首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of Soil Conditions on Survival and Growth of Black Willow Cuttings   总被引:1,自引:0,他引:1  
Current streambank restoration efforts focus on providing bank stability, enhancing water quality, and improving woody habitat using native vegetation rather than traditional engineering techniques. However, in most cases harsh site conditions limit restoration success. A two-year field study was conducted at Twentymile Creek, in northern Mississippi, investigating edaphic factors governing the survival of black willow (Salix nigra) cuttings used for streambank restoration. Low height growth, above-ground biomass production, and average leaf area were observed in willow cuttings grown in plots subjected to moisture deficits. However, sediment texture emerged as the dominant factor determining willow post growth, health, and survival. Shoot biomass, leaf biomass, and total above-ground biomass were 15-, 10-, and 14-fold greater for large willow cuttings (posts) grown in plots with sandy sediments relative to those grown in plots with similar moisture and soil redox potential but with silt and clay sediments. Average leaf size, average leaf mass and specific leaf area were all lower in fine textured plots. Under moisture conditions present at our sites, coarse-grained sediment (sand) was more conducive to willow growth, biomass production, and survival than were fine-grained sediments (silt/clay). Our results strongly suggest that soil texture and moisture conditions can determine restoration success. Therefore, it is critical that site conditions are factored into the selection of project locations prior to the initiation of willow planting restoration projects.  相似文献   

2.
ABSTRACT: Combinations of vegetation and structure were applied to control streambank erosion along incised stream channels in northwest Mississippi. Eleven sites along seven channels with contributing drainage areas ranging from 12–300 km2 were used for testing. Tested configurations included eroding banks protected by vegetation alone, vegetation with structural toe protection, vegetation planted on re-graded banks, and vegetation planted on regraded banks with toe protection. Monitoring continued for up to 10 years, and casual observation for up to 18 years. Sixteen woody and 13 nonwoody species were tested. Native woody species, particularly willow, appear to be best adapted to stream-bank environments. Sericea lespedeza and Alamo switchgrass were the best nonwoody species tested. Vegetation succeeded in reaches where the bed was not degrading, competition from kudzu was absent, and bank slopes were stabilized by grading or toe protection. Natural vegetation invaded planted and unplanted stable banks composed of fertile soils. Designs involving riprap toe protection in the form of a longitudinal dike and woody vegetation appeared to be most cost-effective. The exotic vine kudzu presents perhaps the greatest long-term obstacle to restoring stable, functional riparian zones along incised channels in our region. (KEY TERMS: vegetation; streambank protection; bioengineering; stream restoration; channel incision; riparian zone.)  相似文献   

3.
/ Fishes and their habitats were sampled in Harland Creek, Mississippi, for 3 years to compare the relative value of three types of bank treatment in an incised, warmwater stream. Semiannual samples were collected from 10 reaches: 3 reaches protected by each of the three types of protection (longitudinal stone toe, stone spurs, and dormant willow posts) and an unprotected, slowly eroding bend. Protection of concave banks of bends had no measurable effect on the habitat quality of downstream riffles. Although bends and adjacent downstream riffles were faunistically similar at the species level, catostomids and centrarchids were more dominant in pools and smaller cyprinids more dominant in riffles. Reaches with willow posts were slightly deeper than the others, most likely because of geomorphic factors rather than bank treatment. Mean water surface widths in reaches stabilized with stone spurs were 40% to 90% greater than for other treatments, and current velocities were greatest in reaches with stone toe. Patterns of fish abundance and species diversity did not differ significantly among treatments. However, principal components analysis indicated that the fish species distribution associated with the untreated reference site was distinct. Reaches stabilized with stone spurs supported significantly higher densities of large fish and higher levels of fish biomass per unit channel length than reaches with other bank treatments, generally confirming previous research in the region. Initial costs for spurs were comparable to those for stone toe and about three times greater than for willow posts.  相似文献   

4.
ABSTRACT: The tailwater of Bridgewater Dam, below Lake James, North Carolina, is a designated trout stream. It has environmental attributes for a good cold water fishery with the exception of high suspended sediments. Muddy Creek, a tributary about 1.5 km downstream of the dam, is a major source of sediments. The Muddy Creek Watershed Restoration Initiative was established to develop and implement a sediment control plan. The Watershed Analysis Risk Management Framework was applied to simulate soil erosion and sedimentation and to help determine appropriate action. The simulated sediment concentrations of the river were comparable to observed data from November 1994 to November 2001. For the base condition, the sediment load was 135,000 kg/d from surface erosion and 1,300,000 kg/d from bank erosion. Increasing the buffer strip from existing 50 to 80 percent to 100 percent of stream segments would only reduce surface erosion to 70,400 kg/d with little change in sediment concentrations. Eliminating riverbank erosion would reduce the sediment load from 920,000 to 87,700 kg/d. The bank stabilization project would not only lower suspended sediment concentrations for Muddy Creek, but also reduce the lake sediment accumulation in the downstream Lake Rhodhiss by approximately 13 percent.  相似文献   

5.
ABSTRACT: Longitudinal stone toe is one of the most reliable and economically attractive approaches for stabilizing eroding banks in incised channels. However, aquatic habitat provided by stone toe is inferior to that provided by spur dikes. In order to test a design that combined features of stone toe and spurs, eleven stone spurs were placed perpendicular to 170 m of existing stone toe in Goodwin Creek, Mississippi, and willow posts were planted in the sandbar on the opposite bank. Response was evaluated by monitoring fish and habitats in the treated reach and an adjacent comparison reach (willow post planting and standard toe without spurs) for four years. Furthermore, physical habitats within the treated reach were compared with seven reaches protected with standard toe on a single date three years after construction. Overall results indicated that spur addition resulted in modest increases in baseflow stony bankline, water width and pool habitat availability, but had only local effects on depth. These relatively small changes in physical habitat were exaggerated seasonally by beaver dams that appeared during periods of prolonged low flow in late Summer and Autumn. Physical changes were accompanied by shifts in fish species composition away from a run-dwelling assemblage dominated by large numbers of cyprinids and immature centrarchids toward an assemblage containing fewer and larger centrarchids. Biological responses were at least partially due to the effects of temporary beaver dams.  相似文献   

6.
Field studies were conducted on black willow (Salix nigra) cuttings planted for riparian zone restoration along Harland Creek, Twentymile Creek, and Little Topashaw Creek in Mississippi, USA. Planted cuttings were 2.5 to 3 m long and had base diameters of 2.5 to 7.5 cm. Streams were unstable, deeply incised sand bed channels with eroding banks 1 to 6 m high. Soil texture, redox potential (Eh), depth to water table, and willow survival were monitored for two to three years after planting. While many factors influence willow cuttings at restoration sites, soil texture and moisture are key to plant success. In these studies, plant survival and growth were best for cuttings planted in soils with less than 40 percent silt‐clay content and a water table 0.5 m to 1.0 m below the soil surface during the growing season. These conditions produced soil Eh greater than approximately 200 mV and were most often observed 1 to 2 m higher than the bank toe. These findings suggest criteria useful for preplanting site evaluations. Additional evidence suggests that preplanting soaking enhances performance of black willow cuttings. Additional factors (channel erosion, herbivory by beaver, and competition from exotics) may control performance over periods longer than two to three years.  相似文献   

7.
ABSTRACT: Throughout western North America, willows and cottonwoods are dominant woody plants in riparian zones, streamside areas that are periodically flooded. This study compared tolerances of willows‐Salix discolor, S. exigua, and S. lutea‐and cottonwoods‐Populus angustifolia, P balsamifera, and P deltoides‐to water inundation, one component of stream flooding. Rooted cuttings were grown for 152 days in 10 cm tall pots in water depths from 2.5 to 10 cm (inundated). Shoot and root elongation growth of the inundated cottonwoods were reduced 23 and 45 percent, while S. lutea was relatively unaffected and the inundated sandbar willow, S. exigua, displayed 72 and 43 percent increases in shoot and root elongation. The inundation reduced transpiration in P deltoides and for mature P balsamifera trees that were flooded by a small reservoir on Willow Creek, Alberta. Those flooded trees died in their second year of inundation. The greater inundation tolerance of willows versus cottonwoods is consistent with observations along Midvale Creek, Montana, where beaver dams created a pond in which P trichocarpa died while willows thrived after five years. These patterns of inundation tolerance are consistent with elevational zones of occurrence as willows‐and particularly the sandbar willow—occur at low elevations close to the stream. The understanding of inundation tolerances should assist in the provision of hydrologic patterns that will conserve and restore these shrubs and trees along streams and could permit their establishment along artificial reservoirs.  相似文献   

8.
ABSTRACT: Stability of vegetated and bare riprap revetments along a Sacramento River reach during the flood of record was assessed. Revetment damages resulting from the flood were identified using records provided by the U.S. Army Corps of Engineers and verified by contacts with local interests. Vegetation on revetments along a 35.6-mile reach was mapped using inspection records and stereo interpretation of aerial phoths taken shortly before and after the flood. A follow-up field inspection was conducted in September 1989. Revetment age, material, bank curvature, vegetation, and damage were mapped from a boat. Mapping results from both 1986 and 1989 were placed in a data base. About 70 percent of the bank line of the study reach was revetted. About two-thirds of the revetment was cobble; one-third was quarry stone. Revetment vegetation varied from none to large (> 50-inch diameter) cotton-woods. About 10 percent of the revetted bank line supported some type of woody vegetation. Damage rates for revetments supporting woody vegetation tended to be lower than for unvegetated revetments of the same age located on banks of similar curvature. Chisquared tests indicated damage rates were greater for older (pre-1950 construction) revetments, but were unable to detect differences based on vegetation or bank curvature. Research is needed to generate design criteria and construction techniques to allow routine use of woody plants in bank protection structures.  相似文献   

9.
Non-structural streambank stabilization, or bioengineering, is a common stream restoration practice used to slow streambank erosion, but its ecological effects have rarely been assessed. We surveyed bank habitat and sampled bank macroinvertebrates at four bioengineered sites, an unrestored site, and a comparatively less-impacted reference site in the urban Peachtree-Nancy Creek catchment in Atlanta, GA, USA. The amount of organic bank habitat (wood and roots) was much higher at the reference site and three of the bioengineered sites than at the unrestored site or the other bioengineered site, where a very different bioengineering technique was used (“joint planting”). At all sites, we saw a high abundance of pollution-tolerant taxa, especially chironomids and oligochaetes, and a low richness and diversity of the bank macroinvertebrate community. Total biomass, insect biomass, and non-chironomid insect biomass were highest at the reference site and two of the bioengineered sites (p < 0.05). Higher biomass and abundance were found on organic habitats (wood and roots) versus inorganic habitats (mud, sand, and rock) across all sites. Percent organic bank habitat at each site proved to be strongly positively correlated with many factors, including taxon richness, total biomass, and shredder biomass. These results suggest that bioengineered bank stabilization can have positive effects on bank habitat and macroinvertebrate communities in urban streams, but it cannot completely mitigate the impacts of urbanization.  相似文献   

10.
The Veteran's Fishing section of the Blackledge River in central Connecticut was relocated in the late 1950s. The relocation resulted in an unstable channel despite extensive efforts to prevent erosion. Overbank erosion and meander cutoffs were investigated using detailed survey data, characterizations of sediment deposits, flow modeling, and a moment-stability analysis. Limited reworking of revetment boulders indicate that riprap bank material was immobile during a 1979 flood event responsible for the formation of the cutoff channel. A moment-stability analysis factor-of-safety value of 1.1 supports the conclusion that riprap was not directly eroded from the banks. Alluvial particles with d95 values ranging up to 120 mm were deposited along a bar downstream from the cutoff channel at flows estimated to be below a 1.5-year recurrence interval flow. Development of the bar deposit resulted in locally elevated water surfaces at high flow. The resulting overbank flow across the meander neck to the adjacent downstream bend led to the creation of an upstream migrating knickpoint, the erosion of approximately 16,000-year-old sediments, and the subsequent meander cutoff. The results of the study indicate that traditional erosion-control measures cannot prevent extreme channel adjustments if the geomorphic processes that control sediment continuity also are not considered.  相似文献   

11.
Abstract: The effects of streamflows on temporal variation in stream habitat were analyzed from the data collected 6‐11 years apart at 38 sites across the United States. Multiple linear regression was used to assess the variation in habitat caused by streamflow at the time of sampling and high flows between sampling. In addition to flow variables, the model also contained geomorphic and land use factors. The regression model was statistically significant (p < 0.05; R2 = 0.31‐0.46) for 5 of 14 habitat variables: mean wetted stream depth, mean bankfull depth, mean wetted stream width, coefficient of variation of wetted stream width, and the percent frequency of bank erosion. High flows between samples accounted for about 16% of the total variation in the frequency of bank erosion. Streamflow at the time of sampling was the main source of variation in mean stream depth and contributed to the variation in mean stream width and the frequency of bank erosion. Urban land use (population change) accounted for over 20% of the total variation in mean bankfull depth, 15% of the total variation in the coefficient of variation of stream width, and about 10% of the variation in mean stream width.  相似文献   

12.
ABSTRACT: Many natural and anthropogenic factors contribute to the stability or erodibility of stream channels. Although a stream rating procedure used by more than 60 percent of the U.S. National Forests provides an estimate of overall stability, it does not identify the cause of instability or indicate corrective management. To better sort natural from livestock influences, stream stability rating indicator variables were related to stream types and levels of ungulate bank damage in a large data base for streams in northern Nevada. Stability and the range in stability varied naturally with stream type. Ungulate bank damage had different effects on different stream types and on different parts of their cross-sections. Vegetation is more important for stability on certain stream types than on other types. Streams with noncohesive sand and gravel banks are most sensitive to livestock grazing. Range managers should consider the stream type when setting local standards, writing management objectives, or determining riparian grazing strategies.  相似文献   

13.
ABSTRACT: Adaptive management is a heuristic approach to treating stream restoration projects as continuous, cyclic experiments, yielding results to be incorporated into future decisions. This comprehensive assessment views failures as surprises that are valuable lessons. Monitoring, evaluation of data, and communication of results are critical; the monitoring results trigger feedback mechanisms to invoke adaptation to the newly acquired information and communication of new hypotheses, treatments, or policies. The principles of adaptive management were applied to a monitoring study of three urban stream restoration sites in Maryland. Data were collected and evaluated for various restoration techniques, including vanes, cross vanes, step pools, root wads, imbricated riprap walls, and coir fiber rolls. Improvements to the existing Maryland design guidelines and policies were developed as the feedback mechanism. With the increasing application of adaptive management in stream restoration efforts, it is likely that repeated failures will be prevented and future restoration projects will be more successful in achieving their goals.  相似文献   

14.
Many bank erosion models have limitations that restrict their use in wildland settings. Scientists and land managers at the Sequoia National Forest would like to understand the mechanisms and rates of streambank erosion to evaluate management issues and post‐wildfire effects. This study uses bank erosion hazard index (BEHI) and near‐bank stress (NBS) methods developed in Rosgen (2006 Watershed Assessment of River Stability and Sediment Supply [WARSSS]) for predicting streambank erosion in a geographic area that is dominated by colluvium and in which streambank erosion modeling has not been previously evaluated. BEHI evaluates bank susceptibility to erosion based on bank angle, bank and bankfull height, rooting depth and density, surface protection, and stratification of material within the banks. NBS assesses energy distribution against the bank measured as a ratio of bankfull near‐bank maximum depth to mean bankfull depth. We compared BEHI classes and NBS to actual bank erosion measured from 2008 to 2012. This index predicted streambank erosion with clear separation among BEHI ratings with R2 values of 0.76 for extreme, 0.37 for high/very high, 0.49 for moderate, and 0.70 for low BEHI. The relationships between measured erosion and BEHI extend the application of BEHI/NBS to a new region where they can inform management priorities, afforestation, stream/riparian restoration projects, and potentially burned area rehabilitation.  相似文献   

15.
ABSTRACT: Autochthonous energy input, in the form of periphyton production and growth, was studied before and after partial logging of the watershed surrounding School Brook, a small tributary of the Aroostook River, Maine. Due to infection by the spruce budworm (Chiristoneura fumiferana), the buffer strip on one bank of the stream was logged and only limited riparian vegetation was left. Though impacts in subsequent years are unknown, the effect of the logging on the periphyton community was insignificant during the nine months following cutting, seemingly due to several factors. Because only 5 percent of the canopy was actually removed, the intensity of available light changed little. Small springs in the area helped maintain a stable thermal regime, and only a small portion of the low gradient watershed was actually logged. Consequently, the nutrients reaching the stream did not change. The relatively low concentrations of nitrates (< 0.3 mg/l) and phosphates (< 10 μg/l), both before and in the first nine months after logging, reflect the limited autochthonous input, thereby reducing the effect of this limited cutting on the stream community.  相似文献   

16.
Channelization is one of the most common solutions to urban drainage problems, despite the fact that channelized streams are frequently morphologically unstable, biologically unproductive, and aesthetically displeasing. There is increasing empirical and theoretical evidence to suggest that channelization may be counterproductive unless channels are designed to prevent the bank erosion and channel silting that often accompanies stream dredging. Many of the detrimental effects of channelization can be avoided, with little compromise in channel efficiency, by employing channel design guidelines that do not destroy the hydraulic and morphologic equilibria that natural streams possess. These guidelines include minimal straightening; promoting bank stability by leaving trees, minimizing channel reshaping, and employing bank stabilization techniques; and, emulating the morphology of natural stream channels. This approach, called stream restoration or stream renovation, is being successfully employed to reduce flooding and control erosion and sedimentation problems on streams in Charlotte, North Carolina.  相似文献   

17.
ABSTRACT: Hydrograph analysis of six streams on the south shore of Long Island indicates that eastward urbanization during the last three decades has significantly reduced base flow to streams. Before urbanization, roughly 95 percent of total annual stream flow on Long Island was base flow. In urbanized southwestern Nassau County, storm water sewerage, increased impervious surface area, and sanitary sewerage have reduced base flow to 20 percent of total stream flow. In an adjacent urbanized but unsewered area in southeastern Nassau County, base flow has decreased to 84 percent of total annual stream flow. In contrast, base flow in two streams in rural areas has remained virtually constant, averaging roughly 95 percent of total annual flow throughout the 1955-70 study period. Double-mass curve analysis of base flow as a percentage of total annual stream flow indicates that (1) changes in stream flow characteristics began in the early 1960's in the sewered area and in the late 1960's in the later urbanized, unsewered area, and (2) a new equilibrium has been established between the streams in the sewered area and the new hydrologic characteristics of their urbanized drainage basins.  相似文献   

18.
ABSTRACT: Naturally formed plunge pools (scour holes) are a common morphologic feature in many urban stream systems where the transition between a pipe and a natural channel occurs. Plunge pools serve as significant stream energy dissipaters, increasing flow resistance and enhancing stream channel stability. Such features may also improve habitat diversity and serve as refugia for stream biota during low flow periods. The morphologic characteristics of several naturally formed plunge pools associated with road crossing culvert outlets in the metropolitan Charlotte, North Carolina, area are presented. Plunge pool dimensions surveyed include maximum depth, length, and width, and longitudinal and side slopes as well as bed material. Culvert outlet dimensions and hydraulic characteristics of the scouring jet for each study site are also reported. Design equations developed from flume studies generally failed to predict the naturally formed plunge pool dimensions. Pool volume was significantly correlated with drainage area, with pool depth being the least sensitive dimension to changes in the magnitude of the scouring flow. The excavation costs for designed plunge pools compare favorably to initial construction costs of traditional culvert outlet riprap aprons.  相似文献   

19.
Variation in root density along stream banks   总被引:1,自引:0,他引:1  
While it is recognized that vegetation plays a significant role in stream bank stabilization, the effects are not fully quantified. The study goal was to determine the type and density of vegetation that provides the greatest protection against stream bank erosion by determining the density of roots in stream banks. To quantify the density of roots along alluvial stream banks, 25 field sites in the Appalachian Mountains were sampled. The riparian buffers varied from short turfgrass to mature riparian forests, representing a range of vegetation types. Root length density (RLD) with depth and aboveground vegetation density were measured. The sites were divided into forested and herbaceous groups and differences in root density were evaluated. At the herbaceous sites, very fine roots (diameter < 0.5 mm) were most common and more than 75% of all roots were concentrated in the upper 30 cm of the stream bank. Under forested vegetation, fine roots (0.5 mm < diameter < 2.0 mm) were more common throughout the bank profile, with 55% of all roots in the top 30 cm. In the top 30 cm of the bank, herbaceous sites had significantly greater overall RLD than forested sites (alpha = 0.01). While there were no significant differences in total RLD below 30 cm, forested sites had significantly greater concentrations of fine roots, as compared with herbaceous sites (alpha = 0.01). As research has shown that erosion resistance has a direct relationship with fine root density, forested vegetation may provide better protection against stream bank erosion.  相似文献   

20.
Rock riprap is one of the most widely used erosion control methods for protecting embankments, levees, spillways, and instream structures subjected to overtopping flow conditions. At least 21 stone‐sizing relationships exist to determine the median stone size of a protective riprap layer based on the results of 96 overtopping, laboratory experiments. Test parameters include median stone size, slope, unit discharge, coefficient of uniformity, and riprap layer thickness. A regression analysis was performed relating the observed median stone size to the predicted median stone size to each of the 21 relationships, yielding a coefficient of determination (R2) and percent error for the full spectrum of data. Zonal (partial spectrum of rock sizes) and complexity analyses were also conducted for each relationship. It was resolved that the Khan and Ahmad, and Chang relationships best aligned with the composite dataset. The predictive expressions by Olivier, Hartung and Scheuerlein, Knauss, Maynord, Abt and Johnson, and Siebel yield a noteworthy second tier of stone‐sizing relationships for overtopping conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号