首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Power conversion efficiency of p-i-n type macrocrystalline silicon (µc-Si:H) solar cells has been analyzed in terms of sequential processes of photo-induced electron transfer. The effect of the excitonic state on the charged carrier generation has been studied compared to a conventional scheme in which only charged carriers are taken into account for the operation of the solar cells. A numerical model has been developed to calculate current-voltage characteristics of solar cells on the basis of two types of charged carrier generation processes (exciton process and charged carrier process). The light trapping effect due to a textured back surface reflector (BSR) was embedded in the numerical model by using the effective medium theory in combination with the matrix method in the field of the electromagnetic theory of light. As an application of this modeling, it was found that the reported data of the power conversion efficiency were not explained by the conventional charged carrier process model and that the combined model of the charged carrier process with the exciton process well explains the performance of the p-i-n type μc-Si:H solar cells. In this way, the typical power conversion efficiencies were estimated to be 10.5% for the device (i-layer thickness: 1.8 μm) with the BSR (period: 600 nm; height: 250 nm) and 8.6% for the device with the flat reflector under the condition that the fractions of the exciton process and charged carrier process were 60% and 40%, respectively.  相似文献   

2.
3.
《Journal of Cleaner Production》2007,15(13-14):1271-1286
The analysis of industrial energy usage indicates that low temperature processes (20  200 °C) are used in nearly all industrial sectors. In principle there is the potential to use solar thermal energy in these lower temperature processes thus, reducing the environmental impact of burning fossil fuels. Using the model of an Austrian dairy plant, this research investigated the potential for, and the economic viability of, using solar energy heat processes in industry.Some industrial sectors such as food, chemistry, plastic processing, textile industry, building materials industry and business establishments can be identified as potential sectors for the application of solar energy heat processes. When assessing the (economic) feasibility of solar thermal energy, the investigation of these industries’ energy systems has to focus on an integrated analysis of cooling and heating demands and to take into account competing technologies. Amongst these are heat integration, cogeneration, new technologies and heat pumps. Pinch analysis was used to investigate industrial energy systems and heat integration possibilities and proved to be a viable tool. Working from the basis of energy balances, Sankey diagrams, pinch analysis and environmental cost accounting, a newly developed investigation tool was applied in the case study of an Austrian dairy plant. This enabled a fast optimization of the system. Two different options for the integration of solar thermal energy into the production line were calculated, option 1 with a solar field of 1000 m2 and option 2 with a solar field of 1500 m2. Natural gas savings of 85,000 for option 1 and 109,000 m3/a for option 2 can be achieved, resulting in a reduction of 170 tons of CO2 per year, or 218 tons for options 1 and 2 respectively. Based upon option 1, return on investment is realised after less than three years of implementation. This research thus, indicates promising technical and economical feasibility of using solar thermal energy for industrial processes and provides an important step towards sustainable zero emission production in industry.  相似文献   

4.
5.
Though environmental improvement has been claimed for the application of nanotechnology to solar cells, several characteristics of the fullerene-based organic, and the dye-sensitized nanoparticulate, solar cell are not conducive to such improvement. These include relatively high energy and materials inputs in the production of nanoparticles, a relatively low solar radiation to electricity conversion efficiency, a relatively short service life, the use of relatively scarce metals and relatively poor recyclability, if compared with the multicrystalline Si solar cell which currently is the market leader. Moreover, the lack of data and the inability of current methods to handle hazards of nanoparticles generate problems in conducting comparative life cycle assessment of nanoparticulate solar cells. So far, the claimed environmental advantage can not be substantiated for fullerene-based and dye-sensitized nanoparticulate solar cells. There are options for the environmental improvement of these nanoparticulate solar cells, but actual development does not seem to focus on environmental improvement.  相似文献   

6.
During the last 30 years, growing demand for science-based policy making has contributed to the mobilization of scientific cooperation alongside transnational political arrangements for addressing environmental issues. Following the contemporary trend toward regionalizing environmental policy and practice, many of these scientific joint efforts have focused on a regional scale. This article examines regional scientific cooperation in the context of the institutionalization of mountain regions in Europe. Such cooperation can be observed from the Pyrenees to Central Asia, albeit with a degree of variation that largely remains unexplored in scientific research. Sometimes scientific cooperation served to lay the groundwork of a mountain policy initiative, other times it appeared in its wake; some examples appear as loose networks of individual scientists, others are set up as formalized monitoring and observation centers; finally, some scientific joint efforts are formally linked to, or incorporated in a mountain policy initiative, while others are largely independent. The article proposes a new typology for understanding the interactions between regional scientific mobilization and regional policy making and provides up-to-date portraits of six main cases.  相似文献   

7.
Carbonaceous chondritic matrix material (CCMM) appears to be an important planet-forming unit in the mid-solar system, from the orbit of Mars to that of Uranus. The type specimen for CCMM is the lowtemperature (400–500 K) assemblage of clay minerals, organic polymer, magnetite, and Ni-rich iron sulfides which constitutes the black, fine-grained matrix of primitive carbonaceous chondrites. Solar-system objects which appear to be partly or wholly made of CCMM are the satellites of Mars, most asteroids, interplanetary dust, and, perhaps, comets, satellites of the outer planets and the rings of Uranus. CCMM constituents probably formed by low-temperature reactions of higher-temperature condensates with the ambient solar composition gas, or in the case of the organic polymer, by reactions of gaseous species catalyzed by solids.  相似文献   

8.
域外太阳能产业的现状   总被引:1,自引:0,他引:1  
杨莹 《环境》2007,(10):36-38
在化石能源日益稀缺的背景下,各国均大力发展太阳能利用,其中日本、欧洲国家(德国)和美国等经济发达、能源消耗大的国家起步较早,在技术和应用上都处于领先地位.由于太阳能发电成本较传统能源高,因此需要政府给予政策扶持.从20世纪90年代末开始,欧美、日本等国家纷纷实行"阳光计划",在太阳能发电价格、税收、发展基金等方面给予较大优惠.同时,在政府资助下,欧洲一些高水平研究机构也加大了研究步伐.欧美、日本等国家还制定了长期的能源发展战略,对太阳能的发展进行了长期规划.  相似文献   

9.
10.
Industry is responsible for high water consumption and it has become one of the main sources of water resource deterioration. However, industries are seeking alternatives that minimize the impact of using these natural resources. Some of the alternatives for reducing water consumption involve the reuse and/or recycling of wastewater. This study aims to seek alternatives to optimize water networks, minimize freshwater consumption and/or reduce costs. A non-linear program (NLP) model targeting the minimization of freshwater consumption and/or operating costs was developed. The model is based on the conservation equations of chemical species (contaminants) and mass (water). Options to reduce the cost and consumption of networks with and without regeneration processes are presented. The solutions are identified using a two-step procedure in which cost is optimized while the previously obtained minimum freshwater consumption remains fixed. The results showed excellent agreement with results reported by other authors.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
The purpose of this study was to develop a pilot scale tubular photo bioreactor (80 L) for photo fermentative hydrogen production by photosynthetic purple-non-sulfur bacterium, Rhodobacter capsulatus, operating in outdoor conditions, using acetate as the carbon source. The reactor was operated continuously in fed-batch mode for 30 days throughout December 2008 in Ankara. It was placed in a greenhouse in order to keep the temperature above freezing levels. It was found that R. capsulatus had a rapid growth with a specific growth rate of 0.025 h?1 in the exponential phase. The growth was defined with modified logistic model for long term duration. The hydrogen production and feeding started in the late exponential phase. Evolved gas contained 99% hydrogen and 1% carbon dioxide by volume. The average molar productivity calculated during daylight hour was 0.31 mol H2/(m3 h) with regard to the total reactor volume and 0.112 mol H2/(m2·day) with regard to the total illuminated surface area. It was proven that even at low light intensities and low temperatures, the acetic acid which was fed to the system can be utilized for biosynthesis, growth and hydrogen production. The overall hydrogen yield was 0.6 mole H2 per mole of acetic acid fed. This study showed that photofermentation in a pilot scale tubular photo bioreactor can produce hydrogen, even in winter conditions.  相似文献   

19.
20.
Sustainability issues in sheet metal forming processes: an overview   总被引:1,自引:0,他引:1  
Environmental sustainability in manufacturing is nowadays an urgent and remarkable issue and the main concerns are related to more efficient use of materials and energy.In sheet metal forming processes there is still a lack of knowledge in this field mainly due to the need of a proper modelling of sustainability issues and factors to be taken into account. The aim of this paper is mainly to underline the state of the art from a forming point of view about the sustainability contributions offered in any phase of a product life cycle. Actually, a lack in terms of comprehensive contributions is present in the technical literature, thus, the authors try to give a sort of holistic vision aimed to provide basic guidelines in order to help in identifying the possible solutions with regard to all the phases of a forming product life cycle. The main attention was paid to sheet metal forming technologies. The paper gives an overview of the main topics concerning sheet metal forming problems related to energy and resource efficiency with the aim to stress the principal contributions which may derive from such processes to environmental performances of manufacturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号