken into account for the operation of the solar cells. A numerical model has been developed to calculate current-voltage characteristics of solar cells on the basis of two types of charged carrier generation processes (exciton process and charged carrier process). The light trapping effect due to a textured back surface reflector (BSR) was embedded in the numerical model by using the effective medium theory in combination with the matrix method in the field of the electromagnetic theory of light. As an application of this modeling, it was found that the reported data of the power conversion efficiency were not explained by the conventional charged carrier process model and that the combined model of the charged carrier process with the exciton process well explains the performance of the p-i-n type μc-Si:H solar cells. In this way, the typical power conversion efficiencies were estimated to be 10.5% for the device (i-layer thickness: 1.8 μm) with the BSR (period: 600 nm; height: 250 nm) and 8.6% for the device with the flat reflector under the condition that the fractions of the exciton process and charged carrier process were 60% and 40%, respectively.  相似文献   

2.
Power conversion efficiency of p-i-n type microcrystalline silicon (c-Si:H) solar cells has been analyzed in terms of sequential processes of photo-induced electron transfer. The effect of the excitonic state on the charged carrier generation has been studied compared to a conventional scheme in which only charged carriers are taken into account for the operation of the solar cells. A numerical model has been developed to calculate current-voltage characteristics of solar cells on the basis of two types of charged carrier generation processes (exciton process and charged carrier process). The light trapping effect due to a textured back surface reflector (BSR) was embedded in the numerical model by using the effective medium theory in combination with the matrix method in the field of the electromagnetic theory of light. As an application of this modeling, it was found that the reported data of the power conversion efficiency were not explained by the conventional charged carrier process model and that the combined model of the charged carrier process with the exciton process well explains the performance of the p-i-n type c-Si:H solar cells. In this way, the typical power conversion efficiencies were estimated to be 10.5% for the device (i-layer thickness: 1.8 m) with the BSR (period: 600 nm; height: 250 nm) and 8.6% for the device with the flat reflector under the condition that the fractions of the exciton process and charged carrier process were 60% and 40%, respectively.  相似文献   

3.
构建了Klebsiella oxytoca d7和Shewanella sp.F1 2种纯菌燃料电池,探究了产电菌在产电过程中电子介体传递电子机制.结果表明:K.oxytoca d7只有作产电呼吸时,才会产生电子介体,而Shewanella. sp.F1在好氧呼吸、厌氧呼吸、产电呼吸下均能产生介电体,说明电子介体的产生与产电菌种类有关.两种菌介电体氧化还原电位相当(-250,210mV),且介于呼吸链NADH和辅酶Q之间.其介电体在胞内呼吸链上截获的电子均源于NADH,说明电子“逸出”位点只取决于介电体本身.K.oxytoca d7在碳源充足和不足时,电子介体产电量分别占总电量的60%和41%;Shewanella. sp.F1分别是57%和50%,说明在碳源充足时,2种菌的产电呼吸都以电子介体机制为主.介电体传递电子过程直接影响了阳极底物的转化和燃料电池的产电性能.  相似文献   

4.
构建了Klebsiella oxytoca d7和Shewanella sp.F1 2种纯菌燃料电池,探究了产电菌在产电过程中电子介体传递电子机制.结果表明:K.oxytoca d7只有作产电呼吸时,才会产生电子介体,而Shewanella. sp.F1在好氧呼吸、厌氧呼吸、产电呼吸下均能产生介电体,说明电子介体的产生与产电菌种类有关.两种菌介电体氧化还原电位相当(-250,210mV),且介于呼吸链NADH和辅酶Q之间.其介电体在胞内呼吸链上截获的电子均源于NADH,说明电子“逸出”位点只取决于介电体本身.K.oxytoca d7在碳源充足和不足时,电子介体产电量分别占总电量的60%和41%;Shewanella. sp.F1分别是57%和50%,说明在碳源充足时,2种菌的产电呼吸都以电子介体机制为主.介电体传递电子过程直接影响了阳极底物的转化和燃料电池的产电性能.  相似文献   

5.
BiOI powder has been proved to be an efficient photocatalyst, but the difficulty in removing it from water after reaction limits its application in real water treatment. To solve this problem,a thin-film fixed-bed reactor(TFFBR) was set-up by developing a BiOI thin film on glass fiber cloth(GFC). The composition and structure of the as-prepared films were characterized with X-ray diffraction, X-ray photoelectron spectroscopy, field emission microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The BiOI thin film was made by painting a silica sol containing BiOI on GFC, which could be tailored to desired sizes to accommodate the TFFBR. The mass of BiOI on the GFC increased with the number of iterations of the painting process. SiO2 sol glued the BiOI particles tightly onto the GFC,making the thin film strong enough to resist fluid flushing in the TFFBR. The photocatalytic activity of the BiOI thin film was investigated by degrading bisphenol A(BPA) under simulated sunlight. Ninety eight percent of BPA(20 mg/L in 2 L) was degraded by the BiOI thin film sample of seven layers(GFC-7) on the TFFBR within 8 hr irradiation. The GFC-7 displayed good photocatalytic ability toward artificial sewage containing BPA in a wide pH range(5–9),and also demonstrated excellent durability and reusability. The working conditions were optimized and it was found that the thickness of the fluid film and residence time over the thin film were key factors affecting the photocatalytic efficiency.  相似文献   

6.
7.
《Journal of Cleaner Production》2007,15(13-14):1271-1286
The analysis of industrial energy usage indicates that low temperature processes (20  200 °C) are used in nearly all industrial sectors. In principle there is the potential to use solar thermal energy in these lower temperature processes thus, reducing the environmental impact of burning fossil fuels. Using the model of an Austrian dairy plant, this research investigated the potential for, and the economic viability of, using solar energy heat processes in industry.Some industrial sectors such as food, chemistry, plastic processing, textile industry, building materials industry and business establishments can be identified as potential sectors for the application of solar energy heat processes. When assessing the (economic) feasibility of solar thermal energy, the investigation of these industries’ energy systems has to focus on an integrated analysis of cooling and heating demands and to take into account competing technologies. Amongst these are heat integration, cogeneration, new technologies and heat pumps. Pinch analysis was used to investigate industrial energy systems and heat integration possibilities and proved to be a viable tool. Working from the basis of energy balances, Sankey diagrams, pinch analysis and environmental cost accounting, a newly developed investigation tool was applied in the case study of an Austrian dairy plant. This enabled a fast optimization of the system. Two different options for the integration of solar thermal energy into the production line were calculated, option 1 with a solar field of 1000 m2 and option 2 with a solar field of 1500 m2. Natural gas savings of 85,000 for option 1 and 109,000 m3/a for option 2 can be achieved, resulting in a reduction of 170 tons of CO2 per year, or 218 tons for options 1 and 2 respectively. Based upon option 1, return on investment is realised after less than three years of implementation. This research thus, indicates promising technical and economical feasibility of using solar thermal energy for industrial processes and provides an important step towards sustainable zero emission production in industry.  相似文献   

8.
开展了连续通风和翻堆两种典型的通风方式进行污泥好氧堆肥,通过分析堆肥腐殖质中富里酸(FA)和胡敏酸(HA)的光谱特征以及本底/化学还原容量(NRC/CRC)的时态变化,研究其对污泥好氧堆肥过程中富里酸(FA)和胡敏酸(HA)的形成和电子转移能力(ETCs)的影响.结果表明:与翻堆处理相比,连续通风处理促进了堆肥FA和HA中类蛋白质组分的减少和类腐殖质组分的增加,强化了高温期和腐熟期FA的电子转移能力(CRC分别增加了176.55和123.24μmol e-/gC),但降低了HA和升温期FA的电子转移能力(CRC分别降低了246.47和116.13μmol e-/gC).相关性分析表明,影响污泥堆肥腐殖质电子转移能力的主要因素为pH值、SUVA254、SUVA290和类蛋白质组分,翻堆处理促进了类腐殖质组分对腐殖质电子转移能力的影响.  相似文献   

9.
微生物水处理技术因运行成本低、处理量大、环境影响小等优点,被广泛的用于市政污水和工业废水的处理.微生物水处理的本质过程是生物催化氧化,涉及不同微生物种群间物质、能量和电子传输过程,而微生物胞外电子传递过程是影响其处理效率的关键因素之一.本研究立足于微生物氧化的原理,从介体材料强化、光电磁强化及微生物电化学强化等角度,系统论述了铁基材料、碳基材料、光、电、磁等对微生物电子传递过程的影响与机制.在此基础上,本论文总结了微生物电化学系统原理,分析了该系统中各类强化材料、强化技术对微生物胞外电子传递的影响,揭示了强化条件下污染物高效转化的作用机制,介绍了基于各种强化原理的系统构建因素及应用现状,并展望了该技术的发展趋势及存在的挑战.  相似文献   

10.
As an aliphatic amino acid, cysteine (CYS) is diffuse in the living cells of plants and animals. However, little is known of its role in the reactivity of nano-sized zero-valent iron (NZVI) in the degradation of pollutants. This study shows that the introduction of CYS to the NZVI system can help improve the efficiency of reduction, with 30% more efficient degradation and a reaction rate constant nine times higher when nitrobenzene (NB) is used as probe compound. The rates of degradation of NB were positively correlated with the range of concentrations of CYS from 0 to 10 mmol/L. The introduction of CYS increased the maximum concentration of Fe(III) by 12 times and that of Fe(II) by four times in this system. A comparison of systems featuring only CYS or Fe(II) showed that the direct reduction of NB was not the main factor influencing its CYS-stimulated removal. The reduction in the concentration of CYS was accompanied by the generation of cystine (CY, the oxidized form of cysteine), and both eventually became stable. The introduction of CY also enhanced NB degradation due to NZVI, accompanied by the regeneration of CYS. This supports the claim that CYS can accelerate electron transfer from NZVI to NB, thus enhancing the efficiency of degradation of NB.  相似文献   

11.
采用电子束辐照联合好氧堆肥工艺对头孢菌素发酵菌渣进行无害化处理和资源化利用.堆肥原料为头孢菌素菌渣、鸡粪和秸秆,菌渣未辐照直接进行堆肥的反应器(1号)与菌渣辐照50 kGy后再进行堆肥的反应器(2号)平行运行进行对比.结果表明:2号反应器的堆体温度、温度上升速率以及高于55 ℃天数均大于1号反应器.在30 d堆肥周期中,2号堆体的平均温度比1号堆体高3.3 ℃;1号和2号堆体温度高于55 ℃的天数分别为5 d和7 d.2号堆体的有机质含量和溶解性TOC浓度下降均较快,表明其有机物的利用效率较高.辐照预处理可促进菌渣好氧堆肥腐殖化进程,2号堆体的腐殖化指数比1号堆体高15%~51%.2号堆体中抗生素头孢菌素C的浓度到第10 d即可降至液相色谱无法检出.此外,两个反应器堆肥过程中抗性基因ermB丰度有所减小,sul2丰度升高.堆肥产品中无抗生素残留,有机质指标远高于有机肥料国家标准,其作为优质肥料进行安全再利用需重点关注抗性基因的影响.  相似文献   

12.
13.
Microcystin-RR (MC-RR) has been suggested to induce apoptosis in tobacco BY-2 cells through mitochondrial dysfunction including the loss of mitochondrial membrane potential . TO further elucidate the mechanisms involved in MC-RR induced apoptosis in tobacco BY-2 cells, we have investigated the role of mitochondrial electron transport chain (ETC) as a potential source for reactive oxygen species (ROS). Tobacco BY-2 cells after exposure to MC-RR (60 mg/L) displayed apoptotic changes in association with an increased production of ROS and loss of Am. All of these adverse effects were significantly attenuated by ETC inhibitors including Rotenone (2 μmol/L, complex I inhibitor) and antimycin A (0.01 μmol/L, complex III inhibitor), but not by thenoyltrifluoroacetone (S μmol/L, complex Ⅱinhibitor). These results suggest that rnitochondrial ETC plays a key role in mediating MC-RR induced apoptosis in tobacco BY-2 cells through an increased mitochondrial production of ROS.  相似文献   

14.
Though environmental improvement has been claimed for the application of nanotechnology to solar cells, several characteristics of the fullerene-based organic, and the dye-sensitized nanoparticulate, solar cell are not conducive to such improvement. These include relatively high energy and materials inputs in the production of nanoparticles, a relatively low solar radiation to electricity conversion efficiency, a relatively short service life, the use of relatively scarce metals and relatively poor recyclability, if compared with the multicrystalline Si solar cell which currently is the market leader. Moreover, the lack of data and the inability of current methods to handle hazards of nanoparticles generate problems in conducting comparative life cycle assessment of nanoparticulate solar cells. So far, the claimed environmental advantage can not be substantiated for fullerene-based and dye-sensitized nanoparticulate solar cells. There are options for the environmental improvement of these nanoparticulate solar cells, but actual development does not seem to focus on environmental improvement.  相似文献   

15.
Microbial fuel cells (MFC) utilize microbes as catalysts to convert chemical energy to electricity.Inocula used for MFC operation must therefore contain active microbial population.The dye reduction-based electron-transfer activity monitoring (DREAM) assay was employed to evaluate different inocula used in MFCs for their microbial bioelectrical activity.The assay utilizes the redox property of Methylene Blue to undergo color change from blue to colorless state upon microbial reduction.The extent...  相似文献   

16.
It has been documented that organic contaminants can be degraded by hydroxyl radicals ( • OH) produced by the activation of H2 O2 by Fe(II)-bearing clay. However, the interfacial electron transfer reactions between structural Fe(II) and H 2 O 2 for • OH generation and its effects on contaminant remediation are unclear. In this study, we first investigated the relation between • OH generation sites and sulfamethoxazole (SMX) degradation by activating H2O2 using nontronite with different reduction extents. SMX (5.2–16.9 μmol/L) degradation first increased and then decreased with an increase in the reduction extent of nontronite from 22% to 62%, while the • OH production increased continually. Passivization treatment of edge sites and structural variation results revealed that interfacial electron transfer reactions between Fe(II) and H 2 O 2 occur at both the edge and basal plane. The enhancement on basal plane interfacial electron transfer reactions in a high reduction extent rNAu-2 leads to the enhancement on utilization efficiencies of structural Fe(II) and H 2 O 2 for • OH generation.However, the • OH produced at the basal planes is less efficient in oxidizing SMX than that of at edge sites. Oxidation of SMX could be sustainable in the H 2 O 2 /rNAu-2 system through chemically reduction. The results of this study show the importance role of • OH generation sites on antibiotic degradation and provide guidance and potential strategies for antibiotic degradation by Fe(II)-bearing clay minerals in H 2 O 2 -based treatments.  相似文献   

17.
Out-membrane cytochrome c (Cyt c) plays an important role carrying electrons from the inside of microbes to outside electron acceptors. However, the active sites of Cyt c are wrapped by non- conductive peptide chains, hindering direct extracellular electron transfer (EET). Humic acids (HA) have been previously proven to efficiently facilitate EET. However, the inherent mechanism of HA- stimulated EET has not been well interpreted. Here, to probe the mechanism behind HA-stimulated EET, we studied the interaction between Cyt c and HA. The attachment of active in vivo Cyt c on a graphite electrode was achieved when MR-1 cells were self-assembled on the electrode surface. Pure horse-heart Cyt c was covalently immobilized on an electrode via 4-aminobenzoic acid to create an active in vitro Cyt c-enriched surface. Cyclic voltammetric measurements and scanning electron microscopy confirmed the immobilization of bacterial cells and pure Cyt c protein. Electrochemical methods revealed that HA could enhance the electrocatalytic current of both in vitro and in vivo Cyt c towards oxygen and thiosulfate, suggesting enhanced EET. The blue-shifted soret band in the UV-Vis spectra and changes in the excitation/emission matrix fluorescence spectra demonstrated that Cyt c interacted with HA to form organic complexes via electrostatic or hydrogen-bonding interactions. The results will help understand electron shuttle-stimulated EET and develop bacteria- based bioremediation and bioenergy technologies.  相似文献   

18.
利用小试试验研究了太阳光/TiO2体系对铜绿微囊藻细胞内的溶解性有机氮(DON)的氧化降解过程,考察了氧化降解过程中总可溶性蛋白、多糖、UV254等指标的变化,分析了其作用机理.结果表明,7h处理后,太阳光/TiO2体系对水样中的DON降解率为29%,且降解过程中TN含量基本没有变化,而NH4+和NO3-的浓度明显增加;氧化过程中,总可溶性蛋白和多糖的含量明显减少,去除率达48.6%和54.5%.水样的浑浊度、UV254和DOC也有不同程度的去除.  相似文献   

19.
以影响大面积染料敏化太阳电池性能的几个物理参量和几何参量为切入点,分析了内部电阻对电池性能的影响,针对几种构型不同的大面积电池,建立了效率的半经验模型.根据并联、串联、和各单元独立式串并联的大面积电池的相关物理参量和几何参量,对电池效率进行了计算.通过比较计算值与测试值的偏差,分析了半经验模型的适用性.在半经验模型的基础上,分析了相关物理参量和几何参量对电池性能的影响.结果表明,在实际应用中,通过半经验模型分析物理参量和几何参量的影响,可以优化大面积电池的性能.  相似文献   

20.
During the last 30 years, growing demand for science-based policy making has contributed to the mobilization of scientific cooperation alongside transnational political arrangements for addressing environmental issues. Following the contemporary trend toward regionalizing environmental policy and practice, many of these scientific joint efforts have focused on a regional scale. This article examines regional scientific cooperation in the context of the institutionalization of mountain regions in Europe. Such cooperation can be observed from the Pyrenees to Central Asia, albeit with a degree of variation that largely remains unexplored in scientific research. Sometimes scientific cooperation served to lay the groundwork of a mountain policy initiative, other times it appeared in its wake; some examples appear as loose networks of individual scientists, others are set up as formalized monitoring and observation centers; finally, some scientific joint efforts are formally linked to, or incorporated in a mountain policy initiative, while others are largely independent. The article proposes a new typology for understanding the interactions between regional scientific mobilization and regional policy making and provides up-to-date portraits of six main cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号