首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) and their health risks in surface soils (n?=?31) collected from coastal and estuarine areas of the northern Bohai and Yellow Seas (CEANBYS), China, were investigated. Total concentrations of PAHs ranged from 6.6?×?101 to 9.2?×?102?ng?g?1 dry weight, with an average of 3.1?×?102?ng?g?1 dw. The locations where greater concentrations of PAHs were observed were all near factories emitting black smoke or on the edge of the urban areas. These observations are consistent with concentrations of PAHs in soils being influenced by human activities, especially industrialization and urbanization. Concentrations of PAHs were significantly correlated with concentrations of organic carbon in soils. The patterns of relative concentrations and types of PAHs observed as well as knowledge of the potential sources were consistent with the primary sources of PAHs in soils of the CEANBYS being derived from the pyrolytic processes such as combustion of fossil fuel. The incremental lifetime cancer risks of exposing to PAHs for child, youth, and adult were 1.6?×?10?6, 1.2?×?10?6, and 1.9?×?10?6.  相似文献   

2.
To assess the status of polycyclic aromatic hydrocarbon (PAH) contamination in sediments from the Bizerte Lagoon (northern Tunisia), 18 surface sediment samples were collected in March 2011 and analyzed for 14 US Environmental Protection Agency priority PAHs by high-performance liquid chromatography. The total concentrations of the 14 PAHs (ΣPAHs) ranged from 16.9 to 394.1 ng g?1 dry weight (dw) with a mean concentration of 85.5 ng g?1 dw. Compared with other lagoons, coasts, and bays in the world, the concentrations of PAHs in surface sediments of the Bizerte Lagoon are low to moderate. The PAHs’ composition pattern was dominated by the presence of four-ring PAHs (45.8 %) followed by five-ring (26.8 %) and three-ring PAHs (12.7 %). The PAH source analysis suggested that the main origin of PAHs in the sediments of the lagoon was mainly from pyrolytic sources. According to the numerical effect-based sediment quality guidelines of the USA, the levels of PAHs in the Bizerte Lagoon should not exert adverse biological effects. The total benzo[a]pyrene toxicity equivalent values calculated for the samples varied from 3.1 to 53.7 ng g?1 dw with an average of 10.6 ng g?1 dw.  相似文献   

3.
The concentrations and composition of persistent organic pollutants (POPs) were determined in alluvial soils subjected to heavy flooding in a rural region of Poland. Soil samples (n?=?30) were collected from the upper soil layer from a 70-km2 area. Chemical determinations included basic physicochemical properties and the contents of polychlorinated biphenyls (PCBs), hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) and polycyclic aromatic hydrocarbons (PAHs, 16 compounds). The median concentrations of Σ7PCB (PCB28?+?PCB52?+?PCB101?+?PCB118?+?PCB138?+?PCB153?+?PCB180), Σ3HCH (α-HCH?+?β-HCH?+?γ-HCH) and Σ3pp′(DDT?+?DDE?+?DDD) were 1.60?±?1.03, 0.22?±?0.13 and 25.18?±?82.70 μg kg?1, respectively. The median concentrations of the most abundant PAHs, phenanthrene, fluoranthene, pyrene, benzo[b]fluoranthene and benzo[a]pyrene were 50?±?37, 38?±?27, 29?±?30, 45?±?36 and 24?±?22 μg kg?1, respectively. Compared with elsewhere in the world, the overall level of contamination with POPs was low and similar to the levels in agricultural soils from neighbouring countries, except for benzo[a]pyrene and DDT. There was no evidence that flooding affected the levels of POPs in the studied soils. The patterns observed for PAHs and PCBs indicate that atmospheric deposition is the most important long-term source of these contaminants. DDTs were the dominant organochlorine pesticides (up to 99 %), and the contribution of the parent pp′ isomer was up to 50 % of the ΣDDT, which indicates the advantage of aged contamination. A high pp′DDE/pp′DDD ratio suggests the prevalence of aerobic transformations of parent DDT. Dominance of the γ isomer in the HCHs implies historical use of lindane in the area. The effect of soil properties on the POP concentrations was rather weak, although statistically significant links with the content of the <0.02-mm fraction, Ctotal or Ntotal were observed for some individual compounds in the PCB group.  相似文献   

4.
Concentration, composition profile, spatial distribution, sources, and health risk of 16 polycyclic aromatic hydrocarbons (PAHs) were analyzed in 69 surface soil samples collected from Hangzhou urban districts. ∑PAHs ranged from 180.77 to 1,981.45 μg kg?1 with a mean of 611.28 μg kg?1. Among different functional areas, a higher level of PAHs was found in the roadsides, followed by commercial districts, residential areas, parks, and greenbelts. The composition of PAHs was characterized by high molecular weight PAHs (4?~?6 rings). Principal component analysis (PCA) and PAH isomeric ratios indicated that PAHs mainly originated from combustion, especially vehicle exhaust. The incremental lifetime cancer risks (ILCRs) associated with exposures to PAHs in soil were calculated separately for children and adults under normal and extreme conditions. The results showed that ILCRs for urban soil of Hangzhou were acceptable. However, attentions should be attracted on the sites of high PAH concentrations because the ILCRs were closed to 10?4 under extreme conditions, especially for children.  相似文献   

5.
Owing to the importance of clean and fertile agricultural soil for the continued existence of man, this study investigated the concentrations of total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs) and some heavy metals in soils and selected commonly consumed vegetables and tubers from oil-polluted active agricultural farmland in Gokana of Ogoniland, Rivers State, Nigeria. Samples from Umuchichi, Osisioma Local Government Area in Abia State, Nigeria, a non-oil-polluted area constituted the control. In test and control, up to 3,830?±?19.6 mgkg?1 dw and 6,950?±?68.3 mgkg?1 dw (exceeding DPR set limits) and 11.3?±?0.04 mgkg?1 dw and 186?±?0.02 mgkg?1 dw for TPH and PAHs, respectively, were recorded in test soil and plant samples, respectively. Among the metals studied (Pb, Cd, Cr, Mn, Fe and Zn), Pb and Cr uptake exceeded WHO set limits for crops in test samples. Combined sources of pollution were evident from our studies. Bitterleaf and Waterleaf could be tried as bioindicators owing to expressed contaminants uptake pattern.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) have been determined in blue mussels (Mytilus galloprovincialis) from several Iberian Mediterranean coastal areas through the implementation of a monitoring programme from Spain in the framework of the Mediterranean Pollution Programme (MED POL). The selected areas correspond to sites with differing degrees of exposure to the main pollution sources (hot spots, coastal and reference areas). The sampling campaigns were performed from 2004 to 2009, with samples being taken from May to June, the non-spawning period for mussels in this area. Thirteen PAHs were determined by high-performance liquid chromatography with specific fluorescence detection. In general, total PAHs concentration was lower than 50 μg kg?1 d.w., except in areas close to the principal ports and cities (Barcelona, Tarragona, Valencia and Algeciras) where it varies from 75 to 390 μg kg?1 d.w. Background concentrations have been proposed for PAHs in mussels (23.8 μg kg?1 d.w.) from Western Mediterranean area. Temporal trends were not statistically significant for PAHs concentrations from 2004 to 2009. Longer monitoring periods would be required to detect a continuous tendency, especially for PAHs because although the efficiency of combustion engines has reduced PAHs emissions, their increasing use could alter this potential reduction. The predominant PAHs were three and four ring congeners in all cases, with the predominance of phenanthrene in mussels sited far from the main PAHs sources. The phenanthrene/anthracene (lower than 10) and fluoranthene/pyrene (higher than 1) ratios indicate that PAHs detected in Spanish Mediterranean coastal mussels are mainly of pyrolytic origin.  相似文献   

7.
The distribution and potential sources of 15 polycyclic aromatic hydrocarbons (PAHs) in soils in the vicinity of three South African coal-fired power plants were determined by gas chromatography–mass spectrometry. PAH compound ratios such as phenanthrene/phenanthrene + anthracene (Phen/Phen + Anth) were used to provide reliable estimation of emission sources. The total PAH concentration in the soils around three power plants ranged from 9.73 to 61.24 μg g?1, a range above the Agency for Toxic Substances and Disease Registry levels of 1.0 μg g?1 for significantly contaminated site. Calculated values of Phen/Phen + Anth ratio were 0.48?±?0.08, 0.44?±?0.05, and 0.38?+?0.04 for Matla, Lethabo, and Rooiwal, respectively. Flouranthene/fluoranthene + pyrene (Flan/Flan + Pyr) were found to be 0.49?±?0.03 for Matla, 0.44?±?0.05 for Lethabo, and 0.53?±?0.08 for Rooiwal. Such values indicate a pyrolytic source of PAHs. Higher molecular weight PAHs (five to six rings) were predominant, suggesting coal combustion sources. A good correlation existed between most of the PAHs implying that these compounds were emitted from similar sources. The carcinogenic potency B[a]P equivalent concentration (B[a] Peq) at the three power plants ranged from 3.61 to 25.25 indicating a high carcinogenic burden. The highest (B[a] Peq) was found in samples collected around Matla power station. It can therefore be concluded that the soils were contaminated with PAHs originating from coal-fired power stations.  相似文献   

8.
Located in Central South China, Hunan province is rich in mineral resources. To study the influence of mining on Cd pollution to local agricultural eco-system, the paddy soils and rice grain of Y county in northern Hunan province were intensively monitored. The results were as follows: (1) Total Cd (T-Cd) content in the soils of the county ranges from 0.13 to 6.02 mg kg?1, with a mean of 0.64 mg kg?1, of which 57.5 % exceed the allowable limit specified by the China Soil Environmental Quality Standards. T-Cd in the soils varies largely, with the coefficient of variation reaching 146.4 %. The spatial distribution of T-Cd in the soils quite matches with that of mining and industries. The content of HCl-extractable Cd (HCl-Cd) in the soils ranges from 0.02 to 2.17 mg kg?1, with a mean of 0.24 mg kg?1. A significant positive correlation exists between T-Cd and HCl-Cd in the soils (r?=?0.770, ρ?<?0.01). (2) Cd content in the rice produced in Y county ranges from 0.01 to 2.77 mg kg?1, with a mean of 0.46 mg kg?1. The rate of rice with Cd exceeding the allowable limit specified by the Chinese Grain Security Standards reaches 59.6 %; that with Cd exceeding 1 mg kg?1, called as “Cd rice,” reaches 11.1 %. (3) Cd content in the rice of Y county is positively significantly correlated with HCl-Cd (r?=?0.177, ρ?<?0.05) but not significantly with T-Cd in the soils (r?=?0.091, ρ?>?0.05), which suggests that the amount of Cd accumulating in the rice is more affected by its availability in the soils, rather than the total content. (4) The dietary intake of Cd via rice consumption in Y county is estimated to be 179.9 μg day?1 person?1 on average, which is far beyond the allowable limit specified by FAO/WHO and the target hazard quotients of Cd much higher than 1, suggesting the high risk on human health from Cd exposure.  相似文献   

9.
The aim of this study was to evaluate the incidence of total aflatoxin (AF), ochratoxin A, T-2 toxin, deoxynivalenol (DON), zearalenone (ZEA), and fumonisin (FB) in dairy cattle, beef cattle, and lamb–calf feeds. A total of 180 dairy cattle, beef cattle, and lamb–calf feeds (60 samples each) were randomly collected from farms, feed mills, and villages in Burdur province, between September 2006 and August 2007. All samples were analyzed by the competitive Enzyme Linked Immuno Sorbent Assay (ELISA). The most frequent mycotoxin detected was total AF, which was found in 108 samples (60 %) in concentrations ranging from 3.82 to 116.83 μg?kg?1, followed by DON that was detected in 87 samples (48.3 %), in concentrations ranging from 18.50 to 500 μg?kg?1. Ochratoxin A (OTA), T-2 toxin, ZEA, and FB were found in 84 (46.7 %), 85 (47.2 %), 57 (31.7 %), and 19 (10.6 %) samples, respectively, in concentrations of 1.01 to 15.85 μg?kg?1 for OTA, 3.85 to 52.36 μg?kg?1 for T-2 toxin, 2.10 to 29.30 μg?kg?1 for ZEA, and 2.69 to 4.96 mg?kg?1 for FB. It was concluded that feed samples in Burdur province were contaminated by mycotoxins, and the levels of total aflatoxin in the samples were considered a risk to animal health.  相似文献   

10.
Monitoring of heavy metals was conducted in the Yamuna River considering bioaccumulation factor, exposure concentration, and human health implications which showed contamination levels of copper (Cu), lead (Pb), nickel (Ni), and chromium (Cr) and their dispersion patterns along the river. Largest concentration of Pb in river water was 392 μg L?1; Cu was 392 μg L?1 at the extreme downstream, Allahabad and Ni was 146 μg L?1 at midstream, Agra. Largest concentration of Cu was 617 μg kg?1, Ni 1,621 μg kg?1 at midstream while Pb was 1,214 μg kg?1 at Allahabad in surface sediment. The bioconcentration of Cu, Pb, Ni, and Cr was observed where the largest accumulation of Pb was 2.29 μg kg?1 in Oreochromis niloticus and 1.55 μg kg?1 in Cyprinus carpio invaded at Allahabad while largest concentration of Ni was 174 μg kg?1 in O. niloticus and 124 μg kg?1 in C. carpio in the midstream of the river. The calculated values of hazard index (HI) for Pb was found more than one which indicated human health concern. Carcinogenic risk value for Ni was again high i.e., 17.02?×?10?4 which was larger than all other metals studied. The results of this study indicated bioconcentration in fish due to their exposures to heavy metals from different routes which had human health risk implications. Thus, regular environmental monitoring of heavy metal contamination in fish is advocated for assessing food safety since health risk may be associated with the consumption of fish contaminated through exposure to a degraded environment.  相似文献   

11.
Ambient air samples were collected at two different locations between 2011 and 2012 in Zhengzhou, China in order to assess the concentration level, health risks, as well as the sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM2.5). The mean annual levels of PM2.5 observed at industry site and residential site were 172?±?121 and 160?±?72 μg m?3, respectively, which were about five times the annual value of proposed PM2.5 standard (35 μg m?3) in China. The PM2.5 in all daily samples (n?=?47) exceeds the proposed PM2.5 standard in China (75 μg m?3) at both industrial and residential sites. Seasonal variations of PM2.5 showed a clear trend of winter?>?autumn?>?spring?>?summer at both sites. The total concentrations of 16 PM2.5-associated PAHs ranged from 61?±?51 to 431?±?281 and 38?±?25 to 254?±?189 ng m?3, with mean value of 176?±?233 and 111?±?146 ng m?3 at industry and residential sites, respectively. The major species were fluoranthene, pyrene, chrysene, benzo[b]fluoranthene and benzo[k]fluoranthene, and the concentration levels of PAHs in PM2.5 were higher in winter than those of other seasons at both sites. The annual mean values of toxicity equivalency concentrations of ∑16PAHs in PM2.5 were 22.8 and 13.5 ng m?3 in industry and residential area, respectively. In this study, the risk level of adult citizens through inhalation exposure to PAHs was calculated. The average estimates of lifetime inhalation cancer risks were approximately 8.9?×?10?7 and 6.3?×?10?7 for industry and residential sites, respectively. The main sources of 16 PAHs from both diagnostic ratios and principle component analysis identified as vehicular emissions and coal combustion.  相似文献   

12.
Blue mussels (Mytilus edulis) and sediments collected from 1991 to 2005 from New Bedford Harbor (NBH), MA, were analyzed for two polycyclic musks (HHCB or Galaxolide® and AHTN or Tonalide®), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs). HHCB and AHTN were found in mussel tissues at mean concentrations of 836 and 376 ng/g lipid weight (lw), respectively, which were two- to seven-fold higher than those found at a reference site. Mean concentrations of HHCB and AHTN in NBH sediments were 12 and 6.3 ng/g dry weight (dw), respectively. Four- and five-ringed PAHs, such as phenanthrene, anthracene, fluoranthene, and pyrene, collectively accounted for 61 % of the ∑PAHs concentrations in mussels from NBH. Mean ΣPCB concentrations in mussels from upper and lower NBH were 942 and 182 μg/g lw, respectively, and were dominated by tetra- and penta-chlorobiphenyl congeners, collectively accounting for 61 % of the ΣPCB concentrations. The mean concentration of ∑PBDEs in mussels from NBH was 277 ng/g lw, and no significant difference existed in the concentrations between upper and lower NBH. DDTs were the major OCP found in mussels, found at a mean concentration of 778 ng/g lw. The concentrations of HHCB, AHTN, ΣPBDEs, ΣPAHs, and DDTs in mussels decreased significantly (r 2?≥?0.56, p?≤?0.052) from 1991 to 2005. The concentrations of PCBs and chlordanes did not exhibit a decreasing trend in mussel tissues (r 2?<?0.50; p?>?0.076) from 1991 to 2005. Based on the temporal trends in the concentrations of HHCB, AHTN, ∑PAHs, and ∑PBDEs found in mussels from NBH, it was estimated that between 5.5 and 12 years were required for the concentrations of these compounds to decrease by half (i.e., environmental halving time) of the levels found in 1991.  相似文献   

13.
The Songhua River is the third largest river in China and the primary source of drinking and irrigation water for northeastern China. The distribution of 16 priority polycyclic aromatic hydrocarbons (PAHs) in water [dissolved water (DW) and suspended particulate matter (SPM)], sediment, and soil in the river basin was investigated, and the associated risk of cancer from these PAHs was also assessed. The total concentration of PAHs ranged from 13.9 to 161 ng L?1 in DW, 9.21 to 83.1 ng L?1 in SPM, 20.5 to 632 ng g?1 dw (dry weight) in sediment, and from 30.1 to 870 ng g?1 dw in soil. The compositional pattern of PAHs indicated that three-ring PAHs were predominant in DW and SPM samples, while four-ring PAHs dominated in sediment and soil samples. The spatial distribution of PAHs revealed some site-specific sources along the river, with principal component analysis indicating that these were from pyrogenic sources (such as coal and biomass combustion, and vehicle emissions) and coke oven emission distinguished as the main source of PAHs in the Songhua River Basin. Based on the ingestion of PAH-contaminated drinking water from the Songhua River, cancer risk was quantitatively estimated by combining the Incremental Lifetime Cancer Risk assessment model and BaP-equivalent concentration for five age groups of people (adults, teenagers, children, toddlers, and infants). Overall, the results suggest that the estimated integrated lifetime cancer risk for all groups was in acceptable levels. This study is the first attempt to provide information on the cancer risk of PAHs in drinking water from the Songhua River.  相似文献   

14.
Proper assessment of soil cadmium (Cd) concentrations is essential to establish legislative limits. The present study aimed to assess background Cd concentrations in soils from the state of São Paulo, Brazil, and to correlate such concentrations with several soil attributes. The topsoil samples (n?=?191) were assessed for total Cd contents and for other metals using the USEPA 3051A method. The background concentration was determined according to the third quartile (75th). Principal component analysis, Spearman correlation, and multiple regressions between Cd contents and other soil attributes (pH, cation exchange capacity (CEC), clay content, sum of bases, organic matter, and total Fe, Al, Zn, and Pb levels) were performed. The mean Cd concentration of all 191 samples was 0.4 mg kg?1, and the background concentration was 0.5 mg kg?1. After the samples were grouped by parent material (rock origin) and soil type, the background Cd content varied, i.e., soils from igneous, metamorphic, and sedimentary rocks harbored 1.5, 0.4, and 0.2 mg kg?1 of Cd, respectively. The background Cd content in Oxisols (0.8 mg kg?1) was higher than in Ultisols (0.3 mg kg?1). Multiple regression demonstrated that Fe was primarily attributed to the natural Cd contents in the soils (R 2?=?0.79). Instead of a single Cd background concentration value representing all São Paulo soils, we propose that the concentrations should be specific for at least Oxisols and Ultisols, which are the primary soil types.  相似文献   

15.
Some wetland plant species are adapted to growing in the areas of higher metal concentrations. Use of such vegetation in remediation of soil and water contaminated with heavy metals is a promising cost-effective alternative to the more established treatment methods. Throughout the year, composite industrial effluents bringing various kinds of heavy metals contaminate our study site, the East Calcutta Wetlands, a Ramsar site at the eastern fringe of Kolkata city (formerly Calcutta), India. In the present study, possible measures for remediation of contaminated soil and water (with elements namely, Ca, Cr, Cu, Pb, Zn, Mn, and Fe) of the ecosystem had been investigated. Ten common regional wetland plant species were selected to study their efficiency and diversity in metal uptake and accumulation. Results showed that Bermuda grass (Cynodon dactylon) had the highest total Cr concentration (6,601 ± 33 mg kg???1 dw). The extent of accumulation of various elements in ten common wetland plants of the study sites was: Pb (4.4?C57 mg kg???1 dw), Cu (6.2?C39 mg kg???1 dw), Zn (59?C364 mg kg???1 dw), Mn (87?C376 mg kg???1 dw), Fe (188?C8,625 mg kg???1 dw), Ca (969?C3,756 mg kg???1 dw), and Cr (27?C660 mg kg???1 dw) indicating an uptake gradient of elements by plants as Ca>Fe>Mn>Cr>Zn>Cu>Pb. The present study indicates the importance of identification and efficiency of metal uptake and accumulation capabilities by plants in relation to their applications in remediation of a contaminated East Calcutta Wetland ecosystem.  相似文献   

16.
Urbanization can increase the vulnerability of soils to various types of contamination. Increased contamination of urban soils with polycyclic aromatic hydrocarbon (PAH) could relate to increased number of petrol pump stations and mechanical workshops—a phenomenon that needs to be constantly monitored. This study was undertaken to explore the soil PAH levels in Rawalpindi and Islamabad urban areas in relation to land use activities. Composite soil samples from petrol pump stations and mechanical workshops (n?=?32) areas were evaluated for five PAHs––naphthalene, phenanthrene, pyrene, benzo[a]pyrene, and indeno(1,2,3-cd)pyrene—and compared with control area locations with minimum petroleum-related activity (n?=?16). Surface samples up to 3 cm depth were collected and extraction of analytes was carried out using n-hexane and dichloromethane. Prior to running the samples, standards (100 μg ml–1) were run on HPLC to optimize signal to noise ratio using acetonitrile as mobile phase at a flow rate of 1.25 ml/min at 40 °C. Significant differences between petrol pump stations and mechanical workshop areas were observed for individual PAH as well as with control area soil samples. Naphthalene was found to be the most abundant PAH in soil, ranging from 2.47 to 24.36 mg kg–1. Correlation between the benzo[a]pyrene (BaP) level in soil and the total PAH concentration (r?=?0.82, P?<?0.0001) revealed that BaP can be used as a potential marker for PAH pollution. A clear segregation between petrogenic and pyrogenic sources of contamination was observed when low molecular weight PAHs detected in soil was plotted against high molecular weight PAHs. The former source comprised lubricants and used engine oil found at mechanical workshops, whereas the latter could be mostly attributed to vehicular emission at petrol pumps. The results indicate that PAH contamination in urban areas of Rawalpindi and Islamabad has direct relevance with land use for petroleum activity. We conclude that in order to reduce the soil PAH exposure in urban environment, petrol pumps and mechanical workshops must be shifted to less densely populated areas because of their role as important point sources for PAH emission.  相似文献   

17.
We studied the profiles, possible sources, and transport of polycyclic aromatic hydrocarbons (PAHs) in soils from the Longtang area, which is an electronic waste (e-waste) recycling center in south China. The sum of 16 PAH concentrations ranged from 25 to 4,300 ng/g (dry weight basis) in the following order: pond sediment sites (77 ng/g), vegetable fields (129 ng/g), paddy fields (180 ng/g), wastelands (258 ng/g), dismantling sites (678 ng/g), and former open burning sites (2,340 ng/g). Naphthalene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[b]fluoranthene were the dominant PAHs and accounted for approximately 75 % of the total PAHs. The similar composition characteristics of PAHs and the significant correlations among individual, low molecular weight, high molecular weight, and total PAHs were found in all six sampling site types, thus indicating that PAHs originated from similar sources. The results of both isomeric ratios and principal component analyses confirmed that PAHs were mainly derived from the incomplete combustion of e-waste. The former open burning sites and dismantling sites were the main sources of PAHs. Soil samples that were taken closer to the point sources had high PAH concentrations. PAHs are transported via different soil profiles, including those in agricultural fields, and have been detected not only in 0- to 40-cm-deep soil but also in 40 cm to 80 cm-deep soil. PAH concentrations in soils in Longtang have been strongly affected by primitive e-waste recycling, particularly by former open burning activities.  相似文献   

18.
In this study, the occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) were investigated in six sludge samples collected from Guangdong Province, China. Concentrations of PAHs varying from 2,534.1 to 6,926.6 μg kg???1 (dry sludge) were observed in three municipal wastewater treatment plants with phenanthrene (Phe), fluoranthene, and pyrene being the main compounds. In addition, 682.6 μg kg???1 PAHs were detected in one sludge sample from a food processing plant, with fluorene, Phe, and chrysene being the main components. No PAHs were detected in sludge samples obtained from two cosmetic plants. The levels and distributional characteristics of PAHs, polychlorinated biphenyls (PCBs), and polycyclic musks (PMs) from the samples were also compared. The results of this comparison indicated that petrochemical refineries and road traffic played important roles in the PAH loads in sludge, while PMs primarily originated from domestic wastewater and industrial wastewater from cosmetic plants. Finally, the presence of 98.8 μg kg???1 PCBs in sludge suggested diffusional emission sources from electrical components containing PCBs.  相似文献   

19.
The spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was investigated in Gomti River, a major tributary of the Ganga river (India). A total of 96 samples (water and sediments) were collected from eight different sites over a period of 2 years and analysed for 16 PAHs. The total concentrations of 16 PAHs in water and bed sediments ranged between 0.06 and 84.21 ??g/L (average (n?=?48), 10.33 ± 19.94 ??g/L) and 5.24?C3,722.87 ng/g dw [average (n?=?48): 697.25 ± 1,005.23 ng/g dw], respectively. In water, two- and three-ring PAHs and, in sediments, the three- and four-ring PAHs were the dominant species. The ratios of anthracene (An)/An + phenenthrene and fluoranthene (Fla)/Fla + pyrene were calculated to evaluate the possible sources of PAHs. These ratios reflected a pattern of pyrolytic input as a major source of PAHs in the river. Principal component analysis, further, separated the PAHs sources in the river sediments, suggesting that both the pyrolytic and petrogenic sources are contributing to the PAHs burden. The threat to biota of the river due to PAHs contamination was assessed using effect range low and effect range median values, and the results suggested that sediment at some occasions may pose biological impairment.  相似文献   

20.
The first objective of this study was to provide data of arsenic (As) levels in Peninsular Malaysia based on soil samples and accumulation of As in Centella asiatica collected from 12 sampling sites in Peninsular Malaysia. The second objective was to assess the accumulation of As in transplanted C. asiatica between control and semi-polluted or polluted sites. Four sites were selected which were UPM (clean site), Balakong (semi-polluted site), Seri Kembangan (semi-polluted site) and Juru (polluted site). The As concentrations of plant and soil samples were determined by Instrumental Neutron Activation Analysis. The As levels ranged from 9.38 to 57.05 μg/g dw in soils, 0.21 to 4.33 μg/g dw in leaves, 0.18 to 1.83 μg/g dw in stems and 1.32–20.76 μg/g dw in roots. All sampling sites had As levels exceeding the CCME guideline (12 μg/g dw) except for Kelantan, P. Pauh, and Senawang with P. Klang having the highest As in soil (57.05 μg/g dw). In C. asiatica, As accumulation was highest in roots followed by leaves and stems. When the As level in soils were higher, the uptake of As in plants would also be increased. After the transplantation of plants to semi-polluted and polluted sites for 3 weeks, all concentration factors were greater than 50 % of the initial As level. The elimination factor was around 39 % when the plants were transplanted back to the clean sites for 3 weeks. The findings of the present study indicated that the leaves, stems and roots of C. asiatica are ideal biomonitors of As contamination. The present data results the most comprehensive data obtained on As levels in Malaysia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号