首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the relation between vegetation reflectance and elevated concentrations of the metals Ni, Cd, Cu, Zn and Pb in river floodplain soils. High-resolution vegetation reflectance spectra in the visible to near-infrared (400-1350 nm) were obtained using a field radiometer. The relations were evaluated using simple linear regression in combination with two spectral vegetation indices: the Difference Vegetation Index (DVI) and the Red-Edge Position (REP). In addition, a multivariate regression approach using partial least squares (PLS) regression was adopted. The three methods achieved comparable results. The best R(2) values for the relation between metals concentrations and vegetation reflectance were obtained for grass vegetation and ranged from 0.50 to 0.73. Herbaceous species displayed a larger deviation from the established relationships, resulting in lower R(2) values and larger cross-validation errors. The results corroborate the potential of hyperspectral remote sensing to contribute to the survey of elevated metal concentrations in floodplain soils under grassland using the spectral response of the vegetation as an indicator. Additional constraints will, however, have to be taken into account, as results are resolution- and location-dependent.  相似文献   

2.
The enantiomer composition of six chiral polychlorinated biphenyls (PCBs) were measured in three different certified Standard Reference Materials (SRMs) from the US National Institute of Standards and Technology (NIST): SRM 1946 (Lake Superior fish tissue), SRM 1939a (PCB Congeners in Hudson River Sediment), and SRM 2978 (organic contaminants in mussel tissue--Raritan Bay, New Jersey) to aid in quality assurance/quality control methodologies in the study of chiral pollutants in sediments and biota. Enantiomer fractions (EFs) of PCBs 91, 95, 136, 149, 174, and 183 were measured using a suite of chiral columns by gas chromatography/mass spectrometry. Concentrations of target analytes were in agreement with certified values. Target analyte EFs in reference materials were measured precisely (<2% relative standard deviation), indicating the utility of SRM in quality assurance/control methodologies for analyses of chiral compounds in environmental samples. Measured EFs were also in agreement with previously published analyses of similar samples, indicating that similar enantioselective processes were taking place in these environmental matrices.  相似文献   

3.
Two soils formed on the floodplain terrace of a rivulet flowing through the zinc-lead ore exploration area polluted with thallium and one soil from a floodplain terrace of the reference area were investigated in terms of thallium distribution between soil fractions. Such type of soil is formed on river floodplain terraces next to the main river channel and its composition records the history of river pollution. A sequential extraction of soil according to the BCR protocol was performed with an additional initial stage of extraction with water. Apart from labile thallium, thallium entrapped in the residual parent matter was also determined. Thallium was determined by flow-injection differential-pulse anodic stripping voltammetry. In all three cases, the major fraction is thallium entrapped in parent matter. Top soil from the polluted area contains 49.3% thallium entrapped in the residual parent matter, the bottom soil contains 41% while the reference soil contains 80% in this fraction. The major part of labile thallium is located in the reducible fraction (27.7% of total thallium in the top soil, 27% in the bottom soil and 12.4% of the reference soil). Second in terms of significance is the fraction of oxidizable thallium. The top soil contains 12% of total thallium concentration, the bottom soil contains 19% of total concentration, while the reference soil contains 4.1% of total concentration. The acid soluble/exchangeable fraction of thallium has almost the same significance as the oxidizable fraction. The top soil contains 10.4% of the total concentration, while the bottom soil contains 12% of the total concentration. Water soluble thallium concentration is very small. Comparison of the top and the bottom soil show that thallium has not been transported from the river channel onto the floodplain terrace over a long period.  相似文献   

4.
Environmental Science and Pollution Research - Soil contamination by trace elements like copper (Cu) can affect soil functioning. Environmental policies with guidelines and soil survey measurements...  相似文献   

5.
Metals in particle-size fractions of the soils of five European cities   总被引:5,自引:0,他引:5  
Soils from Aveiro, Glasgow, Ljubljana, Sevilla and Torino have been investigated in view of their potential for translocation of potentially toxic elements (PTE) to the atmosphere. Soils were partitioned into five size fractions and Cr, Cu, Ni, Pb and Zn were measured in the fractions and the whole soil. All PTE concentrated in the <10 microm fraction. Cr and Ni concentrated also in the coarse fraction, indicating a lithogenic contribution. An accumulation factor (AF) was calculated for the <2 and <10 microm fraction. The AF values indicate that the accumulation in the finer fractions is higher where the overall contamination is lower. AF for Cr and Ni are particularly low in Glasgow and Torino. An inverse relationship was found between the AF of some metals and the percentage of <10 microm particles that could be of use in risk assessment or remediation practices.  相似文献   

6.
Temporal changes in the distribution of exogenous HCB and DDT among different soil organic matter fractions were studied under sterile and non-sterile conditions, different soil water contents, and different concentrations of added Cu(2+). The residence time was 311days. Soil organic matter was fractionated into fulvic acid (FA), humic acid (HA), bound-humic acid (BHA), lipid, and insoluble residue (IR) fractions by a methyl isobutyl ketone (MIBK) method. Results revealed that there is a mass transfer tendency of DDT and HCB from FA, HA and BHA to IR and lipid fractions with increasing residence time. Microbial activity accelerated the mass transfer, while the addition of Cu(2+) slowed it down. The HCB and DDT transfer rate decreased as the soil moisture increased from 1.9% to 60%, but increased when soil moisture increased further to 90%. A two-compartment first order kinetic model was used to describe the mass transfer from FA, HA and BHA.  相似文献   

7.
A mixed population of soil hydrocarbon degrading bacteria was used to accelerate the biodegradation of a petrochemical waste. An aromatic hydrocarbon storage tank bottom was mixed with soil (10% w/w). After a month 43% of the hydrocarbons were degraded in uninoculated and in fertilized soil, while 65% were degraded in inoculated soil. Nutrient supplemented vermiculite seems to be a good possibility to produce effective hydrocarbon degrading inoculants.  相似文献   

8.
Xu J  Yang L  Wang Z  Dong G  Huang J  Wang Y 《Chemosphere》2006,62(4):602-607
Pot soil experiments showed that copper (Cu) is highly toxic to rice. Rice grain yields decreased exponentially and significantly with the increase of soil Cu levels. Rice grain yield was reduced about 10% by soil Cu level of 100 mg kg(-1), about 50% by soil Cu level of 300-500 mg kg(-1) and about 90% by soil Cu concentration of 1,000 mg kg(-1). Root was more sensitive to soil Cu toxicity than other parts of rice plant at relatively lower soil Cu levels (less than 300-500 mg kg(-1)), but the growth of whole rice plant was severely inhibited at high soil Cu levels (300-500 mg kg(-1) or above). Cu concentrations in rice grain increased with soil Cu levels below 150-200 mg kg(-1), but decreased with soil Cu levels above 150-200 mg kg(-1), with peak Cu concentration at soil Cu level of 150-20 mg kg(-1). Cu was not distributed evenly in different parts of rice grain. Cu concentration in cortex (embryo) was more than 2-fold that in chaff and polished rice. More than 60% of the Cu in grain was accumulated in polished rice, about 24% in cortex (embryo), and about 12% in chaff. So, about 1/3 of the Cu in rice grain was eliminated after grain processing (chaff, cortex and embryo was removed).  相似文献   

9.
Choi J 《Chemosphere》2006,63(11):1824-1834
Cadmium sorption experiments were conducted to infer Cd sorption mechanisms to a reference smectite and three fractions of a Vertisol soil. Untreated Vertisol has a higher adsorption capacity for Cd than that of reference smectite. Surface complex modeling was used to calculate the potential contributions of Cd complexation reactions with permanent charge sites and pH-dependent charge sites over ranges in pH, for soils with given surface areas, and sorption site densities. The Langmuir model produced relatively good predictions of Cd sorption on reference smectite and Vertisol. However, the results of the triple-layer model (TLM) were inadequate to describe Cd adsorption on fixed-charge sites because the model could not account for the ion-exchange reaction on the basal plane. Based upon the two geochemical models of Cd adsorption to the reference smectite and Vertisol, it appears that the basal plane siloxane cavities are the most important sites for Cd complexation at pH < 6.5. For the pH-dependent sites, the edge-site aluminol appears to be the dominant surface functional group responsible for Cd adsorption at pH > 6.5.  相似文献   

10.
Changes of copper speciation in maize rhizosphere soil   总被引:1,自引:0,他引:1  
Chemical forms of copper in the rhizosphere and bulk soil of maize were investigated using rhizobox cultivation and sequential extraction techniques. The copper accumulations were also determined. The results demonstrated that there were continuous changes in copper fractionation within the maize rhizosphere. Initially, the amount of exchangeable copper increased before dropping below the initial level after 40 days or so. Carbonate associated copper followed a similar trend of change, but with a slower pace than the exchangeable copper. The increase in carbonate associated copper only become evident after 30 days, with the net loss occurring after 60 days. There were also initial increases in oxide bound copper as well as decreases in the organic matter associated copper, both followed by a turnover after 40-50 days. The accumulation of copper in the maize plant was found to be biomass dependent. The amount of accumulated copper absorbed in the plant material exceeded the initial quantity of the exchangeable copper in the soil, revealing a transformation from less bioavailable to more bioavailable fractions. During cultivation, decreases in redox potential and increases in pH, dissolved organic carbon (DOC), and microbial activity in the maize rhizosphere were observed. The change in copper speciation may result from root-induced changes in DOC, redox potential, and microbial activity in the rhizosphere.  相似文献   

11.
Evaluation of impacts of soil fractions on phenanthrene sorption   总被引:3,自引:0,他引:3  
Luo L  Zhang S  Ma Y 《Chemosphere》2008,72(6):891-896
Phenanthrene sorption to soils and soil fractions was investigated using two contrasting soils with different clay mineral and organic carbon (OC) contents in an attempt to evaluate the contribution of each soil fraction to phenanthrene sorption and the applicability of the carbon-normalized distribution constant (K(OC)) in soils. Sorbents were characterized using surface analysis, solid-state (13)C NMR analysis, and glass transition temperature (T(g)) analysis to gain a insight into the chemical nature of OC in soils. Dissolved organic carbon (DOC) in the soil solution impeded the phenanthrene sorption, while humins accounted for the predominant phenanthrene sorption in soils. The contribution of OC to phenanthrene sorption in soil would be overestimated if only a K(OC)-approach was adopted, since clay minerals could account for much of the sorption, especially when OC was low in soils. Nitrogen gas was shown to be inappropriate for probing non-polar sorption capacity. The results obtained highlight the importance of clay minerals in governing the sorption of phenanthrene in soil, and emphasize the inapplicability of the carbon-normalized distribution coefficient K(OC) in soils.  相似文献   

12.
Determination photostability of selected agrochemicals in water and soil.   总被引:5,自引:0,他引:5  
The photolysis of selected pesticides in aqueous solutions has been investigated. The photolysis produced different intermediate substances, which were also found to be soil and microbial degradation products. The phototransformation in the presence of TiO2 and humic substances leads to a disappearance of these compounds. The reaction rate is dependent on the semiconductor oxide and concentration. Photoproducts were isolated and characterized by different spectroscopic methods. Results from this study indicate that degradation products of isoproturon are more toxic on Daphnia magna than on the parent compound.  相似文献   

13.
为了解苯并三唑(BTA)在水-土系统中的迁移转化,通过批实验方法研究了BTA在华北平原土样(GSS13)中的吸附,考察了平衡时间、土壤投加量、溶液初始pH以及共存阳离子对吸附的影响。结果表明,在初始阶段,土壤对BTA的吸附速率较快,之后随着吸附点位的减少,吸附逐渐变慢;吸附过程符合准二级反应动力学方程。土壤对BTA的平衡吸附为非线性吸附,吸附等温线为Freundlich型;随着土壤投加量的增大,单位质量土壤吸附BTA的量减少,可能原因是所选土壤对BTA的吸附存在"固体浓度效应"。溶液的pH通过改变BTA的存在形式和土壤表面的带电性而影响吸附,当溶液pH在BTA的pKa2(8.6)附近时,土壤对BTA的吸附效果最好。此外,溶液中共存阳离子对土壤吸附BTA有不同的影响, Na+对吸附影响不明显,而不同浓度Ca2+对BTA的吸附有不同程度的促进作用。  相似文献   

14.
The intake fraction (iF) has been defined as the integrated incremental intake of a pollutant released from a source category or region summed over all exposed individuals. In this study we evaluated the iFs in the population of Europe for emissions of anthropogenic primary fine particulate matter (PM2.5) from sources in Europe, with a more detailed analysis of the iF from Finnish sources. Parameters for calculating the iFs include the emission strengths, the predicted atmospheric concentrations, European population data, and the average breathing rate per person. Emissions for the whole of Europe and Finland were based on the inventories of the European Monitoring and Evaluation Programme (EMEP) and the Finnish Regional Emission Scenario (FRES) model, respectively. The atmospheric dispersion of primary PM2.5 was computed using the regional-scale dispersion model SILAM. The iFs from Finnish sources were also computed separately for six emission source categories. The iFs corresponding to the primary PM2.5 emissions from the European countries for the whole population of Europe were generally highest for the densely populated Western European countries, second highest for the Eastern and Southern European countries, and lowest for the Northern European and Baltic countries. For the entire European population, the iF values varied from the lowest value of 0.31 per million for emissions from Cyprus, to the highest value of 4.42 per million for emissions from Belgium. These results depend on the regional distribution of the population and the prevailing long-term meteorological conditions. Regarding Finnish primary PM2.5 emissions, the iF was highest for traffic emissions (0.68 per million) and lowest for major power plant emissions (0.50 per million). The results provide new information that can be used to find the most cost-efficient emission abatement strategies and policies.  相似文献   

15.
Heavy metal distribution in medicinal plants is gaining importance not only as an alternative medicine, but also for possible concern due to effects of metal toxicity. The present study has been focused on emphasizing the heavy metal status and bioaccumulation factors of V, Mn, Fe, Co, Cu, Zn, Se (essential metals) and Cr, Ni, Cd, As and Pb (potentially toxic metals) in medicinal plants grown under two different environmental conditions e.g., near to Khetri copper mine and those in fertile soils of Haridwar, both in India, using Instrumental Neutron Activation Analysis (relative method) and Atomic Absorption Spectrometry. The copper levels in the medicinal plants from Khetri were found to be 3-4 folds higher (31.6–76.5 mg kg?1) than those from Haridwar samples (7.40–15.3 mg kg?1), which is correlated with very high copper levels (763 mg kg?1) in Khetri soil. Among various heavy metals, Cr (2.60–5.92 mg kg?1), Cd (1.47–2.97 mg kg?1) and Pb (3.97–6.63 mg kg?1) are also higher in concentration in the medicinal plants from Khetri. The essential metals like Mn (36.4–69.3 mg kg?1), Fe (192–601 mg kg?1), Zn (24.9–49.9 mg kg?1) and Se (0.13–0.91 mg kg?1) and potentially toxic metals like Ni (3.09–9.01 mg kg?1) and As (0.41–2.09 mg kg?1) did not show much variations in concentration in the medicinal plants from both Khetri and Haridwar. The medicinal plants from Khetri, e.g., Ocimum sanctum, Cassia fistula, Withania somnifera and Azadirachta Indica were found rich in Ca and Mg contents while Aloe barbadensis showed moderately high Ca and Mg. Higher levels of Ca-Mg were found to correlate with Zn (except Azadirachta Indica). The bioaccumulation factors (BAFS) of the heavy metals were estimated to understand the soil-to-plant transfer pattern of the heavy metals. Significantly lower BAF values of Cu and Cr were found in the medicinal plants from Khetri, indicating majority fraction of these metals are precipitated and were immobilized species unsuitable for plant uptake. Overall, Withania somnifera (Ashwagandha) showed very high metal bioaccumulation.  相似文献   

16.
热解吸对污染土壤中不同形态汞的去除作用   总被引:1,自引:0,他引:1  
选取贵州省万山矿区的汞污染土壤样品进行不同形态汞的热解吸去除行为研究。研究了热解吸过程中∑Hg的去除效果及动力学,以及温度和时间对污染土壤中不同形态汞的去除作用。结果表明,热解吸修复技术可有效去除土壤中的汞,土壤中∑Hg的热解吸过程符合二级动力学方程。固定热解吸时间在10 min时,随着热解吸温度的升高,土壤中水溶态汞、盐酸溶态汞和碱溶态汞含量呈现先下降后上升再下降的趋势,王水溶汞和盐酸溶态汞始终呈现下降趋势,说明不同形态的汞之间发生了转化。热解吸温度为250℃时,随着热解吸时间的增加,环境风险大的水溶态汞、盐酸溶态汞、碱溶态汞和硝酸溶态汞的去除率大幅增加,土壤的有机质损失较少,说明在低温下,延长热解吸时间,对生物毒性强的形态汞有良好的修复效果,且此温度下处理后的土壤更容易恢复农田耕作。  相似文献   

17.
Three different soils were incubated under field conditions with 14C-ring labelled atrazine. After six months, the soils were exhaustively extracted with methanol and sonicated in water. The dispersed material was then fractionated by sieving, sedimentation and centrifugation, and each fraction was separated into humin, fulvic and humic acids. In all soils, the well humified organic matter and the atrazine residues were mainly located in the 20-2 and 2-0.2 μm fractions. There was a very large concentration of bound residues in the coarsest fractions, especially in the 200-50 μm fraction. These could be related to the active degradation of coarse plant residues, or to bioconcentration by soil actinomycetes and fungi.  相似文献   

18.
Environmental Science and Pollution Research - Sedimentary soil was selected as the original sample (SOS). The adsorption fractions were obtained by the removal of dissolved organic matter (SRDOM),...  相似文献   

19.
The influence of two vermicomposts from winery and distillery wastes on the distribution of diuron in agricultural soil was studied. Physical soil fractionations at 0, 9, 27, 49 and 77 days, allowed the quantification of pesticide residues in different particle-size fractions, coarse waste (WF), sand-sized (SF), silt-sized (SiF), clay-sized (CF) and dissolved organic matter-sized fraction (DOM). The SiF made a greater contribution to the formation of non-extractable residues in unamended soil, but when vermicomposts were added, new sorption sites in WF appeared, being higher for the more humified vermicompost V2. The dissolved organic carbon (DOC) increased with the addition of vermicompost, but the concentration of the desorbed 14C-radiochemical did not increase. Non-significant increment was observed with time for the non-extractable fraction with amendments. Diuron was transformed in all samples, although less than 0.5% was mineralized. The main effect caused by vermicomposts was a reduction in the availability of diuron in soil.  相似文献   

20.
Krauss M  Wilcke W 《Chemosphere》2005,59(10):1507-1515
The sorption strength of persistent organic pollutants in soils may vary among different soil organic matter (SOM) pools. We hypothesized that polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were unevenly distributed and had different soil organic carbon (SOC)-water partition coefficients (K(OC)) among soil density fractions. We determined the concentrations and K(OC) values of 20 PAHs and 12 PCBs in bulk samples and three density fractions (light, <2.0, medium, 2.0-2.4, and heavy, >2.4 g cm(-3)) of 11 urban topsoils (0-5 cm) from Bayreuth, Germany. The K(OC) values were determined using sequential extraction with methanol-water mixtures (35% and 65% methanol) at 60 degrees C. The sum of 20 PAH concentrations in bulk soil ranged 0.4-186 mg kg(-1), and that of 12 PCB concentrations 1.2-158 microg kg(-1). The concentrations of all PAHs and PCBs decreased in the order light>medium>heavy fraction. When normalized to the SOC concentrations, PAH concentrations were significantly higher in the heavy than in the other density fractions. The K(OC) values of the PAHs in density fractions were 3-20 times higher than those of the PCBs with similar octanol-water partition coefficients (K(OW)). The K(OC) values of individual PAHs and PCBs varied up to a factor of 1000 among the studied soils and density fractions. The K(OC) values of 5- and 6-ring PAHs tended to be highest in the heavy fraction, coinciding with their enrichment in this fraction. For the other PAHs and all PCBs, the K(OC) values did not differ among the density fractions. Thus, there is no relationship between sorption strength and distribution among density fractions, indicating that density fractionation is not a suitable tool to distinguish among differently reactive PAH and PCB pools in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号