首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methane (CH4) is one of the most relevant greenhouse gases and it has a global warming potential 25 times greater than that of carbon dioxide (CO2), risking human health and the environment. Microbial CH4 oxidation in landfill cover soils may constitute a means of controlling CH4 emissions. The study was intended to quantify CH4 and CO2 emissions rates at the Sungai Sedu open dumping landfill during the dry season, characterize their spatial and temporal variations, and measure the CH4 oxidation associated with the landfill cover soil using a homemade static flux chamber. Concentrations of the gases were analyzed by a Micro-GC CP-4900. Two methods, kriging values and inverse distance weighting (IDW), were found almost identical. The findings of the proposed method show that the ratio of CH4 to CO2 emissions was 25.4 %, indicating higher CO2 emissions than CH4 emissions. Also, the average CH4 oxidation in the landfill cover soil was 52.5 %. The CH4 and CO2 emissions did not show fixed-pattern temporal variation based on daytime measurements. Statistically, a negative relationship was found between CH4 emissions and oxidation (R 2?=?0.46). It can be concluded that the variation in the CH4 oxidation was mainly attributed to the properties of the landfill cover soil.  相似文献   

2.
Methane (CH4) emissions and oxidation were measured at the Air Hitam sanitary landfill in Malaysia and were modeled using the Intergovernmental Panel on Climate Change waste model to estimate the CH4 generation rate constant, k. The emissions were measured at several locations using a fabricated static flux chamber. A combination of gas concentrations in soil profiles and surface CH4 and carbon dioxide (CO2) emissions at four monitoring locations were used to estimate the CH4 oxidation capacity. The temporal variations in CH4 and CO2 emissions were also investigated in this study. Geospatial means using point kriging and inverse distance weight (IDW), as well as arithmetic and geometric means, were used to estimate total CH4 emissions. The point kriging, IDW, and arithmetic means were almost identical and were two times higher than the geometric mean. The CH4 emission geospatial means estimated using the kriging and IDW methods were 30.81 and 30.49 g m?2 day?1, respectively. The total CH4 emissions from the studied area were 53.8 kg day?1. The mean of the CH4 oxidation capacity was 27.5 %. The estimated value of k is 0.138 year?1. Special consideration must be given to the CH4 oxidation in the wet tropical climate for enhancing CH4 emission reduction.  相似文献   

3.
Errors associated with the closed flux chamber technique, used to measure surface emissions from landfills, were investigated by using a combination of numerical modeling and laboratory studies. A transient-state, advective–dispersive–reactive model was developed and used in conjunction with its steady-state version to quantify the errors associated with closed flux chambers. In developing the model, all four major gases, CH4, O2, CO2, and N2, and the oxidation of CH4 to CO2 were considered. Laboratory experiments were conducted on a monolayered as well as a two-layered landfill cover system to calibrate and verify the model. The model was used to develop a plot of the percentage errors associated with closed flux chambers of different dimensions and surface flux rates.  相似文献   

4.
The Bog Ecosystem Research Initiative (BERI) projectwas initiated to investigate, at five climaticallydifferent sites across Europe, the effects of elevatedCO2 and N deposition on the net exchange ofCO2 and CH4 between bogs and the atmosphere,and to study the effects of elevated CO2 and Ndeposition on the plant biodiversity of bogcommunities. A major challenge to investigate theeffects of elevated CO2 on vegetation andecosystems is to apply elevated CO2concentrations to growing vegetation without changingthe physical conditions like climate and radiation.Most available CO2 enrichment methods disturb thenatural conditions to some degree, for instance closedchambers or open top chambers. Free Air CO2Enrichment (FACE) systems have proven to be suitableto expose plants to elevated CO2 concentrationswith minimal disturbance of their natural environment.The size and spatial scale of the vegetation studiedwithin the BERI project allowed the use of a modifiedversion of a small FACE system called MiniFACE. Thispaper describes the BERI MiniFACE design as well asits temporal and spatial performance at the five BERIfield locations. The temporal performance of theMiniFACE system largely met the quality criteriadefined by the FACE Protocol. One minute averageCO2 concentrations measured at the centre of thering stayed within 20% of the pre-set target for morethan 95% of the time. Increased wind speeds werefound to improve the MiniFACE system's temporalperformance. Spatial analyses showed no apparentCO2 gradients across a ring during a 4 day periodand the mean differences between each sampling pointand the centre of the ring did not exceed 10%.Observations made during a windy day, causing aCO2 concentration gradient, and observations madeduring a calm day indicated that short term gradientstend to average out over longer periods of time. On aday with unidirectional strong winds, CO2concentrations at the upwind side of the ring centrewere higher than those made at the centre and at thedownwind side of the ring centre, but the bell-shapeddistribution was found basically the same for thecentre and the four surrounding measurement points,implying that the short term (1 sec) variability ofCO2 concentrations across the MiniFACE ring isalmost the same at any point in the ring. Based on gasdispersion simulations and measured CO2concentration profiles, the possible interferencebetween CO2-enriched and control rings was foundto be negligible beyond a centre-to-centre ringdistance of 6 m.  相似文献   

5.
Biotic landfill cover treatments for mitigating methane emissions   总被引:2,自引:0,他引:2  
Landfill methane (CH4) emissions have been cited as one ofthe anthropogenic gas releases that can and should be controlledto reduce global climate change. This article reviews recent research that identifies ways to enhance microbial consumptionof the gas in the aerobic portion of a landfill cover. Use of these methods can augment CH4 emission reductions achievedby gas collection or provide a sole means to consume CH4 atsmall landfills that do not have active gas collection systems.Field studies indicate that high levels of CH4 removal can be achieved by optimizing natural soil microbial processes. Further, during biotic conversion, not all of the CH4 carbonis converted to carbon dioxide (CO2) gas and released to theatmosphere; some of it will be sequestered in microbial biomass.Because biotic covers can employ residuals from other municipalprocesses, financial benefits can also accrue from avoided costsfor residuals disposal.  相似文献   

6.
Ground-level concentrations of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored over three seasons, i.e., post-monsoon (September–October), winter (January–February), and summer (May–June) for 1 year during 2013–2014 in Nagpur City in India. The selected gases had moderate to high variation both spatially (residential, commercial, traffic intersections, residential cum commercial sites) and temporally (at 7:00, 13:00, 18:00, and 23:00 hours in all three seasons). Concentrations of gases were randomly distributed diurnally over city in all seasons, and there was no specific increasing or decreasing trend with time in a day. Average CO2 and N2O concentrations in winter were higher over post-monsoon and summer while CH4 had highest average concentration in summer. Observed concentrations of CO2 were predominantly above global average of 400 ppmv while N2O and CH4 concentrations frequently dropped down below global average of 327 ppbv and 1.8 ppmv, respectively. Two-tailed Student’s t test indicated that post-monsoon CO2 concentrations were statistically different from summer but not so from winter, while difference between summer and winter concentrations was statistically significant (P < 0.05). CH4 concentrations in all seasons were statistically at par to each other. In case of N2O, concentrations in post-monsoon were statistically different from summer but not so from winter, while difference between summer and winter concentrations was statistically significant (P < 0.05). Average ground-level concentrations of the gases calculated for three seasons together were higher in commercial areas. Environmental management priorities vis a vis greenhouse gas emissions in the city are also discussed.  相似文献   

7.
In order to explore the environmental behavior of reduced sulfur compounds (RSC) as malodorous components emitted from diverse source processes, the distribution characteristics of four sulfur (S) compounds - hydrogen sulfide (H2S), methyl mercaptan (CH3SH), dimethyl sulfide (DMS: (CH3)2S), and dimethyl disulfide (DMDS: (CH3)2S2) – were investigated in a municipal landfill area. In the course of this study, their ambient concentration levels were measured during two time periods from 13 individual spots selected as a function of distance from the center of the landfill site. The results generally indicated the absolute dominance of H2S over the other S compounds investigated (up to 5 km radius) such that their mean values were found as 1415 (H2S), 148 (DMS), 20.6 (CH3SH), and 14.4 ppt (DMDS). When our data were compared in terms of either varying distance from the source or relationship with meteorological conditions, the H2S data sets were most evident to reflect the potential effects of strong source processes in the landfill environment, relative to other S gases (or to volatile organic compounds measured concurrently). The results of this study further indicated the relatively good correspondence between the measured H2S concentration level and humans' intuitive sensory of odor and nuisance.  相似文献   

8.
Continuous methane, CH4, concentrations were measured in a rural area of the upper Spanish plateau from June 2010 to May 2012 by cavity ring-down spectroscopy technique. The results obtained have proven the local impact of anthropogenic nearby sources on CH4 concentrations, and evidence a significant influence on the overall mean, averaged daily and seasonal patterns recorded at the measuring site. The positive anomalies in CH4 concentrations, statistically significant at 95 %, in the southeast sector, defined here as ESE, SE, SSE and S sectors, have been attributed to the contribution of the Valladolid urban plume and the urban landfill. Based on this finding, CH4 background levels were associated to the concentrations recorded in the remaining un-disturbed sectors. CH4 means of the overall data set, the southeast sector and background sectors yielded average means of 1,894.1, 1,927.9 and 1,887.1 ppb, respectively. The diurnal and seasonal patterns of the overall data set and background concentrations have shown that CH4 concentrations are mainly dominated by its reaction with OH radicals. Maximum hourly concentrations were reached during night-time and early morning, 5–7 h, whereas minimum concentrations were recorded at 16 h. Maximum and minimum monthly means were recorded in January and July, respectively. The diurnal and seasonal amplitudes, namely, peak-to-peak means, of background concentrations were 25.1 and 48.1 ppb, respectively. These values were significantly lower than those obtained for the overall data set, 42.9 and 58.1 ppb, revealing the significant role of local influences on CH4 concentrations despite the low frequency of southeast winds recorded at the measuring site, 16.9 %.  相似文献   

9.
对国家大气背景监测福建武夷山站2014—2018年的主要温室气体监测数据进行分析,探讨华东森林及高山背景区域大气中CO_2和CH_4浓度的变化特征。结果表明:华东森林及高山区域CO_2背景浓度为414.1×10~(-6)(摩尔分数,下同),5年间呈逐年上升趋势; CH_4背景浓度为1 977×10~(-9),2014—2016年呈逐年上升趋势,2016—2018年保持稳定;两者均具有较明显的季节和月变化特征,CO_2还具有较明显的日变化特征,但季节变化幅度、月平均浓度振幅和日变化幅度均较小,具有区域背景特征。  相似文献   

10.
Emission of methane (CH4), a potent greenhouse gas, from tropical reservoirs is of interest because such reservoirs experience conducive conditions for CH4 production through anaerobic microbial activities. It has been suggested that Indian reservoirs have the potential to emit as much as 33.5 MT of CH4 per annum to the atmosphere. However, this estimate is based on assumptions rather than actual measurements. We present here the first data on dissolved CH4 concentrations from eight freshwater reservoirs in India, most of which experience seasonal anaerobic conditions and CH4 buildup in the hypolimnia. However, strong stratification prevents the CH4-rich subsurface layers to ventilate CH4 directly to the atmosphere, and surface water CH4 concentrations in these reservoirs are generally quite low (0.0028–0.305 μM). Moreover, only in two small reservoirs substantial CH4 accumulation occurred at depths shallower than the level where water is used for power generation and irrigation, and in the only case where measurements were made in the outflowing water, CH4 concentrations were quite low. In conjunction with short periods of CH4 accumulation and generally lower concentrations than previously assumed, our study implies that CH4 emission from Indian reservoirs has been greatly overestimated.  相似文献   

11.
Atmospheric samples collected during rice straw burning at four different locations in Viet-Nam during the dry (March 1992, February 1993) and wet season (August 1992) were analysed for CO2, CO, and CH4. The emission ratios relative to CO2 for CO and CH4 for rice straw burning during the dry season were comparable to those observed on samples collected during burning of savanna in Africa or forest in the USA. During the wet season, however the emission ratios for CO and CH4 relative to CO2 were 3 to 10 times higher. With these emission ratios and estimates of rice production from Southeastern Asia, we estimated that burning of rice straw emits annually about 2.2 Tmol of CO (26 TgC) and 0.2 Tmol of CH4 (2.4 TgC) to the atmosphere. Taking into account these new results, CO and CH4 fluxes from biomass burning could be reevaluated by 5–21% and 5–24%, respectively, in respect with previous estimates of these gas emissions from all biomass burning activities.  相似文献   

12.
The purpose of the study was to identify and quantify anthropogenic sources and sinks of greenhouse gases from forestry, land-use changes and agriculture in Tanzania. The 1990 inventory revealed that, in the land-use sector, methane (CH4) and carbon dioxide (CO2) are the primary gases emitted. Enteric fermentation in livestock production systems is the largest source of CH4. Although deforestation results in greenhouse gas emissions, the managed forests of Tanzania are a major CO2 sink.  相似文献   

13.
This study quantified spatiotemporal patterns of CH4 and N2O emissions from livestock and poultry production in Turkey between 1961 and 2007. CH4(enteric) (from enteric fermentation), CH4(manure) (from manure management), and N2O(AWM) (from animal waste management) emissions in Turkey were estimated at 1,164, 216, and 55 Gg in 1961 and decreased to 844, 187, and 39 Gg in 2007, contributing a share of roughly 2% to the global livestock-related CH4 emissions and %1.5 to the global N2O(AWM) emissions, respectively. Total CO2-eq emissions were estimated at 50.7 Tg in 1961 and declined from a maximum value of 60.7 Tg in 1982 to a minimum value of 34.5 Tg in 2003, with a mean emission rate of 48 Tg year???1 due to a significant reduction in the number of ruminant livestock. The highest mean share of emissions belonged to West Black Sea (14% and 16%) for CH4(enteric) and CH4(manure) and to North East Anatolia (12% and %13) for N2O(AWM) and total CO2-eq emissions, respectively. The highest emission density was 1.7 Mg km???2 year???1 for CH4(enteric), 0.3 Mg km???2 year???1 for CH4(manure), and 0.07 Mg km???2 year???1 for the total CO2-eq emissions in the West and North East Anatolia regions and 0.09 Mg km???2 year???1 for N2O(AWM) in the East Marmara region. Temporal and spatial variations in CH4(enteric), CH4(manure), and N2O(AWM) emissions in Turkey were estimated using regression models and ordinary kriging at a 500-m resolution, respectively.  相似文献   

14.
Measurements of methane emission rates and concentrations in the soil were made during four growing seasons at the International Rice Research Institute in the Philippines, on plots receiving different levels of organic input. Fluxes were measured using the automated closed chambers system (total emission) and small chambers installed between plants (water surface flux). Concentrations of methane in the soil were measured by collecting soil cores including the gas phase (soil-entrapped methane) and by sampling soil solution in situ (dissolved methane). There was much variability between seasons, but total fluxes from plots receiving high organic inputs (16–24 g CH4 m–2) always exceeded those from the low input plots (3–9 g CH4 m–2). The fraction of the total emission emerging from the surface water (presumably dominated by ebullition) was greater during the first part of the season, and greater from the high organic input plots (35–62%) than from the low input plots (15–23%). Concentrations of dissolved and entrapped methane in the low organic input plots increased gradually throughout the season; in the high input plots there was an early-season peak which was also seen in emissions. On both treatments, periods of high methane concentrations in the soil coincided with high rates of water surface flux whereas low concentrations of methane were generally associated with low flux rates.  相似文献   

15.
Cities across the globe are considered as major anthropogenic sources of greenhouse gases (GHG), yet very few efforts has been made to monitor ambient concentration of GHG in cities, especially in a developing country like India. Here, variations in the ambient concentrations of carbon dioxide (CO2) and methane (CH4) in residential, commercial, and industrial areas of Delhi are determined from fortnightly daytime observations from July, 2008 to March, 2009. Results indicate that the average daytime ambient concentration of CO2 varied from 495 to 554 ppm in authorized residential areas, 503 to 621 ppm in the slums or jhuggies in the unauthorized residential areas, 489 to 582 ppm in commercial areas, and 512 to 568 ppm in industrial areas with an average of 541?±?27 ppm. CH4 concentration varied from 652 to 5,356 ppbv in authorized residential areas, 500 to15,220 ppbv in the unauthorized residential areas, 921 to 11,000 ppbv in the commercial areas, and 250 to 2,550 ppbv in the industrial areas with an average of 3,226?±?1,090 ppbv. A low mid-afternoon CO2 concentration was observed at most of the sites, primarily due to strong biospheric photosynthesis coupled with strong vertical mixing.  相似文献   

16.
The breakdown of low digestible components present in food during passage through the human and animal gastro-intestinal (GI) tract is performed by the highly diverse microbial community present in this ecosystem. Fermentation of these substances yields, besides CO2 and volatile fatty acids, H2, which is used as a substrate by three different H2-consuming bacteria. Sulphate-reducing bacteria (SRB) use H2 to reduce SO inf4 sup2- to H2S, hydrogenotrophic methane-producing bacteria (MPB) use H2 to reduce CO2 to CH4 and reductive acetogens (RAC) use H2 to reduce CO2 to CH3COOH. A competition between these three bacterial groups exists for the common H2 substrate. This results generally in the dominance of one group above the other two.  相似文献   

17.
Infrared spectrometry is a versatile basis to analyse greenhouse gases in the atmosphere. A multicomponent air pollution software (MAPS) was developed for retrieval of gas concentrations from radiation emission as well as absorption measurements. Concentrations of CO, CH4, N2O, and H2O as well as CO2, NO, NO2, NH3, SO2, HCl, HCHO, and the temperature of warm gases are determined on-line. The analyses of greenhouse gases in gaseous emission sources and in ambient air are performed by a mobile remote sensing system using the double-pendulum interferometer K300 of the Munich company Kayser-Threde. Passive radiation measurements are performed to retrieve CO, N2O, and H2O as well as CO2, NO, SO2, and HCl concentrations in smoke stack effluents of thermal power plants and municipal incinerators and CO and H2O as well as CO2 and NO in exhausts of aircraft engines. Open-path radiation measurements are used to determine greenhouse gas concentrations at different ambient air conditions and greenhouse gas emission rates of diffusive sources as garbage deposits, open coal mining, stock farming together with additional compounds (e.g. NH3), and from road traffic together with HCHO. Some results of measurements are shown. A future task is the verification of emission cadastres by these inspection measurements.  相似文献   

18.
Agriculture is a significant source of anthropogenic greenhouse gas (GHG) emissions, and beef cattle are particularly emissions intensive. GHG emissions are typically expressed as a carbon dioxide equivalent (CO2e) ‘carbon footprint’ per unit output. The 100-year Global Warming Potential (GWP100) is the most commonly used CO2e metric, but others have also been proposed, and there is no universal reason to prefer GWP100 over alternative metrics. The weightings assigned to non-CO2 GHGs can differ significantly depending on the metric used, and relying upon a single metric can obscure important differences in the climate impacts of different GHGs. This loss of detail is especially relevant to beef production systems, as the majority of GHG emissions (as conventionally reported) are in the form of methane (CH4) and nitrous oxide (N2O), rather than CO2. This paper presents a systematic literature review of harmonised cradle to farm-gate beef carbon footprints from bottom-up studies on individual or representative systems, collecting the emissions data for each separate GHG, rather than a single CO2e value. Disaggregated GHG emissions could not be obtained for the majority of studies, highlighting the loss of information resulting from the standard reporting of total GWP100 CO2e alone. Where individual GHG compositions were available, significant variation was found for all gases. A comparison of grass fed and non-grass fed beef production systems was used to illustrate dynamics that are not sufficiently captured through a single CO2e footprint. Few clear trends emerged between the two dietary groups, but there was a non-significant indication that under GWP100 non-grass fed systems generally appear more emissions efficient, but under an alternative metric, the 100-year global temperature potential (GTP100), grass-fed beef had lower footprints. Despite recent focus on agricultural emissions, this review concludes there are insufficient data available to fully address important questions regarding the climate impacts of agricultural production, and calls for researchers to include separate GHG emissions in addition to aggregated CO2e footprints.  相似文献   

19.
Manual closed chamber methods are widely used for CH4 measurement from rice paddies. Despite diurnal and seasonal variations in CH4 emissions, fixed sampling times, usually during the day, are used. Here, we monitored CH4 emission from rice paddies for one complete rice-growing season. Daytime CH4 emission increased from 0800 h, and maximal emission was observed at 1200 h. Daily averaged CH4 flux increased during plant growth or fertilizer application and decreased upon drainage of plants. CH4 measurement results were linearly interpolated and matched with the daily averaged CH4 emission calculated from the measured results. The time when daily averaged emission and the interpolated CH4 curve coincided during the daytime was largely invariant within each of the five distinctive periods. One-hourly sampling during each of these five periods was utilized to estimate the emission during each period, and we found that five one-hourly samples during the season accurately reflected the CH4 emission calculated based on all 136 hourly samples. This new sampling scheme is simple and more efficient than current sampling practices. Previously reported sampling schemes yielded estimates 9 to 32% higher than the measured CH4 emission, while our suggested scheme yielded an estimate that was only 5% different from that based on all 136-h samples. The sampling scheme proposed in this study can be used in rice paddy fields in Korea and extended worldwide to countries that use similar farming practices. This sampling scheme will help in producing more accurate global methane budget from rice paddy fields.  相似文献   

20.
采用LGR-密闭式动态通量箱法对城市绿地生态系统温室气体(CO2、CH4)通量的日变化、季节变化特征及其影响因子等进行了较为系统的研究。城市绿地花草CO2通量有明显的日变化和季节变化特征,白天通量值为负,是CO2的净吸收汇;夜晚为正值,是CO2的净释放源;7:00左右由源转为汇,17:00左右由汇转为源,不同花卉24 h总通量有正负2种结果。冬季草坪作为源的时间延长,而作为汇的时间缩短。光强和温度是影响CO2通量日变化和季节变化的主要因素。城市绿地CH4通量较小,不足以对温室气体总量产生显著影响。从减少温室气体排放的角度对城市绿地花草的选择提出了建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号