首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Sinking rates of natural copepod fecal pellets   总被引:4,自引:0,他引:4  
Many pure samples of natural fecal pellets have been collected from mixed small copepods and from the pontellid copepod Anomalocera patersoni in the Ligurian Sea, using a specially designed pellet collection device. Sinking rates of fresh pellets and pellets aged up to 33 days have been determined at 14°C, the mean temperature of the essentially isothermal water column in the Ligurian Sea. Sinking rates of pellets collected during calm sea states increased with increasing pellet volume, but sinking rates of pellets collected during rough sea (Beaufort scale 6) showed little correlation with pellet size. Much of the variability in the sinking rate-pellet size relationships was the result of different pellet composition and compaction, but not pellet age. Pellets produced from laboratory diets of phytoplankton and phytoplankton-sediment mixes showed the expected wide variability in sinking rates, with sediment-ballasted pellets sinking much faster than pellets produced from pure algal diets; thus determination of vertical material fluxes in the sea using laboratory-derived fecal pellet sinking rates is unwarranted. Natural pellet sinking data for small copepods and A. patersoni have been combined with similar data for euphausiids, to yield sinking rates of roughly two orders of magnitude over three orders of magnitude in pellet volume. Pellets from small copepods sank at speeds too slow to be of much consequence to rapid material flux to the deep sea, but they undoubtedly help determine upper water distribution of materials. Recalculation of fecal pellet mass flux estimates from the literature, using our sinking rate data for natural small copepod pellets, yielded estimates about half those of previously published values. Earlier studies had concluded that small fecal pellets were of lesser significance to total material flux than fecal matter; our recalculation strengthens that conclusion. Pellets from large copepods and euphausiids, however, have the capability to transport materials to great depths, and probably do not substantially recycle materials near the surface. The fact that the majority of pellets which had previously been collected in deep traps by other workers were of a size comparable to pellets from our large copepods supports the contention that these larger pellets are the main ones involved in vertical flux.  相似文献   

2.
Rates of fecal pellet production have been recorded from seven species of oceanic salps feeding on natural diets. Expressed as g C defecated per mg salp body C per hour, the values range between 3.7 and 27.7. Carbon: nitrogen ratios of the salp fecal pellets average 11.4; the organic matter of the pellets is mainly protein and carbohydrate. Sinking velocities of the pellets are very high, ranging from 320 to 2 238 m d-1 for pellets from three species. However, the pellets sink slower than would be predicted from extrapolation of rates for crustacean pellets, probably due to the shape of the pellets and their density. The high rates of defecation, large size and rapid sedimentation of salp fecal pellets make them likely mechanisms for rapid transport of small particulate matter from surface waters to deep water and the benthos.  相似文献   

3.
The vertical distribution of copepods, fecal pellets and the fecal pellet production of copepods were measured at seven stations across the Southern Indian Ocean from productive areas off South Africa to oligotrophic waters off Northern Australia during October/November 2006. We quantified export of copepod fecal pellet from surface waters and how much was retained. Furthermore, the potential impact of Oncaea spp. and harpacticoid copepods on fecal pellets degradation was evaluated and found to be regional substantial. The highest copepod abundance and fecal pellet production was found in the western nutrient-rich stations close to South Africa and the lowest at the central oligotrophic stations. The in situ copepod fecal pellet production varied between 1 and 1,000 μg C m−3 day−1. At all stations, the retention of fecal pellets in the upper 400 m of the water column was more than 99% and the vertical export of fecal pellets was low (<0.02 mg m−2 day−1).  相似文献   

4.
The relative importance of 3 different sources for biological production of nitrite in seawater was studied. Decomposition of fecal pellets of the copepod Calanus helgolandicus (at a concentration of approximately 12 g-at N/l), in seawater medium, released small amounts of ammonia over a 6 week period. It nitrifying bacteria were added to the fecal pellets nitrite was barely detectable over the same period. Decomposition of phytoplankton (present at a concentration of about 8 g-at particulate plant N/l) with added heterotrophic bacteria, released moderate amounts of ammonia over a 12 week period. If the ammonia-oxidizing bacterium Nitrosocystis oceanus was added to the decomposing algae, nitrite was produced at a rate of 0.2 g-at N/l/week. Heterotrophic nitrification was not observed when 7 open-ocean bacteria were tested for their ability to oxidize ammonia. The diatom Skeletonema costatum, either non-starved or starved of nitrogen, produced nitrite when growing with 150 or 50 g-at NO 2 - -N/l at a light intensity of about 0.01 ly/min. When nitrate in the medium was exhausted, S. costatum assimilated nitrite. If starved of vitamin B12, both non-N-starved and N-starved cells of S. costatum produced nitrite in the medium with 150 g-at NO 3 - -N/l. Nitrate was not exhausted and cell densities reached 2x105/ml due to vitamin B12 deficiency. If light intensity was reduced to 0.003 ly/min under otherwise similar conditions, cells did not grow due to insufficient light, and nitrite was not produced. In the sea, it appears that, in certain micro-environments, decomposition of particulate matter releases ammonia with its subsequent oxidation to nitrite. The amounts of these nutrients and the rate at which they are produced are dependent upon the nature of the materials undergoing decomposition and the associated bacteria. In certain other areas of the sea, where phytoplankton standing stock is high and nitrate is non-limiting, excretion by these organisms is a major source of nitrite.  相似文献   

5.
Salps (mainly Salpa fusiformis and, to a lesser extent, Pegea socia) and a web-building pteropod (Corolla spectabilis) were studied in epipelagic waters of the central California Current. Although both kinds of gelatinous zooplankton trap phytoplankton in a mucus net, a fecal pellet analysis indicated that their diet differs significantly when they feed together, probably because of differences both in the pore sizes of their nets and in their feeding methods. Salps have a finemesh filter, on which they can retain even the smallest phytoplankton; thus, when small coccolithophores are abundant, as they were in our study, salp feces contain such cells and the coccoliths derived from them. In contrast, pteropods feeding in the same area produce fecal pellets consisting chiefly of larger phytoplankton, especially diatoms. Since fecal pellets transport most biogenic material to the deep sea, changes in herbivore species composition at a given geographic location can change the chemistry of materials entering deep water; at our study site, the more salps, the greater the calcite flux, and, the more pteropods, the greater the silica flux. In addition, fecal pellets of both salps and pteropods include partially digested residues of phytoplankton that appear as olive-green spheres, having an ultrastructure identical with that of the socalled olive-green cells. Presumably, fecal pellets, after sinking into deep water, ultimately disintegrate. releasing both the viable phytoplankton and the olive-green spheres into aphotic waters. Thus the feces of epipelagic herbivores are likely sources of much of the flora of the deep ocean.  相似文献   

6.
L. Uttal  K. R. Buck 《Marine Biology》1996,125(2):333-343
This study presents the first quantification of the diet of a gelatinous midwater organism on a temporal basis. Using the Monterey Bay Aquarium Research Institute's remotely operated vehicle Ventana, regular collections of the polychaete Poeobius meseres (Heath, 1930) over a 1 yr period (October 1990 to November 1991) in Monterey Bay yielded intact organisms for the study of feeding behavior and quantitative analysis of stomach contents. In situ observations showed P. meseres feeding in two different ways: (1) by deployment of a mucus web in the water column that passively collects particles for consumption; and/or (2) by grasping detrital material in the water column with its ciliated tentacles. Stomach-content analyses showed that P. meseres is primarily coprophagic, its diet being dominated by fecal pellets from euphausiids and copepods. These fecal pellets appear to provide P. meseres with essentially all its carbon. Although fecal pellets were the most important food item volumetrically, P. meseres also consumed large numbers of diatoms and small numbers of dinoflagellates, chrysophytes, radiolarians, foraminiferans and eggs. The diet of P. meseres appears to reflect primary productivity in the surface waters, with different food items predominant in the diet at different times of the year. Pennate diatoms were most abundant in the diet during the fall, centric diatoms were most abundant during the sumnier, and fecal pellets during the winter. The composition of P. meseres diet suggests that this and other midwater gelatinous organisms have a significant role in the remineralization of particles as they sink from the surface to the deep sea.  相似文献   

7.
To assess bacterioplankton production in the sea, we have developed a procedure for measuring growth based on incorporation of tritiated thymidine into DNA; the accuracy of this procedure was tested under a variety of laboratory and field conditions. By autoradiography, we have found that for all practical purposes our technique is specific for the nonphotosynthetic bacteria and that virtually all of the active bacteria (one-third or more of the total countable bacteria) take up thymidine. We also measured (1) the intracellular isotope dilution of thymidine assessed by parallel experiments with labeled phosphorus, and (2) DNA content of natural marine bacteria (0.2 to 0.6 m size fraction); a conversion factor derived from these data permitted estimation of production from thymidine incorporation results. A very similar conversion factor was independently derived from the empirical relationship between thymidine incorporation and growth of natural bacterioplankton under controlled conditions. Combined results show that this technique, which can be performed rapidly and easily at sea, provides good estimates of production. Data from Southern California Bight waters, which contain oligotrophic as well as moderately eutrophic regions, show that average bacterioplankton doubling times, like those of the phytoplankton, are on the order of a few days, with fastest growth at depths just below those of greatest phytoplankton abundance. Offshore bacterial production is roughly 5 to 25% of the primary production; thus, at a 50% assimilation efficiency, the bacterioplankton would consume 10 to 50% of the total fixed carbon.  相似文献   

8.
The morphological variation in bacterial capsules found in suspended and sinking particles from the open ocean is examined. The capsules consist of matrices of mucopolysaccharides that remain attached to and extend the cell surface. Transmission electron microscope images of several distinct and recurring morphs are presented. Capsule abundance relative to total numbers of bacteria is significantly higher in sinking particles (up to 80% of total bacteria present) than in fine suspended particles (up to 20%). Discrete fecal pellets and minipellets are inadequate sources of the capsules captured by sediment traps. Alternatively, the data and previous observations indicate that the bacterial capsules are removed from the fine suspended-particle phase in association with macroaggregates, or marine snow. The combined properties of the bacterial capsules with their extensive open matrices of attached sticky polymers suggest a high aggregation efficiency.  相似文献   

9.
Microbial transformation of metazoan (Idotea granulosa) faeces   总被引:1,自引:0,他引:1  
Freshly collected faecal pellets of the common intertidal isopodIdotea granulosa Rathke, 1843, were exposed to natural communities of bacteria + protozoa, and bacteria + protozoa + metazoa for 16 d in running North Sea nearshore water during September 1989. All treatments showed quite identical changes in chlorophylla, phaeopigments, carbon (C) to nitrogen (N) ratio, heterotrophic bacteria and protozoa. Plant pigment, C and N content of faeces decreased by about half in 94 h. Interestingly, although the C/N ratio changed considerably during the study, the values at the end of 16 d were similar to ones at the beginning, suggesting that the C/N value per se of particles in the sea may not reflect their age or nutritive value to consumers. Further, dry weight of pellets which remained unchanged in appearance, decreased by half in 4 d and by two thirds in 16 d, indicating loss of substance but not bulk. The development and abundance of free bacteria in the water closely matched that in pellets, supporting the idea that faeces export bacteria or stimulate bacterial growth in the water through release of dissolved nutrients. There were 103 times more bacteria on faeces than free in the water of the same volume. However, given the relative volumes of the pellet (ca 0.1 mm3) and the free water in the microcosms (ca 107 × pellet volume), the degradation of faecal matter may support the production of the bulk of free-living bacteria in water. When organisms of larger sizes were allowed access to the pellets, several metazoans (e.g. nematodes ca 4 per pellet) were observed, but did not significantly accelerate faeces degradation. It appears that the combined activities of microbes (bacteria and protozoa) is mostly responsible for the rapid transformation ofI. granulosa faeces containing fucoid macroalgal tissue in the nearshore ecosystem.Contribution No. 308 from the Alfred-Wegener Institut, BremerhavenPlease address all correspondence and requests for reprints to Dr Biddanda at the Alfred-Wegener Institut, Bremerhaven  相似文献   

10.
The contribution of fecal pellets to the benthos of the southeastern shelf of the USA is investigated through an analytic model which considers pellet production by different stage groups of the genus Paracalanus. Model results indicate that the concentration and vertical flux of pellets is a function of producer size and consumer size and abundance. Nauplii and adults, respectively, produce daily on the average 50 and 13% of total pellet mass, yet contribute 4 and 63%, respectively, to the daily pellet flux. Most of the pellets produced are consumed or degraded in the water column, with only 0.2% of the average daily primary production reaching the seafloor (35 m) as fecal pellets. This contributes to an impoverished benthos, such as that found on the southeastern continental shelf.  相似文献   

11.
I. Buttino 《Marine Biology》1994,119(4):629-634
Estimates of daily fecundity, hatching success and fecal pellet production are reported for Acartia clausi females exposed for 10 d to low levels of phenol and ammonia. Copepods were collected in 1991 and 1992 from a southern coastal area of the Mar Grande of Taranto (southern Italy). A reduction in egg numbers and fecal pellet production was observed for females after 8 d of exposure to 500 g l-1 phenol concentration. Ammonia (120 g l-1) produced a significant increment in egg production, but hatching success was reduced by about 50% after nine exposure days. A. clausi was more sensitive to ammonia than phenol at high concentrations (24-h LC50 phenol-32.26 mg l-1; 24-h LC50 ammonia=0.91 mg l-1). At low concentrations, only long-term exposure to phenol determined a reduction in fecundity.  相似文献   

12.
E. J. H. Head 《Marine Biology》1992,112(4):593-600
Faecal pellets were collected in 1988 from copepods which had fed in situ or in laboratory experiments, using screened natural seawater as food, at two stations off the coast of Labrador and one in the Gulf of St. Lawrence. The chemical composition of the pellets and of particulate material in profiles and in laboratory food were measured in terms of particulate carbon, carbohydrate (soluble and insoluble), protein and lipid. Faecal pellet composition was somewhat similar in all experiments at the first two stations, where the compositions of particulate material in situ and copepod species assemblages were also similar. At the third station the compositions of faecal pellets and particulate material were slightly different from those at the other stations and the copepod species composition varied between sampling times. Faecal pellets at the first two stations had very low levels of soluble carbohydrate, while concentrations in the food were generally high, suggesting that it was efficiently metabolized by copepods, although it might have been absent because of sloppy feeding or release, after passage through the gut, in soluble form or from faecal pellets. Comparisons of POC: biogenic silica ratios in food and faecal pellets, calculated using data presented elsewhere (Head 1992; Mar. Biol. 112: 583–592), suggested that at these stations, where food concentrations were high (chlorophyll concentrations>8 gl-1), copepods may have been assimilating carbon rather inefficiently.  相似文献   

13.
Sinking rates of fecal pellets from the marine copepod Pontella meadii   总被引:1,自引:0,他引:1  
Sinking rates of fecal pellets produced by the marine copepod Pontella meadii, grazing on 4 different phytoplankton diets, ranged from 15 to 153 m/day, with a mean of 66 m/day. Sinking rates, in general, were directly related to fecal pellet volumes, but unrelated to the diets used to produce the fecal pellets. There were two-to-threefold variations in sinking rates between fecal pellets of the same volumes, often produced on the same diets. Twenty repetitions of timed sinking of a single fecal pellet revealed sinking rates varying from 33 to 79 m/day, as well as variations in sinking rates within the course of individual descents. It is suggested that copepod fecal pellets are of such small volumes and densities that their sinking rates are subject to microstructural variations in the most carefully controlled water columns. Scanning electron microscope observations revealed lack of structural damage to some of the diatom frustules in the fecal pellets, suggesting that superfluous feeding may have occurred. Thus, the accelerated sinking rates of copepod fecal pellets may provide a mechanism for nutritional enrichment of the deep-sea ecosystem with organic parcels containing incompletely-assimilated plant material.  相似文献   

14.
The colonial ascidian Distaplia cylindrica occurs both as scattered individual colonies or in gardens of colonies in fine-grained soft substrata below 20 m depths off Anvers Island along the Antarctic Peninsula. Individual colonies, shaped as tall rod-like cylinders and anchored in the sediments by a bulbous base, may measure up to 7 m in height. D. cylindrica represent a considerable source of materials and energy for prospective predators, as well as potential surface area for fouling organisms. Nonetheless, qualitative in situ observations provided no evidence of predation by sympatric predators such as abundant sea stars, nor obvious biofouling of colony surfaces. Mean energy content of whole-colony tissue of D. cylindrica was relatively high for an ascidian (14.7 kJ g–1 dry wt), with most of this energy attributable to protein (12.7 kJ g–1 dry wt). The sympatric omnivorous sea star Odontaster validus consistently rejected pieces of D. cylindrica colonies in laboratory feeding assays, while readily ingesting similarly sized alginate food pellets. Feeding deterrence was determined to be attributable to defensive chemistry, as colonies of D. cylindrica are nutritionally attractive and lack physical protection (conspicuous skeletal elements or a tough outer tunic), and O. validus display significant feeding-deterrent responses to alginate food pellets containing tissue-level concentrations of organic extracts. In addition, high acidity measured on outer colony surfaces (pH 1.5) as well as homogenized whole-colony tissues (pH 2.5) are indicative of surface sequestration of inorganic acids. Agar food pellets prepared at tissue levels of acidity resulted in significant feeding deterrence in sea stars. Thus, both inorganic acids and secondary metabolites contribute to chemical feeding defenses. D. cylindrica also possesses potent antifoulant secondary metabolites. Tissue-level concentrations of hydrophilic and lipophilic extracts caused significant mortality in a sympatric pennate diatom. Chemical feeding deterrents and antifoulants are likely to contribute to the abundance of D. cylindrica and, in turn, play a role in regulating energy transfer and community structure in benthic marine environments surrounding Antarctica.Communicated by P.W. Sammarco, Chauvin  相似文献   

15.
The role of the Mediterranean euphausiid Meganyctiphanes norvegica in the cycling of radiocerium (141Ce) was examined. When uptake of 141Ce occurs directly from the water, a dynamic population equilibrium is reached at a concentration factor of about 250. Molting was responsible for up to 99% loss of total body burden at first molt, and about 45% of the remaining activity at second molt, thus denying true longterm equilibrium to individual animals. Fecal pellets did not contain measureable 141Ce activity when the euphausiids accumulated the isotope from water, thus proving that surface adsorption was the key accumulating process from water. When radiocerium was taken in through ingestion of labelled Artemia, about 99% of the body burden was voided as fecal pellets. Excretion by this route was accelerated when euphausiids were fed non-radioactive Artemia during loss phase. Radioactive counts of the pellets confirmed that all ingested 141Ce was lost through defecation. When 141Ce was ingested as labelled phytoplankton, a substantial fraction of the total body burden occurred in the molts, which indicated that the phytoplankton lost 141Ce to the water and the radioactivity was subsequently adsorbed to outer surfaces of the euphausiids. Molts, fecal pellets, and freshly-killed euphausiids lost 141Ce to the water exponentially, the rates being similar to the exponential portions of the loss curves for live, non-molting individuals. It is suggested that M. norvegica, and probably other pelagic zooplankters, can greatly accelerate radiocerium transport to the ocean floor by packaging the isotope as fecal pellets. In coastal areas subject to low-level radioactive waste disposal, 141Ce might be ionic (or at least soluble) to a great extent, in which case euphausiids could take up the isotope rapidly and accelerate its vertical transport via molting.  相似文献   

16.
Rapid mass sinking of cells following diatom blooms, observed in lakes and the sea, is argued here to represent the transition from a growing to a resting stage in the life histories of these algae. Mass sinking is of survival value in those bloom diatoms that retain viability over long periods in cold, dark water but not in warm, nutrient-depleted surface water. Mechanisms for accelerating sinking speed of populations entering a resting or seeding mode are proposed. Previously unexplained features of diatom form and behaviour take on a new meaning in this context of diatom seeding strategies. Diatoms have physiological control over buoyancy as declining growth is accompanied by increasing sinking rates, where the frustule acts as ballast. Increased mucous secretion in conjunction with the cell protuberances characteristic of bloom diatoms leads to entanglement and aggregate formation during sinking; the sticky aggregates scavenge mineral and other particles during descent which further accelerates the sinking rate. Such diatom flocs will have sinking rates of 100 m d-1 or more. This is corroborated by recent observations of mass phytoplankton sedimentation to the deep sea. This mechanism would explain the origin of marine snow flocs containing diatoms in high productivity areas and also the well-known presence of a viable deep sea flora. That mortality is high in such a seeding strategy is not surprising. A number of species-specific variables pertaining to size, morphology, physiology, spore formation and frustule dissolution rate will determine the sinking behaviour and thus control positioning of resting stages in the water column or on the bottom. It is argued that sinking behaviour patterns will be environmentally selected and that some baffling aspects of diatom form and distribution can be explained in this light. Rapid diatom sedimentation is currently believed to be mediated by zooplankton faecal pellets, particularly those of copepods. This view is not supported by recently published observations. I speculate that copepod grazing actually retards rather than accelerates vertical flux, because faecal pellets tend to be recycled within the surface layer by the common herbivorous copepods. Egestion of undigested food by copepods during blooms acts as a storage mechanism, as ungrazed cells are likely to initiate mass precipitation and depletion of the surface layer in essential elements. Unique features of diatoms are discussed in the light of their possible evolution from resting spores of other algae. An evolutionary ecology of pelagic bloom diatoms is deduced from behavioural and morphological characteristics of meroplanktonic and tychopelagic forms. Other shell-bearing protistan plankters share common features with diatoms. Similar life-history patterns are likely to be present in species from all these groups. The geological significance of mass diatom sinking in rapidly affecting transfer of biogenic and mineral particles to the sea floor is pointed out.  相似文献   

17.
Interactions of marine plankton with transuranic elements   总被引:2,自引:0,他引:2  
In a series of laboratory experiments, the biokinetics of 241Am, an important transuranium element, was studied in Meganyctiphanes norvegica, a euphausiid common in the northwestern Mediterranean. The euphausiids accumulated Am from water by passive adsorption onto exoskeletons, achieving wet weight concentration factors on the order of 102 after 1 wk exposure; concentration factors varied inversely with the size of the euphausiids and linearly with their surface area:wet weight ratios. Essentially all (96±10%) of the Am taken up from water was associated with the exoskeleton, so that negligible Am was retained by the euphausiids after molting. The retention half-time of Am in molts was 2.9 d. Euphausiids could also concentrate Am from feeding suspensions by ingesting Am-labelled diatom cells, although there was negligible Am assimilation (3±2% after 4 d feeding); after passage through the gut, virtually all (99%) of the ingested Am was defecated within 1 wk. The retention half-time of Am in fecal pellets was 41 and 51 d at 13° and 5°C, respectively. In oceanic waters, where the preponderance of 241Am is in the dissolved phase, uptake of Am from water by euphausiids would be the dominant route of bioaccumulation. The results underscore the importance of sinking biogenic debris from zooplankters in mediating the vertical transport of Am in the sea. Given their retention half-times for 241Am and their rapid sinking rates, fecal pellets and discarded molts have the potential to deliver most of their Am to the sediments.  相似文献   

18.
The study was carried out in the Skagerrak during late summer when population development in the pelagic cycle culminated in the yearly maximum in zooplankton biomass. The cyclonic circulation of surface water masses created the characteristic dome-shaped pycnocline across the Skagerrak. The large dinoflagellate Ceratium furca dominated the phytoplankton biomass. Ciliates and heterotrophic dinoflagellates were the major grazers and, potentially, consumed 43–166% of daily primary production. The grazing impact of copepods was estimated from specific egg production rates and grazing experiments. The degree of herbivory differed between species (14–85%), but coprophagy (e.g. feeding on fecal pellets) and ingestion of microzooplankton were also important. The appendicularian Oikopleura dioica was present in lower numbers than copepods, but cleared a large volume of water. The grazing impact of copepods and O. dioica was estimated to 57±24% and 12±12% of daily primary production, respectively. Sedimentation of organic material (30 m) varied between 169 and 708 mg C m–2 day–1, and the contribution from the mesozooplankton (copepod fecal pellets and mucus houses with attached phytodetritus of O. dioica) was 5–33% of this sedimentation. Recycling of fecal pellets and mucus houses in the euphotic zone was 59% and 36%, respectively. However, there was a high respiration of organic material by microorganisms in the mid-water column, and 34% of the sedimenting material actually reached the benthic community in the deep, central part of the Skagerrak.  相似文献   

19.
Assessing feeding of a carnivorous copepod using species-specific PCR   总被引:1,自引:0,他引:1  
The polymerase chain reaction (PCR) offers a sensitive and selective way to detect trace amounts of biological remnants. Here, we show that this simple molecular technique can be applied to identify prey copepods in the fecal pellets of carnivorous zooplankton. Using variation in the mitochondrial cytochrome C oxidase subunit I (mtCOI) sequence, we developed a species-specific oligonucleotide PCR primer (COI-2026) for Calanus helgolandicus. In a touch-down PCR, Calanus DNA was amplified from pellets collected from freshly incubated individuals of the carnivorous copepod Pareuchaeta norvegica. Positive results could easily be detected by agarose gel electrophoresis.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by M. Kühl, Helsingør  相似文献   

20.
Tilapia zillii Gervais is recorded for the first time from Suez Bay off the Institute of Oceanography and Fisheries, Ataqa (UAR), during October and November 1965 and 1966. Salinities and temperatures of surface sea water ranged from 42 to 42.79 and 23° to 24.4°C, respectively. The occurrence of specimens of T. zillii in the Bay indicates that it can tolerate high salinities and survive in the sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号