首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: Ground water and surface water constitute a single dynamic system in most parts of the Suwannee River basin due to the presence of karst features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River.  相似文献   

2.
ABSTRACT: A survey of 34 open hand dug wells was performed in the Senegal River basin of West Africa. Nitrate concentrations were determined on the well water samples over a six-month period. With the exception of two wells, the wells indicated varying levels of nitrate contamination. The range of concentrations was 0.10 to 880 mg/I as nitrate. These data when compared to physical characteristics, land use, and age using a chi-square analysis did not suggest any strong association. The fact that these wells are open and in a semiarid climate may be of such importance that the previously considered factors are of minor relative importance. Contamination may be primarily the result of foreign matter entering the well mouth.  相似文献   

3.
ABSTRACT: Increased riverine nitrogen (N) fluxes have been strongly correlated with land use changes and are now one of the largest pollution problems in the coastal region of the United States. In the present study, the Hydrological Simulation Program‐FORTRAN (HSPF) is used to simulate transport of N in the Ipswich River basin in Massachusetts and to evaluate the effect of future land use scenarios on the water quality of the river. Model results show that under a land use change scenario constructed with restrictions from environmental protection laws, where 44 percent of the forest in the basin was converted to urban land, stream nitrate concentrations increased by about 30 percent of the present values. When an extreme land use scenario was used, and 100 percent of the forest was converted to urban land, concentrations doubled in comparison to present values. Model simulations also showed that present stream nitrate concentrations might be four times greater than they were prior to urbanization. While pervious lands with high density residential land use generated runoff with the highest N concentrations in HSPF simulations, the results suggested that denitrification in the riparian zone and wetlands coupled with the hydrology of the basin are likely to control the magnitude of nitrate loads to the aquatic system. The simulation results showed that HSPF can predict the general patterns of inorganic N concentrations in the Ipswich River and tributaries. Nevertheless, HSPF has some difficulty simulating the extreme variability of the observed data throughout the main stem and tributaries, probably because of limitations in the representation of wetlands and riparian zones in the model, where N processes such as denitrification seem to play a major role in controlling the transport of N from the terrestrial system to the river reaches.  相似文献   

4.
ABSTRACT: Most research on the temporal aspect of nitrate pollution in water resources has focused on surface water. Comprehensive studies on the dynamics of nitrate in ground water are lacking, especially on a drainage basin scale and for relatively long periods of time. In this study, structural equation modeling is applied in investigating the influences of climate, hydrology, and nitrogen management in agricultural production on nitrate concentration in the Big Spring Basin, Iowa, over a 10-year period. The study shows that for given hydrogeological settings, nitrogen management practices and climate are the two most important factors that affect nitrate dynamics. The long-term trend of nitrate is closely related to the nitrogen input primarily determined by management practices. The potential effects of nitrogen management, however, are contingent on the variations of climate. The improvements in water quality (reduced nitrate concentration and loads) in relation to improved nitrogen management are often overshadowed by the impact of climate, especially in extremely dry or wet years. The variations of climate and hydrology have much greater impacts on the nitrate dynamics than the changes in nitrogen input. This study reveals significant seasonal variation in the relations between nitrate concentration and influencing factors, which is also closely related to the seasonal variation in climate. Assessment of management practices and resultant water quality should consider the impact of short- and long-term climate dynamics.  相似文献   

5.
ABSTRACT: Variables that describe well construction, hydrogeology, and land use were evaluated for use as possible indicators of the susceptibility of ground water in bedrock aquifers in the Newark Basin, New Jersey, to contamination by nitrate from the land surface. Statistical analyses were performed on data for 132 wells located throughout the Newark Basin. Concentrations of nitrate (as nitrogen) did not exceed the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter (mg/L) in any of the water samples (U.S. Environmental Protection Agency, 1991). Variables that describe hydrogeology and well construction were found not to be statistically significant in relation to concentrations of nitrate. This finding can be attributed to the complex nature of flow in bedrock aquifers and mixing of water from shallow and deep water-bearing zones that occurs within these wells, which are constructed with long open intervals. Distributions of nitrate concentrations were significantly different among land-use groups on the basis of land use within both a 400 and an 800-m radius zone of the well. The median concentrations of nitrate (as N) in water from wells in predominantly urban-residential (2.5 mg/L) and agricultural areas (1.8 mg/L) were greater than the median concentration of nitrate in water from wells in predominantly undeveloped areas (0.5 mg/L).  相似文献   

6.
Urbanization has transformed natural landscapes into anthropogenic impervious surfaces. Urban land use has become a major driving force for land cover and land use change in the Tampa Bay watershed of west-central Florida. This study investigates urban land use change and its impact on the watershed. The spatial and temporal changes, as well as the development density of urban land use are determined by analyzing the impervious surface distribution using Landsat satellite imagery. Population distribution and density are extracted from the 2000 census data. Non-point source pollution parameters used for measuring water quality are analyzed for the sub-drainage basins of Hillsborough County. The relationships between 2002 urban land use, population distribution and their environmental influences are explored using regression analysis against various non-point source pollutant loadings in these sub-drainage basins. The results suggest that strong associations existed between most pollutant loadings and the extent of impervious surface within each sub-drainage basin in 2002. Population density also exhibits apparent correlations with loading rates of several pollutants. Spatial variations of selected non-point source pollutant loadings are also assessed.  相似文献   

7.
Nitrate leaching in intensive grassland- and silage maize-based dairy farming systems on sandy soil is a main environmental concern. Here, statistical relationships are presented between management practices and environmental conditions and nitrate concentration in shallow groundwater (0.8 m depth) at farm, field, and point scales in The Netherlands, based on data collected in a participatory approach over a 7-yr period at one experimental and eight pilot commercial dairy farms on sandy soil. Farm milk production ranged from 10 to 24 Mg ha(-1). Soil and hydrological characteristics were derived from surveys and weather conditions from meteorological stations. Statistical analyses were performed with multiple regression models. Mean nitrate concentration at farm scale decreased from 79 mg L(-1) in 1999 to 63 in 2006, with average nitrate concentration in groundwater decreasing under grassland but increasing under maize land over the monitoring period. The effects of management practices on nitrate concentration varied with spatial scale. At farm scale, nitrogen surplus, grazing intensity, and the relative areas of grassland and maize land significantly contributed to explaining the variance in nitrate concentration in groundwater. Mean nitrate concentration was negatively correlated to the concentration of dissolved organic carbon in the shallow groundwater. At field scale, management practices and soil, hydrological, and climatic conditions significantly contributed to explaining the variance in nitrate concentration in groundwater under grassland and maize land. We conclude that, on these intensive dairy farms, additional measures are needed to comply with the European Union water quality standard in groundwater of 50 mg nitrate L(-1). The most promising measures are omitting fertilization of catch crops and reducing fertilization levels of first-year maize in the rotation.  相似文献   

8.
ABSTRACT: Nitrate levels in the Ocklawaha River Basin in north central Florida were reviewed over a 50‐year period. Data were obtained from the literature, U.S. Environmental Protection Agency (USEPA) STOrage and RETrieval (STORET), and U.S. Geological Survey (USGS) databases. The study objective was to determine whether nitrate concentrations are increasing and if so, whether this increase is linked to land use changes. Increasing nitrate levels were seen at 5 of the 14 stations, while other stations showed no trend or a decreasing trend. Median nitrate concentrations in the Ocklawaha River increased from 0.07 mg‐N/L to 0.78 mg‐N/L at sites downstream from the Silver River. Throughout the Rodman Reservoir, median nitrate concentrations decreased from 0.48 mg‐N/L to 0.01 mg‐N/L and increased to 0.04 mg‐N/L after the Kirkpatrick Dam. Flow and concentration relationships were correlated for five stations. At four of the five stations nitrate concentrations decreased in response to increasing flow, likely the result of dilution with nitrate poor water. Changes in land use over a 20‐ year period (1970 to 1990) also were monitored. Sources of nitrate have been linked by isotopic analysis to organic and inorganic fertilizers, which appear to be related to increased urbanization and an increase in lawns that require nutrient fertilization.  相似文献   

9.
Based on hydrological and climatic data and land use/cover change data covering the period from 1957 to 2009, this paper investigates the hydrological responses to climate change and to human activities in the arid Tarim River basin (TRB). The results show that the surface runoff of three headstreams (Aksu River, Yarkant River and Hotan River) of the Tarim River exhibited a significant increasing trend since 1960s and entered an even higher-runoff stage in 1994. In the contrary, the surface runoff of Tarim mainstream displayed a persistent decreasing trend since 1960s. The increasing trend of surface runoff in the headstreams can be attributed to the combined effects of both temperature and precipitation changes during the past five decades. But, the decreasing trend of surface runoff in the mainstream and the observed alterations of the temporal and spatial distribution patterns were mainly due to the adverse impacts of human activities. Specifically, increasingly intensified water consumption for irrigation and the associated massive constructions of water conservancy projects were responsible for the decreasing trend of runoff in the mainstream. And, the decreasing trend has been severely jeopardizing the ecological security in the lower reaches. It is now unequivocally clear that water-use conflicts among different sectors and water-use competitions between upper and lower reaches are approaching to dangerous levels in TRB that is thus crying for implementing an integrated river basin management scheme.  相似文献   

10.
ABSTRACT. This paper describes the methodology for a nutrient balance to evaluate the sources and distribution of nutrients in a small river basin. Loadings for total nitrogen and phosphorus are calculated from measured nutrient concentration and river discharge data. Using a special retrieval program and a data storage and processing system, loadings are accumulated over a given time period to allow for time of passage through the basin and seasonal changes in nutrient distribution. Nutrient balances are made with the accumulated loadings to obtain the relative contribution of each nutrient source and the retention of nutrients within the basin through sedimentation and aquatic growth. The methodology has been used to study nutrients in the Qu'Appelle River Basin, Saskatchewan, Canada.  相似文献   

11.
ABSTRACT: Increasing demands on western water are causing a mounting need for the conjunctive management of surface water and ground water resources. Under western water law, the senior water rights holder has priority over the junior water rights holder in times of water shortage. Water managers have been reluctant to conjunctively manage surface water and ground water resources because of the difficulty of quantification of the impacts to surface water resources from ground water stresses. Impacts from ground water use can take years to propagate through an aquifer system. Prediction of the degree of impact to surface water resources over time and the spatial distribution of impacts is very difficult. Response functions mathematically describe the relationship between a unit ground water stress applied at a specific location and stream depletion or aquifer water level change elsewhere in the system. Response functions can be used to help quantify the spatial and temporal impacts to surface water resources caused by ground water pumping. This paper describes the theory of response functions and presents an application of transient response functions in the Snake River Plain, Idaho. Transient response functions can be used to facilitate the conjunctive management of surface and ground water not only in the eastern Snake River Plain basin, but also in similar basins throughout the western United States.  相似文献   

12.
The degradation of water quality in many groundwaters of Europe is a major source of concern. Rises in turbidity and nitrate concentrations represent present or potential threats for the quality of drinking water in rural areas. They are for the most part a consequence of agricultural intensification which has considerably affected land cover and land use in recent decades. In our case-study (a karstic catchment) the mechanisms which explain changes in water quality, as far as turbidity and nitrate are concerned, result from a strong continuity between surface and underground waters. The karstic system of the Brionne Basin can be considered as both the focus of rapid horizontal flows (runoff, a rapid process in which rainwater reaches the spring directly through sinkholes) and slow vertical flows (leaching, in which rainwater filters through the soil to the spring). A hierarchical approach to the water pollution problem of the basin suggests that turbidity or nitrate concentrations peak during heavy rain episodes and are short-term events. In terms of management, this implies that the solution to water pollution caused by such events is also short-term and can therefore be addressed at a local scale. The rise of nitrate concentrations during the past twenty years is the main concern. The solution can only be found at a global scale (all the catchment area must be taken in account: land plots and their spatial configuration), and by taking a long-term approach.  相似文献   

13.
ABSTRACT: Global climate change due to the buildup of greenhouse gases in the atmosphere has serious potential impacts on water resources in the Pacific Northwest. Climate scenarios produced by general circulation models (GCMs) do not provide enough spatial specificity for studying water resources in mountain watersheds. This study uses dynamical downscaling with a regional climate model (RCM) driven by a GCM to simulate climate change scenarios. The RCM uses a subgrid parameterization of orographic precipitation and land surface cover to simulate surface climate at the spatial scale suitable for the representation of topographic effects over mountainous regions. Numerical experiments have been performed to simulate the present-day climatology and the climate conditions corresponding to a doubling of atmospheric CO2 concentration. The RCM results indicate an average warming of about 2.5°C, and precipitation generally increases over the Pacific Northwest and decreases over California. These simulations were used to drive a distributed hydrology model of two snow dominated watersheds, the American River and Middle Fork Flathead, in the Pacific Northwest to obtain more detailed estimates of the sensitivity of water resources to climate change. Results show that as more precipitation falls as rain rather than snow in the warmer climate, there is a 60 percent reduction in snowpack and a significant shift in the seasonal pattern of streamflow in the American River. Much less drastic changes are found in the Middle Fork Flathead where snowpack is only reduced by 18 percent and the seasonal pattern of streamflow remains intact. This study shows that the impacts of climate change on water resources are highly region specific. Furthermore, under the specific climate change scenario, the impacts are largely driven by the warming trend rather than the precipitation trend, which is small.  相似文献   

14.
Urban land use and land cover change significantly affect spatial and temporal patterns of runoff, which in turn impacts surface water quality. With the exponential growth in urban areas over the past three decades, changes in land use and land cover to cater for the growth of cities has been a conspicuous spectacle in urban spaces. The main goal of this study was to assess the impacts of land cover change on runoff and surface water quality using a partial area hydrology framework. The study employed ArcHydro GIS extension and a modified version of Long-Term Hydrologic and Nonpoint Source Pollution model (L-THIA-NPS) in estimating runoff and nonpoint source pollutant concentration around Lake Calumet between 1992 and 2001. Data employed include National Land Cover Data set, rainfall data, digital elevation model (DEM), Soil Survey Geographic (SSURGO) data, and The United States Environmental Protection Agency’s STORET (storage and retrieval) water quality data. The model was able to predict surface water quality reasonably well over the study period. Sensitivity analysis facilitated a manual calibration of the model. Model validation was executed by comparing simulated results following calibration and observed water quality data for the study area. The study demonstrates that the level of concentration of nonpoint source pollutants in surface water within an urban watershed heavily depends on the spatiotemporal variations in areas that contribute towards runoff compared to the spatial extent of change in major land use/land cover.  相似文献   

15.
A statistical technique which offers considerable promise in ground water studies is the fitting of polynomial trend-surfaces to ground water data and studying the variations in the surfaces and the residuals from these surfaces over a period of time. The application of trend-surface analysis to ground water study is based on the premise that the piezometric surface or water table can be approximated by a mathematically computed polynomial surface of the water levels of the wells in the aquifer. The evaluation of trend surface analysis application in ground water investigations was made up essentially of two considerations; a study of the relationship existing between the trend surfaces and the actual ground water surface and a study of the potential use of the residuals from the trend-surfaces to assist in the location of favorable sites for future development of ground water resources. The conclusions on aquifer behavior drawn from the trend surface analysis were compared with conclusions drawn from a concurrent survey of ground water conditions carried out independently of this investigation. This comparison provided the basis for the critical examination of the application of trend-surface analysis in ground water investigations.  相似文献   

16.
ABSTRACT: The Thornthwaite water balance and combinations of temperature and precipitation changes representing climate change were used to estimate changes in seasonal soil-moisture and runoff in the Delaware River basin. Winter warming may cause a greater proportion of precipitation in the northern part of the basin to fall as rain, which may increase winter runoff and decrease spring and summer runoff. Estimates of total annual runoff indicate that a 5 percent increase in precipitation would be needed to counteract runoff decreases resulting from a warming of 2°C; a 15 percent increase for a warming of 4°C. A warming of 2° to 4°C, without precipitation increases, may cause a 9 to 25 percent decrease in runoff. The general circulation model derived changes in annual runoff ranged from ?39 to +9 percent. Results generally agree with those obtained in studies elsewhere. The changes in runoff agree in direction but differ in magnitude. In this humid temperate climate, where precipitation is evenly distributed over the year, decreases in snow accumulation in the northern part of the basin and increases in evapotranspiration throughout the basin could change the timing of runoff and significantly reduce total annual water availability unless precipitation were to increase concurrently.  相似文献   

17.
ABSTRACT: Among the many concerns associated with global climate change, the potential effects on water resources are frequently cited as the most worrisome. In contrast, those who manage water resources do not rate climatic change among their top planning and operational concerns. The difference in these views can be associated with how water managers operate their systems and the types of stresses, and the operative time horizons, that affect the Nation's water resources infrastructure. Climate, or more precisely weather, is an important variable in the management of water resources at daily to monthly time scales because water resources systems generally are operated on a daily basis. At decadal to centennial time scales, though, climate is much less important because (1) forecasts, particularly of regional precipitation, are extremely uncertain over such time periods, and (2) the magnitude of effects due to changes in climate on water resources is small relative to changes in other variables such as population, technology, economics, and environmental regulation. Thus, water management agencies find it difficult to justify changing design features or operating rules on the basis of simulated climatic change at the present time, especially given that reservoir-design criteria incorporate considerable buffering capacity for extreme meteorological and hydro-logical events.  相似文献   

18.
In mountainous landscapes with high climatic and geomorphic variability, how do rural land uses and exurbanization alter hydrology and water quality? We evaluated effects of rural land use and exurbanization on streamflows, suspended sediment concentrations and loads, specific conductance, and summer water temperatures in 12 streams and rivers within the Upper Little Tennessee River basin in the southern Appalachian Mountains. Eleven streams featured low levels of development (>61% forest cover) but differed in land use patterning, basin size, annual precipitation, and watershed morphology. One urban stream, located within the largest town in the basin, provided the high development comparative endpoint. Even low levels of rural development and exurbanization were associated with substantial increases in suspended sediment concentrations, sediment loads, and summer stream temperature daily maxima and diurnal variation. Observed summer temperature increases were much larger than would be expected due to global climate change over the next century. Specific conductance was idiosyncratic among the smaller streams. These water quality changes were not accompanied by streamflow changes that were discernible amid the high natural variation in precipitation and geomorphology. The water quality findings suggest the need for applying the best management practices, including riparian buffers, to even low levels of rural development.  相似文献   

19.
Management of agricultural nonpoint-source pollution continues to be a challenge because of spatial and temporal variability. Using stream order as an index, we explored the distribution of nitrate concentration and load along the stream network of a large agricultural watershed in Pennsylvania-the East Mahantango Creek Watershed and two of its sub-watersheds. To understand nitrate concentration variation in the stream water contributed from ground water, this study focused on baseflow. Impacts of agricultural land use area on baseflow nitrate in the stream network were investigated. Nitrate concentration showed a general decreasing trend with increasing stream order based on stream order averaged values; however, considerable spatial and temporal variability existed within each snapshot sampling. Nitrate loads increased with stream order in a power function because of the dominant effect of stream flow rate over the nitrate concentration. Within delineated sub-watersheds based on stream orders, positive linear functions were found between agricultural land use area percentage and the baseflow nitrate concentration and between agricultural drainage area and the nitrate load. The slope of the positive linear regression between the baseflow nitrate concentration and percent agricultural land area seems to be a valuable indicator of a watershed's water quality as influenced by agricultural practices, watershed size, and specific physiographic setting. Stream order seems to integrate, to a certain degree, the source and transport aspects of nonpoint-source pollution on a yearly averaged basis and thus might provide a quick estimate of the overall trend in baseflow nitrate concentration and load distribution along complex stream networks in agricultural watersheds.  相似文献   

20.
ABSTRACT: High-capacity wells are used as a convenient and economical means of sampling groundwater quality. Although the inherent limitations of using these wells are generally recognized, little has been done to investigate how these wells actually sample groundwater. A semi-analytical particle tracking model is used to illustrate the influence of variable vertical contaminant distributions and aquifer heterogeneity on the composition of water samples from these wells during short pumping periods. The hypothetical pumping well used in the simulations is located in an unconfined, alluvial aquifer with a shallow water table and concentration gradients of nitrate-nitrogen contamination. This is a typical setting for many irrigated areas in the United States. The main conclusions are: (1) high-capacity wells underestimate the average amount of contamination within an aquifer; (2) shapes of concentration-time curves for high-capacity wells appear to be governed by the distribution of the contaminant and travel times to the well; (3) variables such as well construction, pumping rate, and hydrogeologic properties contribute to the magnitude of the concentration-time curves at individual high-capacity wells; and (4) a sampling strategy using concentration-time curves based on the behavioral characteristics of the well rather than individual samples will provide a much better framework for interpreting spatial contaminant distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号