首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The influence of bulking agents on organic matter (OM) stability and nitrogen (N) availability in sewage sludge composts was investigated. The same sludge was composted on an industrial plant with different mixtures of bulking agents. The composting process included an active phase and a curing phase, both lasting 6 weeks, separated by the screening of composts. The OM evolution was characterised by carbon (C) and N mass balances in biochemical fractions. The OM stability and N potential availability of final composts were measured during soil incubations. During composting, the C and N losses reached more than 62% of the initial C and more than 45% of the initial N, respectively, due to C mineralisation or N volatilisation and screening. The bulking materials mostly influenced OM evolution during the active phase. They contributed to the mitigation of N losses during the active phase where N immobilisation through active microbial activity was favoured by bulking agents increasing the C:N ratio of the initial mixtures. However, the influence of bulking agents on OM evolution was removed by the screening; this induced the homogenisation of compost characteristics and led to the production of sludge composts with similar organic matter characteristics, C degradability and N availability.  相似文献   

2.
Microbial biomass in a soil amended with different types of organic wastes.   总被引:1,自引:0,他引:1  
Application of different types of organic wastes may have a marked effect on soil microbial biomass and its activity. The objective of this study was to quantify the amount of microbial biomass in a loamy-clayey soil, amended with different types of organic waste residues (composts of municipal solid waste of different ages, sewage sludge and farmyard manure) and incubated for 8 weeks at 25 degrees C and two-thirds of field capacity, using the fumigation-extraction method. Both microbial biomass-C and -N (BC and BN, respectively) appeared to be dependent on the type of organic waste residues, on their degree of stability, and on their chemical characteristics. In general, organic wastes increased the microbial biomass-C content in the soil and the microbial BC was positively correlated with the organic C content, the C/N, neutral detergent fibre/N (NDF/N) and acid detergent fibre/N (ADF/ N) ratios. The microbial biomass content decreased according to the period of incubation, especially when the compost used was immature. The microbial biomass-N was positively correlated with the total N and percentage of hemicellulose. The microbial biomass-C was linearly related with the microbial biomass-N and the ratio BC/BN was exponentially related with the BC.  相似文献   

3.
A study was conducted to investigate physico-chemical properties, fertilizing potential and heavy metal polluting potentials of municipal solid waste composts produced in 29 cities of the country. Results indicated that except a very few samples, all other samples have normal pH and EC. Organic matter as well as major nutrients N and P contents in MSW composts are generally low as compared to the composts prepared from rural wastes. Heavy metal contents in composts from bigger cities (>1 million population) were higher by about 86% for Zn, 155% for Cu, 194% for Cd, 105% for Pb, 43% for Ni and 132% for Cr as compared to those from smaller cities (<1 million population). Composts prepared from source separated biogenos wastes contained, on average, higher organic matter (by 57%), total N (by 77%) and total P (by 78%), but lower concentrations of heavy metals Zn (by 63%), Cu (by 78%), Cd (by 64%), Pb (by 84%), Ni (by 50%), and Cr (by 63%) as compared to those prepared from mixed wastes. Partial segregation at the site of composting did not improve quality of compost significantly in terms of fertilizing parameters and heavy metal contents. Majority of MSW composts did not conform to the quality control guideline of ‘The Fertilizer (Control) Order 1985’ in respect of total organic C, total P, total K as well as heavy metals Cu, Pb and Cr. In order to enable the relevant stakeholders to judge overall quality, a scheme has been proposed for the categorization of composts into different marketable classes (A, B, C, and D) and restricted use classes (RU-1, RU-2, and RU-3) on the basis their fertilizing potential and as well as potential for contaminating soil and food chain. Under the scheme, ‘Fertilizing index’ was calculated from the values of total organic C, N, P, K, C/N ratio and stability parameter, and ‘Clean index’ was calculated from the contents of heavy metals, taking the relative importance of each of the parameters into consideration. As per the scheme, majority of the compost samples did not belong to any classes and hence, have been found unsuitable for any kind of use. As per the regulatory limits of different countries, very few compost samples (prepared from source separated biogenos wastes) were found in marketable classes (A, B, C and D) and some samples (11–14) were found suitable only for some restricted use.  相似文献   

4.
In this work, the elemental content (C, N, H, S, O), the organic matter content and the calorific value of various organic components that are commonly found in the municipal solid waste stream were measured. The objective of this work was to develop an empirical equation to describe the calorific value of the organic fraction of municipal solid waste as a function of its elemental composition. The MSW components were grouped into paper wastes, food wastes, yard wastes and plastics. Sample sizes ranged from 0.2 to 0.5 kg. In addition to the above individual components, commingled municipal solid wastes were sampled from a bio-drying facility located in Crete (sample sizes ranged from 8 to 15 kg) and were analyzed for the same parameters. Based on the results of this work, an improved empirical model was developed that revealed that carbon, hydrogen and oxygen were the only statistically significant predictors of calorific value. Total organic carbon was statistically similar to total carbon for most materials in this work. The carbon to organic matter ratio of 26 municipal solid waste substrates and of 18 organic composts varied from 0.40 to 0.99. An approximate chemical empirical formula calculated for the organic fraction of commingled municipal solid wastes was C32NH55O16.  相似文献   

5.
Changes in the chemical and chemical-structural composition of the organic matter of two different sewage sludges (aerobic and anaerobic) mixed with sawdust (1:1 and 1:3, v/v) during composting were determined by monitoring chemical and microbiological parameters as well as by pyrolysis-gas chromatography. Composting was carried out in periodically turned outdoor piles, which were sampled for analysis 1, 30, 60 and 90 days after the beginning of the composting process. Both volatile organic matter and the water soluble C fraction decreased during composting, indicating that the more labile C fractions are mineralized during the process. Microbial activity as measured by microbial respiration (CO(2) evolved from compost samples during incubation) also decreased with composting, reflecting the more stable character of the resulting compost. No major differences were observed between the four composts studied as regards their chemical-structural characteristics. The acetonitrile, acetic acid and phenol pyrolytic fragment tended to increase with composting. Although the final composts were more aromatic in nature than the starting materials, a low degree of humification was observed in all four composts studied, as determined by their high proportion of polysaccharides and alkyl compounds. For this reason, the relationship between pyrolytic fragments, such as benzene/toluene or benzene+toluene/pyrrol+phenols, which are used as indices of humification for soil organic matter, are not of use for such poorly evolved sludge composts; instead, ratios that involve carbohydrate derivatives and aromatic compounds, such as furfural+acetic/benzene+toluene or acetic/toluene, are more sensitive indices for reflecting the transformations of these materials during composting. Both the chemical and microbiological parameters and pyrolytic analysis provided valuable information concerning the nature of the compost's organic matter and its changes during the composting process.  相似文献   

6.
Rice hulls and sawdust are two common C-rich wastes derived from rice and timber agro-industries in subtropical NE Argentina. An alternative to the current management of these wastes (from bedding to uncontrolled burning) is composting. However, given their C-rich nature and high C/N ratio, adequate composting requires mixing with a N-rich waste, such as poultry manure. The effect of different proportions of poultry manure, rice hulls and/or sawdust on composting efficiency and final compost quality was studied. Five piles were prepared with a 2:1 and 1:1 ratio of sawdust or rice hulls to poultry manure, and 1:1:1 of all three materials (V/V). Different indicators of compost stability and quality were measured. Thermophilic phase was shorter for piles with rice hulls than for piles with sawdust (60 days vs. 105 days). Time required for stability was similar for both C-rich wastes (about 180 days). Characteristics of final composts were: pH 5.8–7.2, electrical conductivity 2.5–3.3 mS/cm, organic C 20–26%, total N 2.2–2.9%, lignin 19–22%, total Ca 18–24 g/kg, and extractable P 6–8 g/kg, the latter representing 60% of total P. Nitrogen conservation was high in all piles, especially in the one containing both C-rich wastes. Piles with sawdust were characterized by high total and available N, while piles with only rice hulls had higher Si, K and pH. Extractable P was higher in 1:1 piles, and organic C in 2:1 piles.  相似文献   

7.
The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO2 respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts.  相似文献   

8.
Three sewage sludge composts were obtained from mixtures of an aerobic sludge (AS) and three organic wastes differing widely in chemical composition: an extremely biodegradable waste (municipal solid waste, MSW), a plant residue (grape debris) and a residue with a carbon fraction not easily mineralizable (peat residue). The following mixtures were made, the proportions referring to their total organic carbon content: AS-MSW 1/1, AS-GRAPE 3/1 and AS-PEAT 1/1. These mixtures were composted over 3 months in the open air with periodical turning, and were left to mature afterwards for 4 months. Uncomposted mixtures and composted mixtures, before and after maturation, were incubated for 38 days, under laboratory conditions, with a calcareous soil and the CO2 emission of the samples periodically measured.Uncomposted mixtures emitted much greater quantities of carbon than those composted, whether before or after maturation period. Both at the beginning and at the end of composting, differences were observed between the total amount of carbon emitted by the mixture containing peat waste and the others. However, the quantities of carbon emitted from the three mixtures tended to even out in mature composts, reaching a maximum of 600 mg carbon per 100 g total organic carbon. This shows that, although the mineralization of carbon depends on the nature of the organic waste mixed with the sewage sludge, it tends to even out when the mixtures have undergone composting.  相似文献   

9.
Objective of the work was to experimentally determine the effect of the organic matter and moisture contents on the calorific value of organic solid wastes. Nine substrates (i.e. newsprint, biodried municipal solid wastes, municipal solid waste derived composts, wastewater sludges, and sea weed derived compost), with organic matter contents that ranged from 12% to 91% (dry weight) were used in the experiments. All substrates were dried and ground and deionized water was artificially added in order to achieve certain target moisture contents per substrate. The higher heating value (HHV) was, then, determined experimentally for each sample using a bomb calorimeter. Best reduced models were developed to describe the higher and lower heating values as a function of organic matter, ash and moisture contents. A triangular plot was constructed and the self-sustained combustion area was determined and compared to that of the Tanner diagram. Response surfaces were drawn to visually assess the effect of organic matter and moisture contents on the calorific value of the wastes.  相似文献   

10.
Microbial communities in sewage sludge and green waste co-composting were investigated using culture-dependent methods and community level physiological profiles (CLPP) with Biolog Microplate. Different microbial groups characterized each stage of composting. Bacterial densities were high from beginning to end of composting, whereas actinomycete densities increased only after bio-oxidation phase i.e. after 40 days. Fungal populations become particularly high during the last stage of decomposition. Cluster analyses of metabolic profiles revealed a similar separation between two groups of composts at 67 days for bacteria and fungi. Principal component analysis (PCA) applied to bacterial and fungal CLPP data showed a chronological distribution of composts with two phases. The first one (before 67 days), where the composts were characterized by the rapid decomposition of non-humic biodegradable organic matter, was significantly correlated to the decrease of C, C/N, organic matter (OM), fulvic acid (FA), respiration, cellulase, protease, phenoloxidase, alkaline and acid phosphatases activities. The second phase corresponding to the formation of polycondensed humic-like substances was significantly correlated to humic acid (HA) content, pH and HA/FA. The influent substrates selected on both factorial maps showed that microbial communities could adapt their metabolic capacities to the particular environment. The first phase seems to be focused on easily degradable substrate utilization whereas the maturation phase appears as multiple metabolisms, which induce the release of metabolites and their polymerization leading to humification processes.  相似文献   

11.
The influence of the proportion of C- and N-rich raw materials (initial C/N ratio) and bulking agent on the chemical functional groups composition, humic-like substances (HS-like) content and physicochemical properties of composts was assessed. To achieve these goals, seven initial mixtures (BA1–6 and C1) of dog food (N-rich raw material) were composted with wheat flour (C-rich raw material). Composts were analyzed in terms of chemical functional groups, physicochemical, maturity and stability parameters.The C-rich raw material favored the formation of oxidized organic matter (OM) during the composting process, as suggested by the variation of the ratios of the peaks intensity of FT-IR spectra, corresponding to a decrease of the polysaccharides and an increase of aromatic and carboxyl-containing compounds. However, although with high proportion of C-rich raw material, mixtures with low initial C/N seems to have favored the accumulation of partially oxidized OM, which may have contributed to high electrical conductivity values in the final composts. Therefore, although favoring the partial transformation of OM into stabilized HS-like, initial mixtures with high proportion of C-rich raw material but with low initial C/N led to unstable composts.On the other hand, as long as a high percentage of bulking agent was used to promote the structure of biomass and consequently improve of the aeration conditions, low initial C/N was not a limiting factor of OM oxidation into extractable stabilized humic-like acids.  相似文献   

12.
Limitations relating to permissible standards of undesirable substances in sewage sludges make it necessary to optimize sludge properties. One of the methods to achieve the above goal is the use of a composting process. The aim of this study was to determine the toxicity of composts obtained from sewage sludges composted for 76 days. Dewatered sewage sludges were collected from the four wastewater treatment plants located in the south-eastern part of Poland (Kraśnik, Lublin, Biłgoraj and Zamość). The sludges were mixed with standard OECD soil at doses of 6% and 24%. Phytotoxkit (with Lepidium sativum) and ostracodtoxkit (with Heterocypris incongruens) tests were used to evaluate toxicity. The results obtained showed different toxicity of sewage sludge depending on the sludge dose and bioassay used. H. incongruens mortality ranged from 0% to 90% and depended on the sewage sludge. The greatest inhibition of test organism growth was noted at a level of 55%. In the case of the Phytotoxkit test, a clearly negative influence of the sewage sludges on seed germination was observed at a dose of 24%. Root growth inhibition was noted in the case of most sewage sludges and was at a level of 20–100%. The influence of the composting on the toxicity of biosolids also showed various trends depending on the sludge type. Sludge composting often resulted in a toxicity increase in relation to H. incongruens. In the case of plants (Phytotoxkit test) and most sewage sludges, however, the composting process influenced both the seed germination and root growth in a positive way.  相似文献   

13.
Modelling of organic matter dynamics during the composting process   总被引:1,自引:0,他引:1  
Composting urban organic wastes enables the recycling of their organic fraction in agriculture. The objective of this new composting model was to gain a clearer understanding of the dynamics of organic fractions during composting and to predict the final quality of composts. Organic matter was split into different compartments according to its degradability. The nature and size of these compartments were studied using a biochemical fractionation method. The evolution of each compartment and the microbial biomass were simulated, as was the total organic carbon loss corresponding to organic carbon mineralisation into CO2. Twelve composting experiments from different feedstocks were used to calibrate and validate our model. We obtained a unique set of estimated parameters. Good agreement was achieved between the simulated and experimental results that described the evolution of different organic fractions, with the exception of some compost because of a poor simulation of the cellulosic and soluble pools. The degradation rate of the cellulosic fraction appeared to be highly variable and dependent on the origin of the feedstocks. The initial soluble fraction could contain some degradable and recalcitrant elements that are not easily accessible experimentally.  相似文献   

14.
The benefits of using organic waste as fertilizer and soil amendment should be assessed together with the environmental impacts due to the possible presence of heavy metals (HMs). This study involved analysing major element and HM contents in raw and size-fractionated organic wastes (17 sewage sludges and composts) from developed and developing countries. The overall HM concentration pattern showed an asymmetric distribution due to the presence of some wastes with extremely high concentrations. HM concentrations were correlated with the size of cities or farms where the wastes had been produced, and HM were differentiated with respect to their origins (geogenic: Cr–Ni; anthropogenic agricultural and urban: Cu–Zn; anthropogenic urban: Cd–Pb). Size fractionation highlighted Cd, Cu, Zn and Pb accumulation in fine size fractions, while Cr and Ni were accumulated in the coarsest. HM associations with major elements revealed inorganic (Al, Fe, etc.) bearing phases for Cr and Ni, and sulfur or phosphorus species for Cd, Cu Pb and Zn.  相似文献   

15.
Composting was applied as a bioremediation methodology for the reclamation of dredged sediments of Isnapur, Khazipally and Gandigudem lakes polluted with industrial wastes. The present study is an attempt to elaborate upon organic matter transformations and define the parameters for product maturity adapting chemical and spectroscopic methods during composting. The stability and maturity of sediments were evaluated by assessing parameters like C/N ratio, nitrification index (NH(4)-N/NO(3)-N), water-soluble organic carbon concentration, CO(2) evolution rate, cation exchange capacity and indices such as humification index, E4/E6 ratio, compost mineralization index (ash content/oxidizable carbon), germination index, dehydrogenase, polyphenoloxidase activities and FTIR spectroscopy. The results showed that the changes in the above chemical and biological parameters can be employed as reliable indicators of stability and maturity. The FTIR spectra revealed enrichment in the aromatic groups and a degradation of the aliphatic groups indicating stabilization of the final compost.  相似文献   

16.
This discussion explores the possibility of having a measure of the biodegradable organic carbon content in solid wastes. Currently, indirect measures for determining the concentration of biodegradable organic matter are being used and most of them are based on respiration indices (oxygen consumption or carbon dioxide production) or chemical parameters (volatile solids or total organic carbon). The results obtained for the cumulative carbon dioxide production in composting experiments can be expressed as "aerobic biodegradable carbon" for the wastes that were studied. The calculation of a useful biodegradable C/N can also be obtained from the aerobic biodegradable carbon content. A comparison with some results obtained in measuring the concentration of "anaerobic biodegradable carbon" also is presented.  相似文献   

17.
Sawdust has been proven to be a good bulking agent for sludge composting; however, studies on the most suitable ratio of sludge:sawdust for sludge composting and on the influence of the sludge nature (aerobic or anaerobic) on the composting reaction rate are scarce. In this study two different sewage sludges (aerobic, AS, and anaerobic, ANS) were composted with wood sawdust (WS) as bulking agent at two different ratios (1:1 and 1:3 sludge:sawdust, v:v). Aerobic sludge piles showed significantly higher microbial activity than those of anaerobic sludge, organic matter mineralization rates being higher in the AS mixtures. The lowest thermophilic temperatures during composting were registered when the anaerobic sludge was mixed with sawdust at 1:1 ratio, suggesting the presence of substances toxic to microorganisms. This mixture also showed the lowest decreases of ammonium during composting. All this matched with the inhibitory effect on the germination of Lepidium sativum seeds of this mixture at the first stages of composting, and with its low values of microbial basal respiration. However, the ANS+WS 1:3 compost developed in a suitable way; the higher proportion of bulking agent in this mixture appeared to have a diluting effect on these toxic compounds. Both the proportions assayed allowed composting to develop adequately in the case of the aerobic sludge mixture, yielding suitable composts for agricultural use. However, the ratio 1:1 seems more suitable because it is more economical than the 1:3 ratio and has a lower dilution effect on the nutritional components of the composts. In the case of the anaerobic sludge with its high electrical conductivity and ammonium content, and likely presence of other toxic and phytotoxic substances, the 1:3 ratio is to be recommended because of the dilution effect.  相似文献   

18.
The management of municipal solid waste (MSW) and valorisation is based on the understanding of MSW composition by its categories and physicochemical characteristics. In this study, we characterize and determine physicochemical parameters (density, fire loss, electric conductivity, average pH, moisture level, lower calorific value (LCV), total and organic carbon, and nitrogen) in order to establish MSW valorisation models for Mostaganem city (located in Western Algeria). The results show that organic matter represents 64.6% of waste, followed by paper-cardboard 15.9%, plastic 10.5%, glass 2.8%, textile 2.3%, metals 1.9%, and diverse materials 2%. These statistics are similar to results from developing countries, especially if organic matter, paper and plastic are taken into account, but differ from developed countries. This reflects the difference in lifestyle and consumption behaviour between the two communities. The parameters used to determine the possible valorisation model had the following average values: fire loss (63%); ash (37%); pH (6.1); electric conductivity (2.39 ms cm(-1)); total carbon (29.5%); nitrogen (1.5%); LCV (1028.6 kcal/kg), density (0.36), C/N (19.7) and moisture level (58.9%). The study shows that 31.1% of paper-cardboard, plastic, glass and metal wastes are recyclable. Incinerating MSW, with energy recovery, was a poor option because of the weak LCV (1028.6 kcal/kg). However, MSW produced a good methane yield of up to 1852.4 equivalent tons of oil per year. The agricultural benefits, C/N ratio values, levels of moisture and pH and the Tanner diagram all supported compost production.  相似文献   

19.
In this work the composting process of municipal solid wastes was studied in order to characterize the transformations of organic matter, particularly humic acid (HA). A composting process, lasting three months, was monitored by chemical methods; the following parameters were measured: water-soluble carbon concentration (WSC) and humic substances content (humic and fulvic acid (FA)). The effects of humification on the molecular structure of humic acid (HA) were also evaluated by Fourier transform infrared (FT-IR) and (13)C NMR spectroscopy. WSC concentration rapidly increased reaching a maximum at day-14 of the composting process and then declined. The humic and fulvic acid content (HA and FA, respectively) slightly increased during the process. The FT-IR and (13)C NMR spectra of HA indicate a high rate of change in structure during composting. The groups containing aromatic and carboxylic C increased, while polysaccharides and other aliphatic structures degraded during composting, resulting in HA structures of higher aromaticity. Therefore, spectrometric measurements could provide information significantly correlated to conventional chemical parameters of compost maturity.  相似文献   

20.
In this paper, the evolution of organic matter (OM) during composting of different mixtures of various organic wastes was assessed by means of chemical analyses and CPMAS 13C NMR spectroscopy measured during composting. The trends of temperatures and C/N ratios supported the correct evolution of the processes. The CPMAS 13C NMR spectra of all composting substrates indicated a reduction in carbohydrates and an increase in aromatic, phenolic, carboxylic and carbonylic C which suggested a preference by microorganisms for easily degradable C molecules. The presence of hardly degradable pine needles in one of the substrates accounted for the lowest increase in alkyl C and the lowest reduction in carbohydrates and carboxyl C as opposite to another substrate characterized by the presence of a highly degradable material such as spent yeast from beer production, which showed the highest increase of the alkyl C/O-alkyl C ratio. The highest increase of COOH deriving by the oxidative degradation of cellulose was shown by a substrate composed by about 50% of plant residues. The smallest increases in alkyl C/O-alkyl C ratio and in polysaccharides were associated to the degradation of proteins and lipids which are major components of sewage sludge. Results obtained were related to the different composition of fresh organic substrates and provided evidence of different OM evolution patterns as a function of the initial substrate composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号