首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
通过实验室模拟试验分析了进水氮负荷对污水地下渗滤系统出水水质及N2O产生的影响。结果表明:随进水氮负荷升高,系统对NH_4~+-N、COD等污染物的去除率呈下降趋势,而对TN的去除率呈先增加后降低的趋势;在低进水氮负荷(≤1.6 g/(m~2·d))和高进水氮负荷(≥6.4 g/(m~2·d))时,生物脱氮作用的N_2O气体产率相对较低,不超过(31.8±2.7)mg/(m~2·d);在中等进水氮负荷(2.4~5.6g/(m~2·d))时,N_2O气体产率最大值达到(60.6±2.0)mg/(m~2·d);N_2O的转化率也呈先升高后降低的变化趋势,在氮负荷为2.4 g/(m~2·d)时,转化率达到最大值,即1.33%±0.03%。综合考虑地下渗滤系统处理效果及N_2O产率等方面的要求,建议在工程应用中,污水地下渗滤系统的进水氮负荷为4.0~5.6 g/(m~2·d)。在该负荷区间下,N_2O主要产生在地下渗滤系统的下层,即厌氧区域是N_2O的主要释放源,占总体的70%以上。  相似文献   

2.
接种厌氧氨氧化(Anaerobic Ammonium Oxidation,ANAMMOX)颗粒污泥至上流式厌氧污泥床反应器(Up-flow Anaerobic Sludge Blanket,UASB),并控制进水NO_3~--N/NO_2~--N质量比为1∶1。在(33±1)℃下,通过研究不同进水总氮质量浓度(200 mg/L、400mg/L、600 mg/L)和水力停留时间(12 h、8 h、6 h、4 h)下的脱氮效能、污泥形态及微生物群落结构,多维分析上流式ANAMMOX反应器氮负荷提升过程中的运行性状。结果表明,在进水NO_3~--N和NO_2~--N质量浓度均为200 mg/L、总氮质量浓度为400 mg/L、水力停留时间为6h的运行工况下反应器可获得最佳处理效能,NO_3~--N、NO_2~--N和总氮去除负荷分别达到0.76 kg N/(m3·d)、0.75 kg N/(m3·d)和1.32kg N/(m3·d),三者去除率分别为95.0%、93.8%和82.5%。氮负荷提升过程中的污泥形态和微生物群落结构动态变化显示,相较于水力停留时间的缩短,进水总氮质量浓度增加对上流式ANAMMOX反应器运行过程的影响更为显著,其不仅导致了颗粒污泥解聚,还显著降低了微生物种群的多样性和均匀度。核酸测序结果表明,反应器中分布着3种潜在的ANAMMOX优势功能菌,且三者丰度会随进水总氮质量浓度增加而发生明显演替。研究表明,在上流式ANAMMOX反应器氮负荷提升过程中,进水总氮浓度的控制更为关键。  相似文献   

3.
以餐厨垃圾为研究对象,在高温(55±1)℃条件下,采用连续湿式厌氧发酵技术研究发酵过程中进料有机负荷、日产气量、pH值、挥发性有机酸(VFA)质量浓度等参数的变化情况及相互作用关系.结果表明:厌氧消化过程中出现了4个阶段,即适应阶段、提高阶段、稳定阶段和超负荷阶段;反应达到稳定阶段时,反应器运行有机负荷为3.9 kg/(m3·d),系统pH值稳定在7.8左右,平均产气速率达到5.26L/d;负荷达到4.2 kg/(m3·d)时,对系统产生明显抑制作用.  相似文献   

4.
以人工模拟海水养殖废水为处理对象,探讨了PE(聚乙烯)环、珊瑚石和PP(聚丙烯)方便面净水板3种生物滤料对氨氮的吸附性能,获得了动态吸附的穿透曲线。研究了3种滤料的生物挂膜情况以及挂膜成熟后在不同水力负荷下的净水效果。结果表明,珊瑚石滤料的挂膜成熟时间明显短于PE和PP材质的滤料,生物膜厚度与水流流速呈负相关。水力负荷对3种滤料生物滤器的净水效果有显著影响,当水力负荷为19~51 m3/(m2.h)时,生物滤器对TAN、TOC和NO2--N有较为理想的去除效果。  相似文献   

5.
6.
研究在低温和常温条件下不同比例砂土与黏土混合制成的生态减污袋对模拟污水中氨氮及磷的去除效果。试验模拟污水中氨氮及磷的质量浓度分别为10 mg/L和1 mg/L,生态减污袋中砂土和黏土的质量比分别为1∶1、5∶1和10∶1,温度控制在22℃和4℃。结果表明,低温条件下砂土与黏土比例为1∶1的减污袋对模拟污水中氨氮和磷的去除率分别达到67%和38%;而砂土与黏土比例为10∶1的减污袋对低温条件下模拟污水中氨氮和磷的去除率均最低,分别为32%和28%,其对常温条件下污水中氨氮和磷的去除率也分别只有48%和52%。对比常温条件下的试验,低温条件下生态减污袋的去除效果明显偏低。由于黏土颗粒具有较大的比表面积和较好的离子交换能力,因此应选择黏土含量较高的生态减污袋,以在低温条件下保持良好的去氮除磷效果。  相似文献   

7.
以序批式动态膜反应器为研究对象,对其处理低碳氮比废水的效果进行了试验研究.试验温度为19 ~ 21℃,MLSS为3~5g/L;好氧阶段溶解氧质量浓度为2 ~4 mg/L,厌氧阶段溶解氧质量浓度为0.2~0.5 mg/L;水力停留时间共12 h,其中好氧阶段8h,厌氧阶段4h.结果表明:当进水COD、TN和NH4+-N质量浓度分别为250~300mg/L、103 ~ 156 mg/L和92~140 mg/L时,反应器对上述污染物表现出较高且稳定的去除效率,COD、TN和NH4+-N平均去除率分别达到76.15%、82.16%和90.13%.同时,反应器系统中污泥的比硝化速率与常规处理装置中的活性污泥相比较高,以NH4+-N的降解量计为0.101 d-1,以NO3--N的积累量计为0.091 d-.  相似文献   

8.
以匹配后续主体脱氮工艺为目的,采用UASB工艺进行高浓度养殖废水前期厌氧预处理.在前期试验及动力学分析基础上,利用带动量的自适应学习速率梯度下降算法,建立BPNN模型,预测系统温度、系统有机负荷、进水pH值、碱度、进水氨氮浓度、COD、SS 7个生态因子对UASB厌氧过程的影响.采用分割连接权值(PCW)和偏导数(PaD)两种方法定量化分析网络各层神经元的连接权值,从而明确了既定进水条件下,匹配后续脱氮工艺的UASB厌氧过程的主导因子依次为温度、碱度及系统有机负荷.最后采用遗传算法对已建立的BPNN模型寻优,确定了系统最优运行参数.结果表明,UASB系统最优运行参数为:系统反应温度55 ℃,进水pH值8.2,进水碱度值2 649 mg/L,有机负荷1.8 kgCOD/(m3·d),进水COD 7 000 mg/L,进水氨氮质量浓度844.3 mg/L,SS为2 983.9 mg/L.这表明高温、高COD进水、高pH值及高碱度、高SS进水、低有机负荷、低氨氮进水质量浓度有利于提高系统有机物去除率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号