首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Detailed studies of long-term management impacts on rangeland streams are few because of the cost of obtaining detailed data replicated in time. This study uses government agency aquatic habitat, stream morphologic, and ocular stability data to assess land management impacts over four years on three stream reaches of an important rangeland watershed in northwestern Nevada. Aquatic habitat improved as riparian vegetation reestablished itself with decreased and better controlled livestock grazing. However, sediment from livestock disturbances and road crossings and very low stream flows limited the rate of change. Stream type limited the change of pool variables and width/depth ratio, which are linked to gradient and entrenchment. Coarse woody debris removal due to previous management limited pool recovery. Various critical-element ocular stability estimates represented changes with time and differences among reaches very well. Ocular stability variables tracked the quantitative habitat and morphologic variables well enough to recommend that ocular surveys be used to monitor changes with time between more intensive aquatic surveys.  相似文献   

2.
ABSTRACT: Brillouin's equation (H) for species diversity from information theory is to be preferred for the purposes of applied ecology over the equation of Shannon (H′) or the more commonly used approximate equation (H″). By its use, the difficult problem of delimiting the extent of the community being sampled in a stream survey can be avoided. Moreover, Brillouin's equation gives the exact diversity of the fully censused collection, whreas Shannon's diversity can only be approximated with a biased estimator. If we regard a sample as a message from the environment to the ecologist, Brillouin's equation is the proper one for computing its diversity. The product moment correlation coefficient between Brillouin's H for the total number of individuals from a group of samples and for randomly chosen subsets of 100 individuals from each sample was nearly as high as the correlation between H and H″ based on the total samples. This indicates that small sample sizes may give a useful diversity index. Replicated subsamples show that much smaller samples than are normally used can discriminate between communities from polluted and unpolluted environments. The use of smaller samples should reduce the cost of stream surveys.  相似文献   

3.
ABSTRACT: A computer program written in BASIC calculates net changes in stream channel cross-sections. Calculations are based on dividing the channel cross-section into discrete regions of scour and fill. Internal boundaries of these regions (along the x-axis of the cross-section) are determined by the location of vertical depth measurements taken at two distinct times. The right and left boundaries of the cross-section can be specified so that scour or fill can be calculated for any portion of the profile desired.  相似文献   

4.
ABSTRACT: Naturally occurring and man-made structures can be used for enhancing the development of riparian zones. Naturally occurring structures are cienagas, beaver dams, and log steps. Man-made structures include large and small channel structures and bank protection devices. All these structures affect streamflow hydraulics and sedimentation and can create a more favorable environment for riparian zone establishment. However, when they are used improperly, they can be destructive to existing riparian zones. Since stream processes are generally slow, long-time spans may pass before the effects of management action, good or bad, become visible. Also, the effects of large dam installations may appear a long distance downstream from the dam. Therefore, investigations must be of a wide scope. Interactions between riparian site, channel, and streamflow may be so complex that an interdisciplinary approach is required.  相似文献   

5.
ABSTRACT: The quality of stream habitat varies for a variety of natural and anthropogenic reasons not identified by a condition index. However, many people use condition indices to indicate management needs or even direction. To better sort natural from livestock influences, stream types and levels of ungulate bank damage were regulated to estimates of aquatic habitat condition index and stream width parameters in a large existing stream inventory data base. Pool/riffle ratio, pool structure, stream bottom materials, soil stability, and vegetation type varied significantly with stream type. Pool/riffle ratio, soil and vegetation stability varied significantly with ungulate bank damage level. Soil and vegetation stability were highly cross-correlated. Riparian area width did not vary significantly with either stream type or ungulate bank damage. Variation among stream types indicates that riparian management and monitoring should be stream type and reach specific.  相似文献   

6.
A system is proposed to classify running water habitats based on their channel form which can be considered in three different sedimentological settings: a cobble and boulder bed channel, a gravel bed channel, or a sand bed channel. Three physical factors (relief, lithology, and runoff) are selected as state factors that control all other interacting parameters associated with channel form. When these factors are integrated across the conterminous United States, seven distinct stream regions are evident, each representing a most probable succession of channel forms downstream from the headwaters to the mouth. Coupling these different channel profiles with typical biotic community structures usually associated with each of the channel types should result in considerable refinement of the applicability of the River Continuum Concept and other holistic ecosystem models by realizing the nonrandomness of the effects of geo-morphology on stream ecosystems. Thus, this regional perspective of streams should serve to make persons concerned with water resources more aware of the geographical considerations that affect their study areas.  相似文献   

7.
ABSTRACT: Habitat diversity and invertebrate drift were studied in a group of natural and channelized tributaries of the upper Des Moines River during 1974 and 1975. Channelized streams in this region had lower sinuosity index values than natural channel segments. There were significant (P=O.05) positive correlations between channel sinuosity and the variability of water depth and current velocity. Invertebrate drift density, expressed as biomass and total numbers, also was correlated with channel sinuosity. Channelization has decreased habitat variability and invertebrate drift density in streams of the upper Des Moines River Basin and probably has reduced the quantity of water stored in streams during periods of low flow.  相似文献   

8.
ABSTRACT: One-hundred-and-sixty step pools were examined that have developed in andesitic, basaltic, or dacitic lavas or in glaciofluvial sediments along several reaches of Soda Creek in the Three Sisters Wilderness of the Oregon High Cascades to determine whether such systems exhibit similar morphology. Pool shapes, sizes, and spacing were measured, and the hydraulic head loss calculated for each pool surface. Lithologic variations among 15 shape categories were not significant, but size attributes - length, depth, and area - of pools were systematically different by rock type. The energy lost at hydraulic jumps did not differ significantly among the four lithologies, suggesting that perhaps step pools represent similar stream channel adjustments in steep terrain.  相似文献   

9.
10.
ABSTRACT: Recent stream survey data (1989–1993) from 31 stream segments of 21 streams within the upper South Umpqua Watershed Oregon were compared to 1937 stream survey data collected from these same stream segments. Current low-flow wetted stream widths of 22 of the 31 surveyed stream segments were significantly different than in 1937; 19 stream segments were significantly wider while the remaining three stream segments were significantly narrower. In only 1 of 8 tributaries to the South Umpqua River which had headwaters within land designated wilderness area did low-flow stream channel width increase since 1937. Conversely, 13 of the 14 tributaries to the South Umpqua River which originated from lands designated as timber emphasis were significantly wider than in 1937. The observed change in stream width was linearly related to timber harvest (r2= 0.44), road density (r2= 0.45), and the amount of large organic debris remaining within the active stream channel (r2= 0.43). These findings suggest that timber harvest and road construction may have resulted in changes in channel characteristics. These channel changes may also be a factor in the observed decline of three of the four populations of anadromous salmonids within the basin.  相似文献   

11.
ABSTRACT: The Riverine Community Habitat Assessment and Restoration Concept (RCHARC) was developed to integrate habitat enhancement into the stream restoration process. RCHARC assumes that aquatic habitat quality is closely related to hydraulic diversity based upon a “comparison standard” reach approach to stream restoration. A Beta test was performed by applying the RCHARC process to Rapid Creek in Rapid City, South Dakota. Standard and restored stream reaches were selected and data were collected. A comparison of field data and velocity-depth distributions indicated that the restored stream closely replicated the standard reach. The RCHARC methodology has the potential to assess habitat quality for planned comparison reaches and indicate the level of success resulting from restoration.  相似文献   

12.
ABSTRACT. Stream channel characteristics were found to be useful indices to the hydrology of 27 small forested basins in the Northeast United States. Channel width alone explained 37 percent of the variation in mean annual runoff, whereas channel width combined with basin area explained 78 percent of the variation in mean annual runoff. This approached the percentage of variation in mean annual runoff explained by mean annual precipitation (83 percent). A simulated 15% increase in precipitation, such as might occur in a weather modification project, produced increases in channel width, depth, and channel area of 3, 4, and 8 percent, respectively.  相似文献   

13.
    
ABSTRACT: We evaluated changes in channel habitat distributions, particle‐size distributions of bed material, and stream temperatures in a total of 15 first‐or second‐order streams within and nearby four planned commercial timber harvest units prior to and following timber harvest. Four of the 15 stream basins were not harvested, and these streams served as references. Three streams were cut with unthinned riparian buffers; one was cut with a partial buffer; one was cut with a buffer of non‐merchantable trees; and the remaining six basins were clearcut to the channel edge. In the clearcut streams, logging debris covered or buried 98 percent of the channel length to an average depth of 0.94 meters. The slash trapped fine sediment in the channel by inhibiting fluvial transport, and the average percentage of fines increased from 12 percent to 44 percent. The trees along buffered streams served as a fence to keep out logging debris during the first summer following timber harvest. Particle size distributions and habitat distributions in the buffered and reference streams were largely unchanged from the pre‐harvest to post‐harvest surveys. The debris that buried the clearcut streams effectively shaded most of these streams and protected them from temperature increases. These surveys have documented immediate channel changes due to timber harvest, but channel conditions will evolve over time as the slash decays and becomes redistributed and as new vegetation develops on the channel margins.  相似文献   

14.
ABSTRACT: Data from 56 north-temperate lakes and reservoirs are used to develop models predicting temporal variance as a function of the mean chlorophyll-a concentration. Trophy, as estimated by mean chlorophyll-a concentration, is shown to have little effect on the sampling effort required to achieve a pre-determined level of precision for lakes sampled year-round. Collecting ten observations results in a coefficient of variation that averaged 20 percent; collecting more than ten observations yields increasingly marginal improvements in precision. The same guidelines apply to mesotrophic or eutrophic lakes sampled in the summer, whereas oligotrophic lakes sampled in the summer require fewer observations to achieve the same level of precision. The bias resulting from collecting too few observations is minimized if five or more observations are collected.  相似文献   

15.
ABSTRACT: The at-a-station hydraulic geometry of stream channels can serve as a predictor of alluvial stream channel behavior. This geometry is the empirical relations describing changes in water surface width, mean depth, and mean velocity with changing discharge. The exponent values are correlated with channel morphology and behavior such as scour and fill, flow resistance, bank resistance, and competence. Channel behavior and morphology are apparently related, but some causes for effects are uncertain. Several studies, using empirical and theoretical bases, are reviewed here to illustrate the relation between hydraulic geometry and channel behavior, but the relations are not always consistent. Hydraulic geometry variables are easy to measure and readily available, but they do not always reflect what may be more important ones such as turbulence, the velocity distribution profile, and distribution and cohesion of sediment particles. This paper illustrates some of these problems, provides some solutions, and addresses need for more work to better predict stream channel behavior from hydraulic geometry  相似文献   

16.
Bartholow, John M., 2010. Constructing an Interdisciplinary Flow Regime Recommendation. Journal of the American Water Resources Association (JAWRA) 1-15. DOI: 10.1111/j.1752-1688.2010.00461.x Abstract: It is generally agreed that river rehabilitation most often relies on restoring a more natural flow regime, but credibly defining the desired regime can be problematic. I combined four distinct methods to develop and refine month-by-month and event-based flow recommendations to protect and partially restore the ecological integrity of the Cache la Poudre River through Fort Collins, Colorado. A statistical hydrologic approach was used to summarize the river’s natural flow regime and set provisional monthly flow targets at levels that were historically exceeded 75% of the time. These preliminary monthly targets were supplemented using results from three Poudre-specific disciplinary studies. A substrate maintenance flow model was used to better define the high flows needed to flush accumulated sediment from the river’s channel and help sustain the riparian zone in this snowmelt-dominated river. A hydraulic/habitat model and a water temperature model were both used to better define the minimum flows necessary to maintain a thriving cool water fishery. The result is a range of recommended monthly flows and daily flow guidance illustrating the advantage of combining a wide range of available disciplinary information, supplemented by judgment based on ecological principles and a general understanding of river ecosystems, in a highly altered, working river.  相似文献   

17.
Hughes, Robert M., Alan T. Herlihy, and Philip R. Kaufmann, 2010. An Evaluation of Qualitative Indexes of Physical Habitat Applied to Agricultural Streams in Ten U.S. States. Journal of the American Water Resources Association (JAWRA) 46(4): 792-806. DOI: 10.1111/j.1752-1688.2010.00455.x Abstract: Assessment of stream physical habitat condition is important for evaluating stream quality globally. However, the diversity of metrics and methods for assessing physical habitat condition confounds comparisons among practitioners. We surveyed 51 previously sampled stream sites (0.0-6.3 m wide) located in regions of row-crop agriculture in Oregon, California, North Dakota, South Dakota, Nebraska, Iowa, Minnesota, Pennsylvania, Maryland, and West Virginia to evaluate the comparability of four indexes of physical habitat condition relative to each other. We also compared the indexes to previously calculated indexes of fish and macroinvertebrate condition. The physical habitat indexes included the Stream Visual Assessment Protocol Version 2 of the Natural Resources Conservation Service, the qualitative habitat evaluation index of the Ohio Environmental Protection Agency, the rapid bioassessment protocol of the United States Environmental Protection Agency (USEPA), and a qualitative physical habitat index based on USEPA quantitative physical habitat measurements. All four indexes were highly correlated with each other, but low-to-moderately correlated with biotic index scores for fish and macroinvertebrate assemblages. Moderately high correlations occurred between some macroinvertebrate biotic index scores and quantitative metrics. We conclude that additional research is needed to increase the predictive and diagnostic capabilities of qualitative physical habitat indexes.  相似文献   

18.
ABSTRACT: In the last 30 years, the National Resource Conservation Service's TR‐55 and TR‐20 models have seen a dramatic increase in use for stormwater management purposes. This paper reviews some of the data that were originally used to develop these models and tests how well the models estimate annual series peak runoff rates for the same watersheds using longer historical data record lengths. The paper also explores differences between TR‐55 and TR‐20 peak runoff rate estimates and time of concentration methods. It was found that of the 37 watersheds tested, 25 were either over‐ or under‐predicting the actual historical watershed runoff rates by more than 30 percent. The results of this study indicate that these NRCS models should not be used to model small wooded watersheds less than 20 acres. This would be especially true if the watershed consisted of an area without a clearly defined outlet channel. This study also supports the need for regulators to allow educated hydrologists to alter pre‐packaged model parameters or results more easily than is currently permitted.  相似文献   

19.
Abstract: Stream and riparian managers must effectively allocate limited financial and personnel resources to monitor and manage riparian ecosystems. They need to use management strategies and monitoring methods that are compatible with their objectives and the response potential of each stream reach. Our objective is to help others set realistic management objectives by comparing results from different methods used to document riparian recovery across a diversity of stream types. The Bureau of Land Management Elko Field Office, Nevada, used stream survey, riparian proper functioning condition (PFC) assessment, repeat photographic analysis, and stream and ecological classification to study 10 streams within the Marys River watershed of northeast Nevada during all or parts of 20 years. Most riparian areas improved significantly from 1979 to 1992‐1993 and then additionally by 1997‐2000. Improvements were observed in riparian and habitat condition indices, bank cover, and stability, pool quality, bank angle, and depth of undercut bank. Interpretation of repeat photography generally confirmed results from stream survey and should be part of long‐term riparian monitoring. More attributes of Rosgen stream types C and E improved than of types B and F. A and Gc streams did not show significant improvement. Alluvial draws and alluvial valleys improved in more ways than V‐erosional canyons and especially V‐depositional canyons. Stream survey data could not be substituted for riparian PFC assessment. Riparian PFC assessments help interpret other data.  相似文献   

20.
ABSTRACT: Following major floods in 1990 which resulted in widespread bank erosion in southern British Columbia, four streams typical of the region were evaluated for the effect which riparian vegetation played in reducing erosion. A total of 748 bends in the four stream reaches were assessed by comparing pre- and post-flood aerial photography. Bends without riparian vegetation were found to be nearly five times as likely as vegetated bends to have undergone detectable erosion during the flood events. Major bank erosion was 30 times more prevalent on non-vegetated bends as on vegetated bends. The likelihood of erosion on semi-vegetated bends was between that of the vegetated and non-vegetated categories of bends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号