首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Modelling leachate quality and quantity in municipal solid waste landfills.   总被引:1,自引:0,他引:1  
The operational phase of landfills may last for 20 years or more. Significant changes in leachate quality and generation rate may occur during this operational period. A mathematical model has been developed to simulate the landfill leachate behaviour and distributions of moisture and leachate constituents through the landfill, taking into consideration the effects of time-dependent landfill development on the hydraulic characteristics of waste and composition of leachate. The model incorporates governing equations that describe processes influencing the leachate production and biochemical processes taking place during the stabilization of wastes, including leachate flow, dissolution, acidogenesis and methanogenesis. To model the hydraulic property changes occurring during the development stage of the landfills, a conceptual modelling approach was proposed. This approach considers the landfill to consist of cells or columns of cells, which are constructed at different times, and considers each cell in the landfill to consist of several layers. Each layer is assumed to be a completely mixed reactor containing uniformly distributed solid waste, moisture, gases and micro-organisms. The use of the proposed conceptual model enables the incorporation of the spatial changes in hydraulic properties of the landfill into the model and also makes it possible to predict the spatial and temporal distributions of moisture and leachate constituents. The model was calibrated and partially verified using leachate data from Keele Valley Landfill in Ontario, Canada and data obtained from the literature. Ranges of values were proposed for model parameters applicable for real landfill conditions.  相似文献   

3.
The re-introduction of leachate back into the waste can play an important part in landfill management. It can encourage biodegradation by raising the water content and transporting bacteria, nutrients and waste products. It also enables leachate to be stored within the body of the landfill, for example to help minimise temporal variations in the load on a leachate treatment plant. It is helpful for a landfill operator to be able to estimate the rate at which the landfill can accept leachate (the maximum infiltration or injection rate), the storage capacity of the landfill and the leachate retention time. This paper discusses some of the insights obtained from the development and application of a simple conceptual model of leachate recirculation that can be used to estimate key parameter values on the basis of the hydraulic properties of the waste. The model is described, partly validated against a more rigorous numerical analysis, and then used to interpret data obtained from field tests on a real site. The shortcomings of the model in its current form are discussed, and suggestions are made as to how these might be addressed in the context of developing the model as a design tool.  相似文献   

4.
This article is intended to provide background information on leachate management in closed landfill sites based on a comparison of two landfill sites and the identification of leachate characteristics depending on the final cover and the season. Site S is older and has no final cover, while site J is younger and has final capping. The results of leachate analysis from the two landfills show that the biological oxygen demand to chemical oxygen demand ratio decreases below 0.1 to the range 0.05–0.07 for site S, whereas the ratio at site J was in the range 0.08–0.55. The inorganic nitrogen concentration was in the range 169.9–386.1 mg/l with an average of 265.2 mg/l at site S. Ammonia nitrogen accounted for 98.9% of the total nitrogen. The absence of a final cover on closed landfill sites may contribute to the stabilization of such landfills due to flushing. The nitrogen content at landfill S dropped in the summer, whereas it decreased in the fall at site J. A higher fluctuation in the pollutant levels of organic matters and nitrogen at the younger landfill site was observed, compared to the older site, even though the younger site had final capping. Therefore, intensive leachate management should be arranged at the early stages after closing for proper treatment. Specifically, nitrogen management of leachate is a critical factor in treatment operations.  相似文献   

5.
This paper presents findings from long-term monitoring studies performed at full-scale municipal solid waste landfill facilities with leachate recirculation. Data from two facilities at a landfill site in Delaware, USA were evaluated as part of this study: (1) Area A/B landfill cells; and (2) two test cells (one with leachate recirculation and one control cell). Data from Area A/B were compared with proposed waste stability criteria for leachate quality, landfill gas production, and landfill settlement. Data from the test cells were directly compared with each other. Overall, the trends at Area A/B pointed to the positive effects (i.e., more rapid waste degradation) that may be realized through increasing moisture availability in a landfill relative to the reported behavior of more traditionally operated (i.e., drier) landfills. Some significant behavioral differences between the two test cells were evident, including dissimilarities in total landfill gas production quantity and the extent of waste degradation observed in recovered time capsules. Differences in leachate quality were not as dramatic as anticipated, probably because the efficiency of the leachate recirculation system at distributing leachate throughout the waste body in the recirculation cell was low.  相似文献   

6.
A landfill is a very complex heterogeneous environment and as such it presents many modelling challenges. Attempts to develop models that reproduce these complexities generally involve the use of large numbers of spatially dependent parameters that cannot be properly characterised in the face of data uncertainty. An alternative method is presented, which couples a simplified microbial degradation model with a stochastic hydrological and contaminant transport model. This provides a framework for incorporating the complex effects of spatial heterogeneity within the landfill in a simplified manner, along with other key variables. A methodology for handling data uncertainty is also integrated into the model structure. Illustrative examples of the model's output are presented to demonstrate effects of data uncertainty on leachate composition and gas volume prediction.  相似文献   

7.
As the stabilization criteria for landfill sites, only chemical criteria for the leachate discharges from the landfill sites have been used in Japan and many other countries. Recently, chemical oxidation has been developed as a method for the early-stabilization of landfills. However, by-products that are difficult to detect by chemical analysis can be produced by this method. Therefore, toxicity tests are useful tools for detecting the changes of leachate quality after application of this method. The heat source in the A landfill was analyzed by organic position inquiry technology, and ozone-treated leachate was sprayed back to the heat source in the landfill. Toxicity changes of the leachate after the spray were monitored using Microtoxtrade mark, ToxScreen-II, and DaphTox tests. The hardly-degradable organic matter was efficiently removed and toxicities of the leachate in the heat source decreased after the application. These toxicity results were significantly related to chemical oxygen demand (COD) changes. Thus, it was concluded that the toxicity tests were effective for monitoring the leachate quality after applying the chemical oxidation method for landfill stabilization, and its incorporation to establish the criteria for early-stabilization of landfill sites needs to be considered.  相似文献   

8.
The practice of operating municipal solid waste landfills as bioreactor landfills has become more common over the past decade. Because simulating moisture balance and flow is more critical in such landfills than in dry landfills, researchers have developed methods to address this problem using the hydrologic evaluation of landfill performance (HELP) model. This paper discusses three methods of applying the HELP model to simulate the percolation of liquids added to landfill waste: the leachate recirculation feature (LRF), the subsurface inflow (SSI) feature, and additional rainfall to mimic liquids addition. The LRF is simple to use but may not be able to bring the landfill to bioreactor conditions. The SSI feature provides a convenient user interface for modeling liquids addition to each layer. The additional rainfall feature provides flexibility to the model, allowing users to estimate the leachate generation rate and the leachate head on bottom liner associated with daily variation in the liquids addition rate. Additionally, this paper discusses several issues that may affect the HELP model, such as the time of model simulation, layers of liquids addition, and the limitations of the HELP model itself. Based on the simulation results, it is suggested that the HELP model should be run over an extended period of time after the cessation of liquids addition in order to capture the peak leachate generation rate and the head on the liner (HOL). From the perspectives of leachate generation and the HOL, there are few differences between single-layer injection and multiple-layer injection. This paper also discusses the limitations of using the HELP model for designing and permitting bioreactor landfills.  相似文献   

9.
Modern landfill understanding points out controlled operation of landfills. Emissions from landfills are caused mainly by anaerobic biodegradation processes which continue for very long time periods after landfill closure. In situ landfill stabilization aims controlled reduction of emissions towards reduced expenditures as well as aftercare measures. Since April 2010, a new in situ stabilization technique is being applied at a pilot scale landfill (BAIV) within Landfill Konstanz Dorfweiher. This new method utilizes intermittent aeration and leachate recirculation for waste stabilization. In this study, influence of this technique on leachate quality is investigated. Among many other parameters, leachate analyses were conducted for COD, BOD5, NH4–N, NO2–N, NO3–N, TKN and chloride besides continuously on site recorded pH, electrical conductivity and oxidation–reduction potential (ORP). Results from leachate quality analyses showed that biological activity in the landfill was accelerated resulting in initial higher leachate strength and reduced emission potential of landfill. During full scale in situ aeration, ambient conditions differ from optimized laboratory scale conditions which mainly concern temperature increase and deficient aeration of some landfill parts (Ritzkowski and Stegmann, 2005). Thus, as a field application results of this study have major importance on further process optimization and application.  相似文献   

10.
建立了针对生活垃圾填埋场地下水污染问题的数学预测模型,以丹阳北庄生活垃圾填埋场工程为例,预测和分析了北庄生活垃圾填埋场渗滤液对地下水的污染。  相似文献   

11.
Advanced oxidation processes (AOPs) such as Fenton, electro-Fenton and photo-Fenton have been applied effectively to remove refractory organics from landfill leachate. The Fenton reaction is based on the addition of hydrogen peroxide to the wastewater or leachate in the presence of ferrous salt as a catalyst. The use of this technique has proved to be one of the best compromises for landfill leachate treatment because of its environmental and economical advantages. Fenton process has been used successfully to mineralize wide range of organic constituents present in landfill leachate particularly those recalcitrant to biological degradation. The present study reviews the use of Fenton and related processes in terms of their increased application to landfill leachate. The effects of various operating parameters and their optimum ranges for maximum COD and color removal are reviewed with the conclusion that the Fenton and related processes are effective and competitive with other technologies for degradation of both raw and pre-treated landfill leachate.  相似文献   

12.
This paper describes the finite difference algorithm that has been developed for the flow sub-model of the University of Southampton landfill degradation and transport model LDAT. The liquid and gas phase flow components are first decoupled from the solid phase of the full multi-phase, multi-component landfill process constitutive equations and are then rearranged into a format that can be applied as a calculation procedure within the framework of a three dimensional array of finite difference rectangular elements.The algorithm contains a source term which accommodates the non-flow landfill processes of degradation, gas solubility, and leachate chemical equilibrium, sub-models that have been described in White and Beaven (2013).The paper includes an illustration of the application of the flow sub-model in the context of the leachate recirculation tests carried out at the Beddington landfill project. This illustration demonstrates the ability of the sub-model to track movement in the gas phase as well as the liquid phase, and to simulate multi-directional flow patterns that are different in each of the phases.  相似文献   

13.
Municipal solid waste (MSW) landfills worldwide are experiencing the consequences of conventional landfilling techniques, whereby anaerobic conditions are created within the landfilled waste. Under anaerobic conditions within a landfill site slow stabilization of the waste mass occurs, producing methane, (an explosive 'green house' gas) and leachate (which can pollute groundwater) over long periods of time. As a potential solution, it was demonstrated that the aerobic degradation of MSW within a landfill can significantly increase the rate of waste decomposition and settlement, decrease the methane production and leachate leaving the system, and potentially increase the operational life of the site. Readily integrated into the existing landfill infrastructure, this approach can safely and cost-effectively convert a MSW landfill from anaerobic to aerobic degradation processes, thereby effectively composting much of the organic portions (one of the potentially polluting elements in a conventional landfill site) of the waste. This paper summarizes the successful results of two separate aerobic landfill projects located in Georgia (USA) and discusses the potential economic and environmental impacts to worldwide solid waste management practices.  相似文献   

14.
Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The "equivalent" three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also investigated in this paper. These sensitivity analyses serve as the guidelines of construction practices and operating procedures for the MSW landfill under study.  相似文献   

15.

The main objective of this study was to assess the impact of the NamSon landfill on subsurface geological structure and hydrological environment by geophysical techniques and hydrochemical analysis of surface and groundwater. The electrical resistivity tomography (ERT), self-potential (SP) and very low frequency (VLF) methods were used for the investigation of geological structure near the landfill. Three profiles (900 m long in total) of the two-dimensional ERT, VLF density sections and 180 SP data points scattered throughout the study area near the disposal site constituted the basis of the data used in analysis. Additionally, surface water and groundwater samples were collected from six sites in the area for the chemical analysis. Interpretations of geophysical data show a low resistivity zone (< 15 Ωm), which appears to be a fully saturated zone with leachate from landfill. The results of the geophysical investigations are not always fully confirmed by the results of hydrochemical analysis. The quality of water in the vicinity of the landfill dramatically decreased over the year (2015–2016) and actions should be taken to inverse this negative trend.

  相似文献   

16.
A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.  相似文献   

17.
Municipal solid waste (MSW) landfills are potential long-term sources of emissions. Hence, they need to be managed after closure until they do not pose a threat to humans or the environment. The case study on the Breitenau MSW landfill was performed to evaluate future emission levels for this site and to illustrate the effect of final cover installation with respect to long-term environmental risks. The methodology was based on a comprehensive assessment of the state of the landfill and included analysis of monitoring data, investigations of landfilled waste, and an evaluation of containment systems. A model to estimate future emission levels was established and site-specific predictions of leachate emissions were presented based on scenario analysis. The results are used to evaluate the future pollution potential of the landfill and to compare different aftercare concepts in view of long-term emissions. As some leachable substances became available for water flow during cover construction due to a change in the water flow pattern of the waste, a substantial increase in leachate concentrations could be observed at the site (e.g. concentrations of chloride increased from 200 to 800 mg/l and of ammonia-nitrogen from 140 to about 500 mg/l). A period of intensive flushing before the final cover installation could have reduced the amount of leachable substances within the landfill body and rapidly decreased the leachate concentrations to 11 mg Cl/l and 79 mg NH4-N/l within 50 years. Contrarily, the minimization of water infiltration is associated with leachate concentrations in a high range for centuries (above 400 mg Cl/l and 200 mg NH4-N/l) with low concomitant annual emission loads (below 12 kg/year of Cl or 9 kg/year of NH4-N, respectively). However, an expected gradual decrease of barrier efficiency over time would be associated with higher emission loads of 50 kg of chloride and 30 kg of ammonia-nitrogen at the maximum, but a faster decrease of leachate concentration levels.  相似文献   

18.
Waste material in municipal landfills can be described as heterogeneous porous media, where flow and transport processes of gases and liquids are combined with local material degradation. This paper deals with the basic formulation of a multiphase flow and transport model applicable to the numerical analysis of coupled transport and reaction processes inside landfills. The transport model treats landfills within the framework of continuum mechanics, where flow and transport processes are described on a macroscopic level. The composition of organic and inorganic matter in the solid phase and its degradation are modelled on a microscopic scale. The degradation model captures the different reaction schemes of various microbial activities. Subsequently, transport and reaction processes have to be coupled, since emissions at the surface and from the drainage layer depend on the flow of leachate and gas, the transport of various substances and heat, and the biodegradation of organic matter. The theoretical considerations presented here are fundamental to the development of numerical models for the simulation of multiphase flow and transport processes inside landfills coupled with biochemical reactions and heat generation. The implicit modelling of leachate and gas flows including growth and decay of micro-organisms are innovative contributions to landfill modelling  相似文献   

19.
The purpose of this study was to evaluate suitability of using the time series analysis for selected leachate quantity and quality parameters to forecast the duration of post closure period of a closed landfill. Selected leachate quality parameters (i.e., sodium, chloride, iron, bicarbonate, total dissolved solids (TDS), and ammonium as N) and volatile organic compounds (VOCs) (i.e., vinyl chloride, 1,4-dichlorobenzene, chlorobenzene, benzene, toluene, ethyl benzene, xylenes, total BTEX) were analyzed by the time series multiplicative decomposition model to estimate the projected levels of the parameters. These parameters were selected based on their detection levels and consistency of detection in leachate samples. In addition, VOCs detected in leachate and their chemical transformations were considered in view of the decomposition stage of the landfill. Projected leachate quality trends were analyzed and compared with the maximum contaminant level (MCL) for the respective parameters. Conditions that lead to specific trends (i.e., increasing, decreasing, or steady) and interactions of leachate quality parameters were evaluated. Decreasing trends were projected for leachate quantity, concentrations of sodium, chloride, TDS, ammonia as N, vinyl chloride, 1,4-dichlorobenzene, benzene, toluene, ethyl benzene, xylenes, and total BTEX. Increasing trends were projected for concentrations of iron, bicarbonate, and chlorobenzene. Anaerobic conditions in landfill provide favorable conditions for corrosion of iron resulting in higher concentrations over time. Bicarbonate formation as a byproduct of bacterial respiration during waste decomposition and the lime rock cap system of the landfill contribute to the increasing levels of bicarbonate in leachate. Chlorobenzene is produced during anaerobic biodegradation of 1,4-dichlorobenzene, hence, the increasing trend of chlorobenzene may be due to the declining trend of 1,4-dichlorobenzene. The time series multiplicative decomposition model in general provides an adequate forecast for future planning purposes for the parameters monitored in leachate. The model projections for 1,4-dichlorobenzene were relatively less accurate in comparison to the projections for vinyl chloride and chlorobenzene. Based on the trends observed, future monitoring needs for the selected leachate parameters were identified.  相似文献   

20.
As organic solid waste is decomposed in a landfill and mass is lost due to gas and leachate formation, the landfill settles. Settlement of a landfill interferes with the rehabilitation and subsequent use of the landfill site after closure. This study examined the soil/solid waste movement at the Al-Qurain landfill in Kuwait after 15 years of closure as plans are underway for redevelopment of the landfill site that occupies about a km(2) with an average depth of 8-15m. Field experiments were conducted for 6 mo to measure soil/solid waste movement and water behavior within the landfill using two settlement plates with a level survey access, Casagrande-type piezometers, pneumatic piezometers, and magnetic probe extensometers. Previous results obtained indicated that biological decomposition of refuse continued after closure of the landfill site. The subsurface water rise enhanced the biological activities, which resulted in the production of increasing quantities of landfill gas. The refuse fill materials recorded a high movement rate under the imposed preloading as a result of an increase in the stress state. Up to 55% of the total movement was observed during the first 2 weeks of fill placement and increased to 80% within the first month of the 6-mo preloading test. Pneumatic piezometers showed an increase in water head, which is attributed to the developed pressure of gases escaping during the preloading period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号