首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
吴嘉煦  李凯  孙鑫  王盛  何莉莉  高红 《环境工程学报》2022,16(12):3884-3894
为实现市政污泥的无害化和资源化利用,以酒糟和市政污泥为原料热解制备酒糟污泥生物炭(LBCZ),采用共沉淀法将镧(La)负载到LBCZ表面制得La改性酒糟污泥生物炭(La-LBCZ),探究了改性剂浓度、La-LBCZ投加量、溶液初始pH和共存离子对La-LBCZ吸附磷的影响,使用SEM-EDS、BET、XRD、FTIR和XPS等表征手段分析了吸附机理。结果表明:改性剂浓度为0.1 mol·L−1时La-LBCZ对磷的吸附效果最好(吸附量为68.32 mg·g−1),为改性前的6倍;吸附过程符合准二级动力学模型和Langmuir模型,为单分子层表面的化学吸附。此外,生物炭孔隙结构不发达,La以氢氧化物形态负载到生物炭表面,络合反应是其主要的吸附机理。在吸附-脱附实验中,La-LBCZ经过5次循环后吸附量为61.2 mg·g−1,吸附率为87.79%,脱附量为52.65 mg·g−1,脱附率为75.52%,说明其具有良好的循环性能和磷回收性能。  相似文献   

2.
针对市政污泥中金属资源化程度低的问题,以富含铝的市政污泥为原料制备得到污泥基镁铝层状双氧化物/生物炭 (MgAl LDO@biochar) 复合材料。结合结构表征,静态吸附和动态吸附实验系统探讨LDO@biochar的吸附性能和吸附机理。结果表明,铝镁摩尔比为1∶2时,所制备LDO@biochar的比表面积和晶粒尺寸最大,其对模式污染物刚果红的吸附容量最高。在吸附过程中LDO通过“记忆效应”重构层状双氢氧化物 (LDH) 结构从而对阴离子产生吸附作用,biochar的共轭碳环和含氧官能团也可以作为污染物结合位点。污染物与吸附剂之间可通过离子交换、π-π共轭、氢键作用和静电吸引等方式结合。与阳离子型染料罗丹明B (11.30 mg·g−1) 和具有单一共轭环结构的磺胺 (20.25 mg·g−1) 相比,阴离子型染料酸性橙II (181.30 mg·g−1) 和具有多共轭环结构的四环素 (39.49 mg·g−1) 的平衡吸附容量更大,而具有多共轭环结构的阴离子型染料刚果红的平衡吸附容量高达477.46 mg·g−1。本研究结果可为综合利用市政污泥制备高附加值环境功能材料提供参考。  相似文献   

3.
以蚕沙生物炭为原料,以KOH为活化剂,通过浸渍(KBC)和浸渍-热解(KBC400)活化工艺制备蚕沙基生物炭,用于吸附去除水体中的镉离子(Cd2+)。运用一系列的表征技术分析了生物炭的形貌和性质,并通过批量实验考察了投加量、pH、共存离子、吸附时间和Cd2+浓度等因素对Cd2+吸附性能的影响。表征实验结果表明,活化的蚕沙基生物炭孔隙结构丰富、清晰,KBC400表面有KOH受热刻蚀的凹陷;生物炭的石墨化程度较高且表面带有负电荷。蚕沙基生物炭吸附Cd2+以静电作用和Cd2+-π键结合为主。吸附实验结果表明:在投加量为0.4 g·L−1、pH=5.0的条件下,KBC和KBC400的最大吸附量分别为63.80 mg·g−1和89.15 mg·g−1;在弱酸性(pH为4.0~6.0)和K+、Na+存在下对其吸附行为的影响较小;吸附过程更符合准二级动力学模型和Langmuir吸附等温方程,表明吸附以化学过程为主并且是单分子层吸附。综上所述,浸渍-热解活化方式更有利于增加其对Cd2+的吸附量;2步KOH活化法中第1步(浸渍)和第2步(热解)对于吸附Cd2+的相对贡献率分别为28.69%和71.31%。  相似文献   

4.
余谟鑫  韦一  蒯乐  张晨  王晓婷 《环境工程学报》2022,16(11):3549-3557
以煤沥青为碳源,2-甲基咪唑作为氮源,通过MgO模板耦合KOH活化一步制备得到具有高比表面积的掺N多孔炭(DCCx)。分别采用比表面积及孔径分析、扫描电子显微镜、X射线光电子能谱和傅立叶变换红外光谱仪等方法对DCCx进行了表征,并考察了其对废水中金霉素的吸附性能。结果表明,所制备的多孔炭具有层堆叠结构;制得的DCC2.0比表面积高达2 969 m2·g −1。红外光谱图中出现了明显的C=C、 C=N及硝基基团的吸收峰。DCC2.0中吡咯态氮和吡啶态氮的含量较高。DCC2.0对金霉素的饱和吸附容量高达 1 368 mg·g−1,且符合Langmuir吸附等温线模型;金霉素在多孔炭表面的吸附速度快,其符合拟二级动力学模型。  相似文献   

5.
以慈竹(sinocalamus affinis, SA)为原料,用磷酸对其进行活化,后经热解得到活化生物炭(activated sinocalamus affinis biochar, ASAB),用来吸附水溶液中的Cr(VI)。当溶液的初始pH为3时,Cr(VI)的初始质量浓度为20 mg·L−1,吸附剂投加量为1g·L−1时,Cr(VI)去除率高达99.8%,剩余溶液中Cr(VI)的质量浓度低于废水排放标准(0.5 mg·L−1)。保持其他条件不变,改变Cr(VI)初始浓度,吸附剂的最大吸附容量可达236.2 mg·g−1。以上结果均说明ASAB对废水中的Cr(VI)具有良好的吸附效果。采用SEM、BET、FTIR、XPS等表征方法对活化前、后的慈竹生物炭的化学结构和物理组成进行了表征。ASAB的比表面积是844.45 m2·g−1,约为SAB(sinocalamus affinis biochar)的2.6倍,较高的比表面积可以提供更多的活性位点。本研究中,ASAB的除铬的机制包括静电作用和氧化还原作用。经过5个吸附-脱附循环后,ASAB对Cr(VI)的吸附效率依然可以达到80.9%。以上结果表明,作为1种高效的Cr(VI)吸附剂,ASAB可以用于处理废水中的Cr(VI)。  相似文献   

6.
磷酸盐含量是控制水环境质量的重要标准之一,吸附是一种高效、清洁和经济的除磷技术。采用铈改性净水污泥吸附去除磷酸盐,考察了铈负载量、投加量、pH、共存离子等因素对吸附磷酸盐的影响,探讨了可能的吸附机理及吸附材料循环再生能力。结果表明,铈改性净水污泥吸附磷酸盐过程符合拟二级动力学和Freundlich吸附等温线,最大吸附量为69.43 mg·g−1,吸附速率受内扩散、边界层效应等多重因素的限制。在Cl、NO3、CO32−、SO42−等共存离子干扰下,铈改性净水污泥具备选择性吸附磷酸盐的能力。在进行5次吸附-解吸循环后,吸附材料对磷酸盐的去除率下降了25.4%。吸附机制主要为磷酸盐与羟基以及含铈基团的静电吸引和配体交换。  相似文献   

7.
为有效去除铁路隧道开挖过程中涌出的地下水中的氟离子,避免对当地环境和居民身体健康造成危害,利用镧改性钢渣得到一种除氟材料,通过扫描电镜、比表面积测定、能量散射光谱、X射线衍射及傅里叶红外光谱等方法对材料进行表征。此外,结合吸附热力学和吸附动力学模型拟合,探究了改性钢渣对水中氟离子的吸附机理。结果表明:改性钢渣的比表面积由未改性的0.549 9 m2·g−1增大到23.367 5 m2·g−1,小粒径的钢渣比例增大且表面粗糙程度增强。能谱分析表明通过改性,可成功的将镧负载于钢渣表面。吸附拟合模型表明,钢渣对氟离子的吸附遵循Langmuir模型,说明钢渣对氟离子的吸附更接近于单层吸附,且主要为化学吸附。热力学参数表明,吸附吉布斯自由能(∆G0)>0,焓变(∆H0)和熵变(∆S0)<0,表明该反应是放热过程,改性钢渣的除氟过程符合伪二级动力学过程。改性钢渣有望成为一种具有应用前景的除氟材料。  相似文献   

8.
为了解决高有机质含量的蓝藻泥深度脱水难、资源化出路不畅的问题,建立了蓝藻泥热压滤深度脱水耦合制备磁性生物炭的中试工艺。通过对含水率和体积减容率的测定,考察了热压滤脱水的效果;通过对碘吸附值、比表面积和饱和磁化强度的测定以及SEM观察,对磁性生物炭进行了表征。结果表明:经过热压滤脱水后可得含水率为65.3%的蓝藻饼,体积减容率为71.3%,约有70%的铁元素保留于蓝藻饼中;磁性生物炭表面可观察到致密排列的微孔(φ=1.5 μm)和铁磁性物质,碘吸附值为391 mg·g−1、比表面积为165 m2·g−1、饱和磁化强度为32 emu·g−1。铁盐作为该工艺桥联物质,在热压滤深度脱水中起到热絮凝作用,在磁性生物炭制备中起到催化和赋磁作用。蓝藻泥热压滤深度脱水处理耦合制备磁性生物炭,有助于实现蓝藻泥的深度脱水和资源化利用。  相似文献   

9.
为确定染料有无氢键供体对生物炭吸附容量的影响及作用机理,制备了尿素/碳酸氢钾联合活化的玉米秸秆生物炭(KN-BC),考察其对于结构相似的亚甲基蓝(MB)与天青B(AB)的吸附容量差别及具体机制。对KN-BC的表征结果表明,经处理后的生物炭疏松多孔,表面含氧官能团含量显著增加。吸附实验结果表明,Langmuir模型拟合的KN-BC对MB和AB的最大吸附量为2 268.7 mg·g−1和4 368.5 mg·g−1,KN-BC对含有氢键供体的AB吸附性能更好。DFT计算与机理分析结果表明,氢键供体的存在使得单个污染物分子与生物炭可以同时形成氢键和π-π相互作用,两者的协同效应增强了π电子密度,显著提高了吸附效能。以上研究结果为预测生物炭对混合染料污水的吸附提供参考。  相似文献   

10.
为克服湿法制备磁性生物炭颗粒时团聚严重、固液分离困难、热解前需消耗大量能源脱水干化的问题,本研究以市政污泥为原料,通过无溶剂法热解制备了磁性污泥基生物炭(MSBC-2),并利用SEM、FTIR、XPS、VMS和Raman等方法对产物的表面结构与特征进行了表征。基于序批实验,分析了pH、温度、背景离子强度、生物炭投加量对该吸附材料的Pb2+吸附性能的影响,并进行了吸附动力学、吸附等温线及吸附热力学研究。结果表明:MSBC-2的Pb2+去除率随pH及温度的升高而升高,pH>4后去除率基本不变,离子强度对Pb2+去除率基本无影响。MSBC-2对Pb2+的吸附行为符合准二级动力学模型及Langmuir模型,表明吸附过程的限速步骤为化学反应,吸附为单分子层吸附;MSBC-2的反应速率常数k2是未改性生物炭的4.1倍,25 ℃时最大理论吸附容量为113.36 mg·g−1,高于大多数湿法制备的磁性生物炭;该吸附过程非自发、吸热且熵增过程;MSBC-2对Pb2+的吸附机理主要包括表面络合、离子交换和物理吸附。  相似文献   

11.
聚乙醇酸(poly glycolic acid,PGA)因其良好的降解性能会加快其老化过程,可能比传统塑料具有更大的环境风险,因此,评估PGA在环境迁移中对污染物的载体效应尤为重要。选用PGA颗粒微塑料(microplastics,MPs)为研究对象,盐酸四环素(tetracycline hydrochloride,TCH)为代表性污染物,探究老化过程对PGA吸附TCH行为的影响。结果表明:PGA在经过15 d H2O2和H2SO4老化后,表面均变得粗糙,比表面积由0.017 m2·g−1分别增至0.327 m2·g−1和0.467 m2·g−1,官能团含量分别增加了1.89%和3.49%,接触角由83.19°分别降至81.58°和50.07°。吸附动力学均符合伪二级动力学模型,吸附等温线均符合Langmuir等温吸附模型。老化后PGA对TCH的吸附量均高于老化前,PGA-H2O2和PGA-H2SO4最大表观吸附量分别为0.617 mg·g−1和0.686 mg·g−1,是PGA老化前的1.05倍和1.17倍。  相似文献   

12.
以山竹壳为原料,K2C2O4为活化剂,Fe(NO3)3为赋磁剂制备了磁性山竹壳炭。考察了制备条件对山竹壳炭理化性质的影响,并探究其对水体中氯霉素的吸附性能。结果表明,随着K2C2O4用量的增加和炭化温度的升高,磁性山竹壳炭的比表面积和孔容增加,但Fe3O4逐渐被还原为单质Fe。当磁性山竹壳炭PGC-4-900投加量为0.3 g·L−1,溶液质量浓度为125 mg·L−1时,对氯霉素吸附容量最大可达316.3 mg∙g−1。吸附过程为自发、吸热和无序度增加的过程。吸附动力学符合拟二级动力学模型,等温模型可用Langmuir方程描述。磁性山竹壳炭在吸附氯霉素方面具有宽泛的pH适应性,静电作用非磁性山竹壳炭对氯霉素吸附主要机理,孔隙填充和π—π作用在氯霉素吸附过程中起主导作用。  相似文献   

13.
为满足汽车国六排放标准,以木屑为原料、磷酸为活化剂,制备了碳罐用高丁烷工作容量成型活性炭。在制备过程中通过烘焙提质、粒度调控对原料进行预处理,并采用了真空捏合、模孔设计、高温活化等工艺。考察了烘焙温度、原料粒度、浸渍比、真空捏合时间、活化温度、活化时间等制备条件对活性炭性能的影响。结果表明:原料经250 ℃烘焙、破碎至粒度小于0.2 mm及使用孔径为2.5 mm的模具成型,可明显提高制备活性炭的性能;当磷酸与原料浸渍比为1.5∶1,真空捏合为60 min、活化温度为500 ℃、活化时间为120 min时,制备的活性炭碘吸附值为1 028 mg·g−1、亚甲基蓝吸附值为270 mg·g−1、强度为92.4%、丁烷工作容量为152 g·L−1、BET比表面积为1 547.63 m2·g−1,性能可达到碳罐用活性炭TGZ1500指标要求。  相似文献   

14.
为了探明低碱度钢渣、低碱度钢渣负载HAP(羟基磷灰石,hydroxyapatite)、高碱度钢渣和高碱度钢渣负载HAP 4种材料对水溶液中Cd2+的吸附特征,采用静态批实验的方法,分别从pH、反应时间和初始浓度等方面对其进行了考察;使用电镜扫描观察和X射线衍射分析等手段,运用吸附动力学模型、吸附等温线模型对吸附过程和吸附机理进行了分析与探讨。结果表明:4种材料对Cd2+的吸附效果顺序为高碱度钢渣负载HAP>高碱度钢渣>低碱度钢渣负载HAP>低碱度钢渣,其中低碱度钢渣及其负载HAP对Cd2+的吸附性能较差,且会发生脱附现象,不宜用作Cd2+的吸附材料;高碱度钢渣及其负载HAP对Cd2+的吸附性能较好,吸附过程均符合准二级吸附动力学模型和Langmuir吸附等温线模型;吸附过程主要为吸附剂表面上的单层化学吸附,吸附作用主要为离子交换作用和化学沉淀作用;此外,高碱度钢渣及其负载HAP对Cd2+最大吸附量分别为7.65 mg·g−1和12.63 mg·g−1,相比之下,提高了60.58%,这表明高碱度钢渣负载了HAP可大幅度提高其对Cd2+的吸附容量。钢渣碱度的差异性对其吸附镉的影响较大。  相似文献   

15.
自然界中生物炭有多种产生途径,影响污染物的迁移转化。为比较实验室和在自然条件下生成的生物炭的吸附性能,以杉木为原料,分别于马弗炉(700 ℃)和自然开放环境中制备了2种生物炭(分别标记为BC1和BC2)。运用氮吸附(BET)、扫描电子显微镜(SEM)和红外光谱(FT-IR)表征分析了生物炭的结构与性质,研究了其对2种新烟碱类杀虫剂(啶虫脒(ACE)和噻虫胺(CLO))的吸附行为,分别考察了初始pH、温度和共存离子对吸附行为的影响。结果表明,700 ℃下裂解制备的BC1吸附能力明显优于自然条件下制备的BC2。BC1对ACE和CLO最大吸附量分别为24.46 mg·g−1和31.56 mg·g−1,BC2对ACE和CLO最大吸附量分别为11.13 mg·g−1和12.24 mg·g−1。BC1和BC2对2种新烟碱类杀虫剂的吸附过程较好地符合准二级吸附动力学模型。颗粒内扩散模型分析结果表明,BC1的吸附较BC2存在更明显的3阶段过程。Langmuir和Freundlich模型拟合结果表明,BC1对2种杀虫剂的吸附属于单分子层吸附,BC2的吸附过程同时存在单分子层和多分子层吸附。热力学研究表明,BC1和BC2对新烟碱类杀虫剂的吸附为自发的吸热过程。随着初始pH的升高和离子强度的增加抑制了生物炭的吸附能力,相同浓度Na+的抑制作用小于Ca2+。以上结果可为水中新烟碱类杀虫剂的去除提供参考。  相似文献   

16.
以城市污泥为原料与MgCl2和FeSO4复合,并热解碳化合成磁性污泥基生物炭(MF-SBC),用于水中氮磷的同步回收研究,分别考察了MF-SBC投加量、初始pH、接触时间和共存离子对氮磷回收性能的影响,同时通过SEM、XRD、BET、XPS和FTIR表征了MF-SBC的组成、形貌和官能团等,并对反应过程进行了动力学拟合。结果表明,当MF-SBC投加量为0.3 g·L−1、溶液初始pH为7、反应时间为720 min时,MF-SBC对水溶液中氨氮和磷酸盐的回收效果最佳,吸附量分别为103.12 mg·g−1和205.07 mg·g−1,并且MF-SBC对水中氨氮和磷酸盐的回收过程均符合准二级动力学模型。Ca2+、Na+、SO42对MF-SBC回收磷酸盐几乎没有影响,Ca2+和SO42-对氨氮的回收有抑制作用。MF-SBC对氮磷的回收机制包括表面吸附、离子交换和鸟粪石沉淀,其中以鸟粪石沉淀为主。  相似文献   

17.
以废弃花生壳为原料,探究了炭化条件和KOH改性对炭材料电吸附性能的影响。利用电容去离子(capacitive deionization, CDI)技术,探究KOH改性炭电极(KBPS)对于青岛污水处理厂高盐尾水中Cl的去除效果。通过SEM、BET、FTIR、XRD、XPS、接触角手段对炭材料理化性质进行了表征。结果表明,随炭化温度增高,炭材料石墨化程度与有序度提升。KOH改性可改善炭材料的比表面积、石墨化程度和亲水性。电吸附实验结果表明,在1 000 ℃下炭化的KOH改性炭电极(KBPS1000)吸附量为11.097 mg·g−1,相比BPS1000提升了30%。在溶液流速为15 mL·min−1、工作电压为1.2 V时KBPS1000的电吸附性能最佳。经过9次吸附-脱附循环后,KBPS1000电极再生率为98.41%,电极再生性能稳定。配制Cl浓度为2 000 mg·L−1的NaCl溶液,以5对电极板为一组循环,经22组循环后,Cl浓度由2 000 mg·L−1降至454 mg·L−1,Cl去除率可达77.3%。  相似文献   

18.
以花生壳为原料、LaCl3∙7H2O为镧前驱体,通过一步热解法制备了载镧生物炭(La-BC),确定了最佳制备条件,考察了溶液pH、吸附时间、La-BC投加量、F初始质量浓度、共存离子等因素对La-BC吸附性能的影响,评估了La-BC在真实地下水中的应用潜能。结果表明:在pH为5~8时,La-BC表现出稳定的除氟性能。吸附过程符合准二级动力学和Langmuir等温线模型;在25 ℃和35 ℃下,La-BC的最大理论吸附容量分别为29.50 mg∙g−1与33.17 mg∙g−1。SO42-、HCO3与CO32− 对吸附过程存在不同程度的影响,Cl、NO3和NH4+影响较小。加标地下水经酸化预处理后,La-BC对工业园区地下水和农村饮用井水均表现出优异的除氟性能。La-BC上的含镧物种包括La(OH)3、LaOCl、La(OH)2Cl以及少量La2(CO3)3和LaPO4,其中La(OH)2Cl为主要的除氟活性物种,F主要通过静电作用和化学沉淀转化为LaF3沉淀去除。  相似文献   

19.
使用贝壳和粉煤灰等固体废弃物为原材料,采用水热合成法将十六烷基三甲基溴化铵(CTAB)改性后的羟基磷灰石(HAP)负载到粉煤灰基沸石分子筛(ZMS)上,得到一种高效的吸附剂(CTAB-HAP@ZMS)用于去除氟离子。当投加量为8.0 g·L−1、pH为3、温度为55 ℃时,CTAB-HAP@ZMS复合材料的最高吸附容量达到了10.4 mg·g−1,对10.0 mg·L−1氟化钠溶液中F的去除率可以达到95%。动力学和热力学拟合参数表明吸附过程主要为多分子层式、自发、吸热的化学吸附。将此吸附剂用于处理模拟地热水(F初始浓度为8.0 mg·L−1),去除率达到89%,残留浓度低于我国饮用水质量标准中F的浓度限值(1.0 mg·L−1)。此外,经4次循环再生吸附后,CTAB-HAP@ZMS复合材料仍然表现出较高的氟离子去除效率。该复合材料的制备不仅能使固体废物资源化,还在氟离子去除方面有广阔应用前景。  相似文献   

20.
以煤沥青为碳源,三聚氰胺为氮源,MgO模板耦合KOH活化一步法热解制备具有高比表面积的掺氮多孔炭MCCx,其中x代表不同的氮源添加含量。采用比表面积及孔径分布(BET)、扫描电子显微镜(SEM)、傅立叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)等表征方法对MCCx进行了表征分析,并考察了MCCx对金霉素的吸附性能。结果表明,当煤沥青与三聚氰胺的质量比为0.5时,制得的MCC0.5表面富含大量孔道,且伴随堆积褶皱片层,其微孔比表面积可达到2 042 m2·g−1。傅立叶变换红外光谱图表明MCCx出现了芳香族化合物的C=N键的伸缩振动。XPS分析结果表明三聚氰胺的添加成功为材料引入氮元素,MCC0.5吡啶N含量最高。Langmuir吸附等温线模型能很好的描述MCC0.5对金霉素的吸附过程,最大理论吸附量达到1 056 mg·g−1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号