首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
IntroductionThis study examined the crash causative factors of signalized intersections under mixed traffic using advanced statistical models.MethodHierarchical Poisson regression and logistic regression models were developed to predict the crash frequency and severity of signalized intersection approaches. The prediction models helped to develop general safety countermeasures for signalized intersections.ResultsThe study shows that exclusive left turn lanes and countdown timers are beneficial for improving the safety of signalized intersections. Safety is also influenced by the presence of a surveillance camera, green time, median width, traffic volume, and proportion of two wheelers in the traffic stream. The factors that influence the severity of crashes were also identified in this study.Practical applicationAs a practical application, the safe values of deviation of green time provided from design green time, with varying traffic volume, is presented in this study. This is a useful tool for setting the appropriate green time for a signalized intersection approach with variations in the traffic volume.  相似文献   

2.
IntroductionMany U.S. cities have adopted the Vision Zero strategy with the specific goal of eliminating traffic-related deaths and injuries. To achieve this ambitious goal, safety professionals have increasingly called for the development of a safe systems approach to traffic safety. This approach calls for examining the macrolevel risk factors that may lead road users to engage in errors that result in crashes. This study explores the relationship between built environment variables and crash frequency, paying specific attention to the environmental mediating factors, such as traffic exposure, traffic conflicts, and network-level speed characteristics. Methods: Three years (2011–2013) of crash data from Mecklenburg County, North Carolina, were used to model crash frequency on surface streets as a function of built environment variables at the census block group level. Separate models were developed for total and KAB crashes (i.e., crashes resulting in fatalities (K), incapacitating injuries (A), or non-incapacitating injuries (B)) using the conditional autoregressive modeling approach to account for unobserved heterogeneity and spatial autocorrelation present in data. Results: Built environment variables that are found to have positive associations with both total and KAB crash frequencies include population, vehicle miles traveled, big box stores, intersections, and bus stops. On the other hand, the number of total and KAB crashes tend to be lower in census block groups with a higher proportion of two-lane roads and a higher proportion of roads with posted speed limits of 35 mph or less. Conclusions: This study demonstrates the plausible mechanism of how the built environment influences traffic safety. The variables found to be significant are all policy-relevant variables that can be manipulated to improve traffic safety. Practical Applications: The study findings will shape transportation planning and policy level decisions in designing the built environment for safer travels.  相似文献   

3.
Introduction: Motorcyclists are exposed to more fatalities and severe injuries per mile of travel as compared to other vehicle drivers. Moreover, crashes that take place at intersections are more likely to result in serious or fatal injuries as compared to those that occur at non-intersections. Therefore, the purpose of this study is to evaluate the contributing factors to motorcycle crash severity at intersections. Method: A data set of 7,714 motorcycle crashes at intersections in the State of Victoria, Australia was analyzed over the period of 2006–2018. The multinomial logit model was used for evaluating the motorcycle crashes. The severity of motorcycle crashes was divided into three categories: minor injury, serious injury and fatal injury. The risk factors consisted of four major categories: motorcyclist characteristics, environmental characteristics, intersection characteristics and crash characteristics. Results: The results of the model demonstrated that certain factors increased the probability of fatal injuries. These factors were: motorcyclists aged over 59 years, weekend crashes, midnight/early morning crashes, morning rush hours crashes, multiple vehicles involved in the crash, t-intersections, crashes in towns, crashes in rural areas, stop or give-way intersections, roundabouts, and uncontrolled intersections. By contrast, factors such as female motorcyclists, snowy or stormy or foggy weather, rainy weather, evening rush hours crashes, and unpaved roads reduced the probability of fatal injuries. Practical Applications: The results from our study demonstrated that certain treatment measures for t-intersections may reduce the probability of fatal injuries. An effective way for improving the safety of stop or give-way intersections and uncontrolled intersections could be to convert them to all-way stop controls. Further, it is recommended to educate the older riders that with ageing, there are physiological changes that occur within the body which can increase both crash likelihood and injury severity.  相似文献   

4.
IntroductionAdaptive signal control technology (ASCT) has long been investigated for its operational benefits, but the safety impacts of this technology are still unclear. The main purpose of this study was to determine the safety effect of ASCT at urban/suburban intersections by assessing two different systems.MethodCrash data for 41 intersections from the Pennsylvania Department of Transportation (PennDOT), along with crash frequencies computed through Safety Performance Functions (SPFs), were used to perform the Empirical Bayes (E-B) method to develop crash modification factors (CMF) for ASCT. Moreover, a crash type analysis was conducted to examine the safety impact of ASCT on a regional scale and the variation of safety among type of crashes observed.ResultsThe results from this study indicated the potential of ASCT to reduce crashes since the Crash Modification Factor (CMF) values for both ASCT systems (SURTRAC and InSync) showed significant reductions in crashes. Average CMF values of 0.87 and 0.64 were observed for total and fatal and injury crash categories at a 95% confidence level, and results were consistent between systems. While a reduction in the proportion of rear end crashes was observed, the change was not determined to be statistically significant. The overall distribution of crash types did not change significantly when ASCT was deployed.Conclusion and practical applicationThe results indicate that safety benefits of ASCT were generally consistent across systems, which should aid agencies in making future deployment decisions on ASCT.  相似文献   

5.
IntroductionThe focus of this paper is on illustrating the feasibility of aggregating data from disparate sources to investigate the relationship between single-vehicle truck crash injury severity and detailed weather conditions. Specifically, this paper presents: (a) a methodology that combines detailed 15-min weather station data with crash and roadway data, and (b) an empirical investigation of the effects of weather on crash-related injury severities of single-vehicle truck crashes.MethodRandom parameters ordinal and multinomial regression models were used to investigate crash injury severity under different weather conditions, taking into account the individual unobserved heterogeneity. The adopted methodology allowed consideration of environmental, roadway, and climate-related variables in single-vehicle truck crash injury severity.Results and conclusionsResults showed that wind speed, rain, humidity, and air temperature were linked with single-vehicle truck crash injury severity. Greater recorded wind speed added to the severity of injuries in single-vehicle truck crashes in general. Rain and warmer air temperatures were linked to more severe crash injuries in single-vehicle truck crashes while higher levels of humidity were linked to less severe injuries. Random parameters ordered logit and multinomial logit, respectively, revealed some individual heterogeneity in the data and showed that integrating comprehensive weather data with crash data provided useful insights into factors associated with single-vehicle truck crash injury severity.Practical applicationsThe research provided a practical method that combined comprehensive 15-min weather station data with crash and roadway data, thereby providing useful insights into crash injury severity of single-vehicle trucks. Those insights are useful for future truck driver educational programs and for truck safety in different weather conditions.  相似文献   

6.
IntroductionThe primary objective of this paper is to evaluate the safety impacts of red-light running camera (RLC) system installation and then deactivation at 48 intersections in Houston, Texas. The second objective is to evaluate the spillover effect at nearby non-treated intersections in Houston after the deactivation.MethodsTo accomplish study objectives, an Empirical Bayes (EB) before-after analysis was used.ResultsThe results indicate statistically significant collision reductions on all red-light running (RLR) crash types (37 percent) as well as right-angle RLR crashes (47 percent) at the treated intersections after RLC activation. By way of comparison, the RLC deactivation analysis indicated that crashes increased by 20 percent for all RLR crash types and by 23 percent in right-angle RLR crashes at the formerly treated intersections. After deactivation, all severity RLR crashes increased more than expected at nearby non-treated intersections, which indicates the possibility of an adverse spillover effect. However, fatal/injury crashes associated with rear-end decreased after deactivation at both formerly treated and non-treated intersections, although those rear-end crashes account for smaller proportions when compared to all crash types/right-angle crashes.Practical applicationsOverall, removing RLC treatments results in a negative reaction to the safety benefits that the treatment provides when it is in place and actively working and to the nearby intersections where the treatment has not been implemented. This study helps define the effects that RLCs have on safety at signalized intersections after installation and deactivation.  相似文献   

7.
IntroductionVehicles in transport sometimes leave the travel lane and encroach onto natural or artificial objects on the roadsides. These types of crashes are called run-off the road crashes, which account for a large proportion of fatalities and severe crashes to vehicle occupants. In the United States, there are about one million such crashes, with roadside features leading to one third of all road fatalities. Traffic barriers could be installed to keep vehicles on the roadways and to prevent vehicles from colliding with obstacles such as trees, boulder, and walls. The installation of traffic barriers would be warranted if the severity of colliding with the barrier would be less severe than colliding with other fix objects on the sides of the roadway. However, injuries and fatalities do occur when vehicle collide with traffic barriers. A comprehensive analysis of traffic barrier features is lacking due to the absence of traffic barrier features data. Previous research has focused on simulation studies or only a general evaluation of traffic barriers, without accounting for different traffic barrier features.MethodThis study is conducted using an extensive traffic barrier features database for the purpose of investigating the impact of different environmental and traffic barrier geometry on this type of crash severity. This study only included data related to two-lane undivided roadway systems, which did not involve median barrier crashes. Crash severity is modeled using a mixed binary logistic regression model in which some parameters are fixed and some are random.ResultsThe results indicated that the effects of traffic barrier height, traffic barrier offset, and shoulder width should not be separated, but rather considered as interactions that impact crash severity. Rollover, side slope height, alcohol involvement, road surface conditions, and posted speed limit are some factors that also impact the severity of these crashes. The effects of gender, truck traffic count, and time of a day were found to be best modeled with random parameters in this study. The effects of these risk factors are discussed in this paper.Practical applicationsResults from this study could provide new guidelines for the design of traffic barriers based upon the identified roadway and traffic barrier characteristics.  相似文献   

8.
IntroductionThis study investigated the effects of pavement surface condition and other control factors on casualty crashes at signalized intersections. It involved conducting a before and after study for road surface condition and situational factors. It also included assessing the effects of geometric characteristics on safety performance of signalized intersections post resurfacing to control for the effect of pavement surface condition. Pavement surface condition included roughness, rutting, and skid resistance. The control factors included traffic volume, light and surface moisture condition, and speed limit. The geometric characteristics included approach width, number of lanes, intersection depth, presence of median, presence of shared lane, and presence of bus stop.MethodTo account for the repeated observations of the effect of light and surface moisture conditions in four occasions (day-dry, day-wet, night-dry and night-wet) Generalized Estimating Equation (GEE) with Negative Binomial (NB) and log link function was applied. For each signalized intersection in the sample, condition data are collected for the year before and after the year of surface treatment. Crash data, however, are collected for a minimum of three and maximum of five years before and after treatment years.ResultsThe results show that before treatment, light condition, road surface moisture condition, and skid resistance interaction with traffic volume are the significant contributors to crash occurrence. For after treatment; light condition, road surface moisture condition, their interaction product, and roughness interaction with light condition, surface moisture condition, and traffic volume are the significant contributors. The geometric variables that were found to have significant effects on crash frequency post resurfacing were approach width interactions with presence of shared lane, bus stop, or median.ConclusionsThe findings confirm that resurfacing is significant in reducing crash frequency and severity levels.Practical Applications: The study findings would help for better understanding of how geometric characteristics can be improved to reduce crash occurrence.  相似文献   

9.
IntroductionThe Moving Ahead for Progress in the 21st Century (MAP-21) includes a separate program that supports safety improvements to reduce the number of fatalities and injuries at public highway-railroad grade crossings (HRGCs). This study identifies the significant factors affecting crash injury severity at public HRGCs in the United States.MethodCrashes from 2009 through 2013 on 5,528 public HRGCs, extracted from the Federal Railroad Administration database, were used in the analysis. A comprehensive list of risk factors was explored. Examples include predictors related to geographic region of crash, geometry (e.g., area type and pavement marking type), railroad (e.g., warning device type and railroad class), traffic (e.g., train speed and vehicles annual average daily traffic “AADT”), highway user (e.g., driver age and gender), and environment (e.g., lighting and weather conditions). The study used the mixed logit model to better capture the complex highway user behavior at HRGCs.ResultsFemale highway users were at higher risk of involvement in injuries and fatalities compared to males. Higher train speeds, very old drivers, open areas, concrete road surface types, and railroad equipment striking highway users before crash, were all found to increase the injury likelihood. On the other hand, young and middle-age drivers, non-passing of standing vehicles at HRGCs, industrial areas, and presence of warning bells were found to reduce injuries and fatalities.ConclusionsThe mixed logit model succeeded in identifying contributing factors of crash severity at public HRGCs and potential countermeasures to reduce both fatalities and injuries are suggested.Practical applicationsIt is important to install warning bells at public HRGCs, especially at those with high number of injury and fatality crashes. Enforcement of traffic nearby HRGCs is necessary to prevent vehicles from overtaking of standing vehicles.  相似文献   

10.
IntroductionPotential health and cost impacts of lowering the BAC limit for U.S. drivers below .08% were explored through analyses of reductions in crash incidence, injury severity, and costs based on five scenarios with varying assumptions about how the change to a .05% BAC limit might affect alcohol-impaired driving.MethodsDistribution of crashes by injury level and highest driver or non-occupant BAC levels for 2010, together with unit crash costs provided a base for comparison. Scenario 1 assumed all alcohol-impaired driving ceased; scenario 2 assumed all drivers obeyed the law, and scenario 3 assumed decreases in driver BAC levels would be limited to those who had been driving near the legal limit before the change. Scenario 4 was based on changes in driver BAC levels associated with a 08% to .05% BAC limit change in Australia, and scenario 5 was based on changes in alcohol-related crashes associated with the change to the .08% BAC limit in the United States. The number of casualties prevented in each scenario was estimated using relative risks of crash involvement, and changes in societal costs were estimated using the unit costs.ResultsReductions ranging from 71% to 99% in fatalities, injuries, and costs related to alcohol-impaired driving were estimated in scenarios 1 and 2. Scenarios 3–5 produced smaller reductions ranging from 4% to 16% for alcohol-impaired fatalities, injuries, and costs.ConclusionThe wide difference between the outcomes of the two sets of scenarios reflects the sensitivity of BAC policy benefits to driver compliance behavior.Practical applicationThe quantification of the reduction in the number and costs of traffic crash casualties in the set of behavioral scenarios explored in this research can inform policymakers about the extent and limits of benefits achievable by lowering the BAC limits as they consider strategies to reduce alcohol-impaired driving.  相似文献   

11.
IntroductionMacro-level traffic safety analysis has been undertaken at different spatial configurations. However, clear guidelines for the appropriate zonal system selection for safety analysis are unavailable. In this study, a comparative analysis was conducted to determine the optimal zonal system for macroscopic crash modeling considering census tracts (CTs), state-wide traffic analysis zones (STAZs), and a newly developed traffic-related zone system labeled traffic analysis districts (TADs).MethodPoisson lognormal models for three crash types (i.e., total, severe, and non-motorized mode crashes) are developed based on the three zonal systems without and with consideration of spatial autocorrelation. The study proposes a method to compare the modeling performance of the three types of geographic units at different spatial configurations through a grid based framework. Specifically, the study region is partitioned to grids of various sizes and the model prediction accuracy of the various macro models is considered within these grids of various sizes.ResultsThese model comparison results for all crash types indicated that the models based on TADs consistently offer a better performance compared to the others. Besides, the models considering spatial autocorrelation outperform the ones that do not consider it.ConclusionsBased on the modeling results and motivation for developing the different zonal systems, it is recommended using CTs for socio-demographic data collection, employing TAZs for transportation demand forecasting, and adopting TADs for transportation safety planning.Practical ApplicationsThe findings from this study can help practitioners select appropriate zonal systems for traffic crash modeling, which leads to develop more efficient policies to enhance transportation safety.  相似文献   

12.
OBJECTIVE: Signalized intersections are accident-prone areas especially for rear-end crashes due to the fact that the diversity of the braking behaviors of drivers increases during the signal change. The objective of this article is to improve knowledge of the relationship between rear-end crashes occurring at signalized intersections and a series of potential traffic risk factors classified by driver characteristics, environments, and vehicle types. METHODS: Based on the 2001 Florida crash database, the classification tree method and Quasi-induced exposure concept were used to perform the statistical analysis. Two binary classification tree models were developed in this study. One was used for the crash comparison between rear-end and non-rear-end to identify those specific trends of the rear-end crashes. The other was constructed for the comparison between striking vehicles/drivers (at-fault) and struck vehicles/drivers (not-at-fault) to find more complex crash pattern associated with the traffic attributes of driver, vehicle, and environment. RESULTS: The modeling results showed that the rear-end crashes are over-presented in the higher speed limits (45-55 mph); the rear-end crash propensity for daytime is apparently larger than nighttime; and the reduction of braking capacity due to wet and slippery road surface conditions would definitely contribute to rear-end crashes, especially at intersections with higher speed limits. The tree model segmented drivers into four homogeneous age groups: < 21 years, 21-31 years, 32-75 years, and > 75 years. The youngest driver group shows the largest crash propensity; in the 21-31 age group, the male drivers are over-involved in rear-end crashes under adverse weather conditions and the 32-75 years drivers driving large size vehicles have a larger crash propensity compared to those driving passenger vehicles. CONCLUSIONS: Combined with the quasi-induced exposure concept, the classification tree method is a proper statistical tool for traffic-safety analysis to investigate crash propensity. Compared to the logistic regression models, tree models have advantages for handling continuous independent variables and easily explaining the complex interaction effect with more than two independent variables. This research recommended that at signalized intersections with higher speed limits, reducing the speed limit to 40 mph efficiently contribute to a lower accident rate. Drivers involved in alcohol use may increase not only rear-end crash risk but also the driver injury severity. Education and enforcement countermeasures should focus on the driver group younger than 21 years. Further studies are suggested to compare crash risk distributions of the driver age for other main crash types to seek corresponding traffic countermeasures.  相似文献   

13.
Objective: Traffic crashes result in a loss of life but also impact the quality of life and productivity of crash survivors. Given the importance of traffic crash outcomes, the issue has received attention from researchers and practitioners as well as government institutions, such as the European Commission (EC). Thus, to obtain detailed information on the injury type and severity of crash victims, hospital data have been proposed for use alongside police crash records. A new injury severity classification based on hospital data, called the maximum abbreviated injury scale (MAIS), was developed and recently adopted by the EC. This study provides an in-depth analysis of the factors that affect injury severity as classified by the MAIS score.

Method: In this study, the MAIS score was derived from the International Classification of Diseases. The European Union adopted an MAIS score equal to or greater than 3 as the definition for a serious traffic crash injury. Gains are expected from using both police and hospital data because the injury severities of the victims are detailed by medical staff and the characteristics of the crash and the site of its occurrence are also provided. The data were obtained by linking police and hospital data sets from the Porto metropolitan area of Portugal over a 6-year period (2006–2011). A mixed logit model was used to understand the factors that contribute to the injury severity of traffic victims and to explore the impact of these factors on injury severity. A random parameter approach offers methodological flexibility to capture individual-specific heterogeneity. Additionally, to understand the importance of using a reliable injury severity scale, we compared MAIS with length of hospital stay (LHS), a classification used by several countries, including Portugal, to officially report injury severity. To do so, the same statistical technique was applied using the same variables to analyze their impact on the injury severity classified according to LHS.

Results: This study showed the impact of variables, such as the presence of blood alcohol, the use of protection devices, the type of crash, and the site characteristics, on the injury severity classified according to the MAIS score. Additionally, the sex and age of the victims were analyzed as risk factors, showing that elderly and male road users are highly associated with MAIS 3+ injuries. The comparison between the marginal effects of the variables estimated by the MAIS and LHS models showed significant differences. In addition to the differences in the magnitude of impact of each variable, we found that the impact of the road environment variable was dependent on the injury severity classification.

Conclusions: The differences in the effects of risk factors between the classifications highlight the importance of using a reliable classification of injury severity. Additionally, the relationship between LHS and MAIS levels is quite different among countries, supporting the previous conclusion that bias is expected in the assessment of risk factors if an injury severity classification other than MAIS is used.  相似文献   


14.
IntroductionDriving environment, including road surface conditions and traffic states, often changes over time and influences crash probability considerably. It becomes stretched for traditional crash frequency models developed in large temporal scales to capture the time-varying characteristics of these factors, which may cause substantial loss of critical driving environmental information on crash prediction.MethodCrash prediction models with refined temporal data (hourly records) are developed to characterize the time-varying nature of these contributing factors. Unbalanced panel data mixed logit models are developed to analyze hourly crash likelihood of highway segments. The refined temporal driving environmental data, including road surface and traffic condition, obtained from the Road Weather Information System (RWIS), are incorporated into the models.ResultsModel estimation results indicate that the traffic speed, traffic volume, curvature and chemically wet road surface indicator are better modeled as random parameters. The estimation results of the mixed logit models based on unbalanced panel data show that there are a number of factors related to crash likelihood on I-25. Specifically, weekend indicator, November indicator, low speed limit and long remaining service life of rutting indicator are found to increase crash likelihood, while 5-am indicator and number of merging ramps per lane per mile are found to decrease crash likelihood.ConclusionsThe study underscores and confirms the unique and significant impacts on crash imposed by the real-time weather, road surface, and traffic conditions. With the unbalanced panel data structure, the rich information from real-time driving environmental big data can be well incorporated.  相似文献   

15.
Introduction: The pedestrian hybrid beacon (PHB) is a traffic control device used at pedestrian crossings. A recent Arizona Department of Transportation research effort investigated changes in crashes for different severity levels and crash types (e.g., rear-end crashes) due to the PHB presence, as well as for crashes involving pedestrians and bicycles. Method: Two types of methodologies were used to evaluate the safety of PHBs: (a) an Empirical Bayes (EB) before-after study, and (b) a long-term cross-sectional observational study. For the EB before-after evaluation, the research team considered three reference groups: unsignalized intersections, signalized intersections, and both unsignalized and signalized intersections combined. Results: For the signalized and combined unsignalized and signalized intersection groups, all crash types considered showed statistically significant reductions in crashes (e.g., total crashes, fatal and injury crashes, rear-end crashes, fatal and injury rear-end crashes, angle crashes, fatal and injury angle crashes, pedestrian-related crashes, and fatal and injury pedestrian-related crashes). A cross-sectional study was conducted with a larger number of PHBs (186) to identify relationships between roadway characteristics and crashes at PHBs, especially with respect to the distance to an adjacent traffic control signal. The distance to an adjacent traffic signal was found to be significant only at the α = 0.1 level, and only for rear-end and fatal and injury rear-end crashes. Conclusions: This analysis represents the largest known study to date on the safety impacts of PHBs, along with a focus on how crossing and geometric characteristics affect crash patterns. The study showed the safety benefits of PHBs for both pedestrians and vehicles. Practical Applications: The findings from this study clearly support the installation of PHBs at midblock or intersection crossings, as well as at crossings on higher-speed roads.  相似文献   

16.
Objective: Intersection movement assist (IMA) has been recognized as one of the prominent countermeasures to reduce angle crashes at intersections, which constitute 22% of total crashes in the United States. Utilizing vehicle-based sensors, vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (V2I) communications, IMA offers extended vision to provide early warning for an imminent crash. However, most of IMA-related research implements their methods and strategies only in simulations, test tracks, or driving simulator studies that have quite a few assumptions and limitations and hence the effectiveness evaluations reported may not be transferable or comparable.

Methods: This study seeks to develop a generalized evaluation scheme that can be used not only to assess the effectiveness of IMA on improving traffic safety at intersections but to facilitate comparisons across similar studies. The proposed evaluation scheme utilizes the concepts of traffic conflict in terms of time-to-collision (TTC) as a crash surrogate. This approach avoids the issue of having insufficient crash frequency data for system evaluation. To measure the effectiveness of IMA on reducing traffic conflicts, a relative risk is calculated for comparing the risk of with/without using the IMA. As a proof-of-concept study, this study applied the proposed evaluation scheme and reported the effectiveness of IMA on improving traffic safety in a field operation test (FOT). Seven test scenarios were conducted at 4 intersections, and a total of 40 participants were recruited to use the IMA for 6 months.

Results: It was estimated that IMA users have 26% fewer conflicts with TTC less than 5 s and have 15% fewer conflicts with TTC less than 4 s. However, the results vary across different sites and different definitions of conflicts in terms of TTC.

Conclusions: Overall, IMA is promising to effectively reduce angle crashes related to sight obstruction and has potential to reduce not only crash frequency but crash severity.  相似文献   


17.
Objective: Red light cameras (RLCs) have generated heated discussions over issues of safety effectiveness, revenue generation, and procedural due process. This study focuses on the safety evaluation of RLCs in Missouri, including the economic valuation of safety benefits. The publication of the national Highway Safety Manual (HSM; American Association of State Highway and Transportation Officials) in 2010 produced statistical safety models for intersections and spurred the calibration of these models to local conditions.

Methods: This study adds to existing knowledge by applying the latest statistical methodology presented in the HSM and more current data. Driver behavior constantly changes due in part to driving conditions and the use of technology. The safety and economic benefit evaluation was performed using the empirical Bayes method, which accounts for regression to the mean bias. For the economic benefit evaluation, the KABCO crash severity scale and crash cost estimates were used. A total of 24 4-leg urban intersections were randomly selected from a master list of RLCs in Missouri from 2006 to 2011. Additionally, 35 comparable nontreated intersections were selected for the analysis.

Results and Conclusions: The implementation of RLCs reduced overall angle crashes by 11.6%, whereas rear-end crashes increased by 16.5%. The net economic crash cost benefit of the implementation of RLCs was $35,269 per site per year in 2001 dollars (approximately $47,000 in 2015 dollars). Thus, RLCs produced a sizable net positive safety benefit that is consistent with previous statistical studies.  相似文献   


18.
IntroductionUnderstanding driver behavior is important for traffic safety and operation, especially at intersections where different traffic movements conflict. While most driver-behavior studies are based on simulation, this paper documents the analysis of driver-behavior at signalized intersections with the SHRP 2 Naturalistic Driving Study (NDS) data. This study analyzes the different influencing factors on the operation (speed control) and observation of right-turn drivers.MethodA total of 300 NDS trips at six signalized intersections were used, including the NDS time-series sensor data, the forward videos and driver face videos. Different factors of drivers, vehicles, roads and environments were studied for their influence on driver behavior. An influencing index function was developed and the index was calculated for each influencing factor to quantitatively describe its influencing level. The influencing index was applied to prioritize the factors, which facilitates development and selection of safety countermeasures to improve intersection safety. Drivers' speed control was analyzed under different conditions with consideration of the prioritized influencing factors.ResultsVehicle type, traffic signal status, conflicting traffic, conflicting pedestrian and driver age group were identified as the five major influencing factors on driver observation.ConclusionsThis research revealed that drivers have high acceleration and low observation frequency under Right-Turn-On-Red (RTOR), which constituted potential danger for other roadway users, especially for pedestrians.Practical applicationsAs speed has a direct influence on crash rates and severities, the revealed speed patterns of the different situations also benefit selection of safety countermeasures at signalized intersections.  相似文献   

19.
IntroductionMany studies have examined different factors contributing to the injury severity of crashes; however, relatively few studies have focused on the crashes by considering the specific effects of lighting conditions. This research investigates lighting condition differences in the injury severity of crashes using 3-year (2009–2011) crash data of two-lane rural roads of the state of Washington.MethodSeparate ordered-probit models were developed to predict the effects of a set of factors expected to influence injury severity in three lighting conditions; daylight, dark, and dark with street lights. A series of likelihood ratio tests were conducted to determine if these lighting condition models were justified.ResultsThe modeling results suggest that injury severity in specific lighting conditions are associated with contributing factors in different ways, and that such differences cannot be uncovered by focusing merely on one aggregate model. Key differences include crash location, speed limit, shoulder width, driver action, and three collision types (head-on, rear-end, and right-side impact collisions).Practical ApplicationsThis paper highlights the importance of deploying street lights at and near intersections (or access points) on two-lane rural roads because injury severity highly increases when crashes occur at these points in dark conditions.  相似文献   

20.
Introduction: Adaptive Signal Control System (ASCS) can improve both operational and safety benefits at signalized corridors. Methods: This paper develops a series of models accounting for model forms and possible predictors and implements these models in Empirical Bayes (EB) and Fully Bayesian (FB) frameworks for ASCS safety evaluation studies. Different models are validated in terms of the ability to reduce the potential bias and variance of prediction and improve the safety effectiveness estimation accuracy using real-world crash data from non-ASCS sites. This paper then develops the safety effectiveness of ASCS at six different corridors with a total of 65 signalized intersections with the same type of ASCS, in South Carolina. Results: Validation results show that the FB model that accounts for traffic volume, roadway geometric features, year factor, and spatial effects shows the best performance among all models. The study findings reveal that ASCS reduces crash frequencies in the total crash, fatal and injury crash, and angle crash for most of the intersections. The safety effectiveness of ASCS varies with different intersection features (i.e., AADT at major streets, number of legs at an intersection, the number of through lanes on major streets, the number of access points on minor streets, and the speed limit at major streets). Conclusions: ASCS is associated with crash reductions, and its safety effects vary with different intersection features. Practical Applications: The findings of this research encourage more ASCS deployments and provide insights into selecting ASCS deployment sites for reducing crashes considering the variation of the safety effectiveness of ASCS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号