首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric condensate (AC) and rainwater samples were collected during 2010–2011 winter season from Delhi and characterized for major cations and anions. The observed order of abundance of cations and anions in AC samples was NH 4 + ?>?Ca2+?>?Na+?>?K+?>?Mg2+ and HCO 3 ? ?>?SO 4 2? ?>?Cl??>?NO 2 ? ?>?NO 3 ? ?>?F?, respectively. All samples were alkaline in nature and Σ cation/Σ anion ratio was found to be close to one. NH 4 + emissions followed by Ca2+ and Mg2+ were largely responsible for neutralization of acidity caused by high NO x and SO2 emissions from vehicles and thermal power plants in the region. Interestingly, AC samples show low nitrate content compared with its precursor nitrite, which is commonly reversed in case of rainwater. It could be due to (1) slow light-mediated oxidation of HONO; (2) larger emission of NO2 and temperature inversion conditions entrapping them; and (3) formation and dissociation of ammonium nitrite, which seems to be possible as both carry close correlation in our data set. Principal component analysis indicated three factors (marine mixed with biomass burning, anthropogenic and terrestrial, and carbonates) for all ionic species. Significantly higher sulfate/nitrate ratio indicates greater anthropogenic contributions in AC samples compared with rainwater. Compared with rainwater, AC samples show higher abundance of all ionic species except SO4, NO3, and Ca suggesting inclusion of these ions by wash out process during rain events. Ionic composition and related variations in AC and rainwater samples indicate that two represent different processes in time and space coordinates. AC represents the near-surface interaction whereas rainwater chemistry is indicative of regional patterns. AC could be a suitable way to understand atmospheric water interactions with gas and solid particle species in the lower atmosphere.  相似文献   

2.
The Yanqi Basin in Xinjiang Province is an important agricultural area with a high population density. The extensive agricultural activities in the Yanqi Basin started in the 1950s with flood irrigation techniques. Since then, the groundwater table was raised because of the absence of an efficient drainage system. This obstacle is a crucial factor that restricts sustainable socioeconomic development. Hydrochemical investigations were conducted in the Yanqi Basin, Northwestern China, to determine the chemical composition of groundwater. Sixty groundwater samples were collected from different wells to monitor the water chemistry of various ions. The results of the chemical analysis indicate that the groundwater in the area is generally neutral to slightly alkaline and predominantly contains Na+ and Ca2+ cations as well as HCO3 ? and SO4 2+ anions. High positive correlations between HCO3 ?–Mg2+ + Ca2+, SO 4 2?–Mg2+, SO4 2?–Na+ + K+, and Cl?–Na+ + K+ were obtained. The total dissolved solids (TDS) mainly depend on the concentration of major ions such as HCO3 ?, SO4 2?, Cl?, Ca2+, Mg2+, and Na+ + K+. The dominant hydrochemical facies for groundwater are Ca2+–Mg2+–HCO3 ?, Mg2+–Ca2+–SO4 2?–Cl?, Na+–K+–Cl?–SO4 2?, and Na+–K+–Mg2+–Cl?–HCO3 ? types. The hydrochemical processes are the main factors that determine the water quality of the groundwater system. These processes include silicate mineral weathering, dissolution, ion exchange, and, to a lesser extent, evaporation, which seem to be more pronounced downgradient of the flow system. The saturation index (SI), which is calculated according to the ionic ratio plot, indicates that the gypsum–halite dissolution reactions occur during a certain degree of rock weathering. SI also indicates that evaporation is the dominant factor that determines the major ionic composition in the study area. The assessment results of the water samples using various methods indicate that the groundwater in the study area is generally hard, fresh to brackish, high to very high saline, and low alkaline in nature. The high total hardness and TDS of the groundwater in several places indicate the unsuitability of the groundwater for drinking and irrigation. These areas require particular attention, particularly in the construction of adequate drainage as well as in the introduction of an alternative salt tolerance cropping.  相似文献   

3.
The groundwater is one of the most contaminated natural resources in Patancheru industrial area due to unplanned and haphazard industrial growth and urbanization without following basic pollution control norms. The rapid industrialization initiated in early 1970 has started showing up its after effects few years later in the form of physiochemical contamination of the both surface and groundwater bodies of the area. It has resulted in local people being deprived of safe drinking water, plant and aquatic life has severely affected, and situation is deteriorating over the years in the area in spite of some preventive and remedial measures being initiated. The focus of the present study is to understand the chemical characteristics of groundwater and geochemical processes the contaminant water is undergoing which are normally imprinted in its ionic assemblages. The water samples collected in pre- and post-monsoon seasons from forty two groundwater and four surface water sources were analyzed for major constituents such as Ca2+, Mg2+, Na+, K+, CO3, HCO3, Cl, SO42−, NO3, and F, and selected samples were tested for ten important trace metals like Fe, Pb, Bi, Mn, Cr, Co, Ni, Cu, Zn, and Cd. Na+ among cations and Cl among anions dominate the water in both the seasons where as Ca2+, HCO3, and Cl show significant reduction in their ionic strength in post-monsoon. The groundwater in general is of mixed type, but most of it belong to Na+–Cl, Na+–HCO3, Ca2+–Mg2+–HCO3, and Ca2+–Mg2+–Cl facies. The Na+ and Ca2+ are in the transitional state with Na+ replacing Ca2+ and HCO3–Cl due to physiochemical changes in the aquifer system. The evaluation of hydrochemistry through various ionic indices, ratios, and plots suggest that silicate–carbonate weathering, ion exchange, dissolution, and evaporation processes are responsible for origin of the present chemical status of the groundwater which is also controlled by the contamination from extraneous sources that could have accelerated the dissolution processes. Gibbs plots authenticate that the evolution of water chemistry is influenced by interaction of percolating water with aquifer matrix apart from anthropogenic enrichment of elements which get over concentrated due to evaporation.  相似文献   

4.
上海青浦地区大气降水的化学特征   总被引:2,自引:1,他引:1  
利用上海青浦地区2003—2014年观测的大气降水监测资料,分析该区域12 a以来大气降水的酸化程度、化学组成特征,探讨降水中化学成分的不同来源及相对贡献。结果表明:降水pH年均值为4.43~6.33,酸雨频率为2.6%~86.8%,降水酸化程度大致经历了明显恶化和波动变化2个阶段。降水电导率年均值为1.77~4.01 m S/m,呈下降趋势。降水中各离子雨量加权平均当量浓度顺序为SO_4~(2-)NH_4~+Ca~(2+)NO_3~-Cl~-Na~+Mg~(2+)F-K~+,SO_4~(2-)、NH+4、Ca~(2+)和NO_3~-是降水中的主要离子,占离子总量的83.0%;降水类型由硫酸型向硫酸和硝酸混合型转变。降水离子中的二次组分SO_4~(2-)、NO_3~-和NH_4~+绝大部分来源于人为源,Ca~(2+)、Mg~(2+)和K+主要来自于土壤源和人为源的贡献,Cl~-主要来自海洋源,同时人为源的影响也不可忽视。  相似文献   

5.
The Thirumanimuttar sub-basin forms an important groundwater province in south India, facing serious deficiency in both quality and quantity of groundwater due to increased demand associated with rapid population explosion, agricultural growth and industrial activities. A total of 194 groundwater samples were collected and 15 water quality parameters were analyzed using standard procedures. Na + , Cl − , Ca2 + , HCO3-_{3}^{-}, Mg2 +  and SO42-_{4}^{2-} concentration ions are more dominant in both seasons. The total dissolved solids and electrical conductivity was observed good correlation with Na + , Cl − , HCO3-_{3}^{-}, Ca2 + , Mg2 + , Cl − , PO43-_{4}^{3-} and NO3- _{3}^{- } ions indicating dominance of plagioclase feldspar weathering, anthropogenic input and over drafting of groundwater irrespective of seasons. The Hill–Piper diagram indicates alkaline earths exceed the alkalis, an increase of weak acids was noted during both the seasons. For assessing the groundwater for irrigation suitability parameters like total hardness, sodium adsorption ratio, residual sodium carbonate (RSC), permeability index, and sodium percentage are also calculated. Permanent hardness was noted in higher during both the seasons due to discharge of untreated effluents and ion exchange process. The RSC indicates 56% of the samples are not suitable for irrigation purposes in both seasons, if continuously used will affect the crop yield. From the results, nearly 72% of the samples are not suitable for irrigation.  相似文献   

6.
Physico-chemical groundwater (GW) parameters were evaluated to understand the hydrogeochemical processes in the Siwalik plains of Jammu and Kashmir, India. During the 2012–2013 post-monsoon (POM) and pre-monsoon (PRM) seasons, GW samples (n = 207) from deep bore wells and shallow open wells were chemically analysed. Cations (Ca2+, Mg2+, Na+, K+ and Fe2+) and anions (HCO3 ?, Cl?, SO4 2? and F?) showed a wide spatio-temporal variation. Results suggest that weathering and dissolution of carbonates and silicate rocks is the main source of water mineralization. The major hydrochemical facies is characterized by Ca-Mg-HCO3 and Ca-HCO3 during the PRM and POM seasons respectively. The presence of sulphate-bearing water in a large number of the samples indicates a significant role of gypsum dissolution and anthropogenic contamination of the GW. Factor analysis (FA) and hierarchical cluster analysis (HCA) revealed that the variability of hydrochemistry is mainly related to rock-water interaction, dissolution of carbonates and other lithological units as well as the influence of anthropogenic activities in the area. Overall, it was found that the GW quality is within the limits of human consumption. The higher concentration of a few chemicals indicates an increasing trend of industrial contamination of the GW. For sustainable development of the portable GW in Siwaliks, it is necessary to minimize the adverse impacts of the anthropogenic and industrial contamination on the GW resources through best management practices and prevent its further contamination to a level that could make GW unsuitable for human uses.  相似文献   

7.
Groundwater pollution resulting from anthropogenic activities and poor effluent management is on the rise in Nigeria. Hence, groundwater used for domestic purposes is questionable and therefore calls for scientific scrutiny. Investigation of hydrochemical interactions and quality of groundwater resource is essential in order to monitor and identify sources of water pollutants. As a result, groundwater samples were collected from 21 locations in Abeokuta South, Nigeria and analyzed for physicochemical parameters using standard methods. Results obtained were subjected to hydrochemical and geospatial analyses. Water quality parameters investigated exhibited wide variations from location to location. Fe2+, Mg2+, SO42?, Cl?, total hardness (TH), Mn, Na+, NO3?, SiO2, and alkalinity exhibited the highest levels of variation with coefficients of variation of 131.3, 92.8, 83.9, 76.7, 65.9, 64.3, 57.6, 57.2, 57.0, and 52.5, respectively. The average pH value was 6.76 with 71% of the water samples being slightly acidic. Na2+, Mg2+, Fe2+, and EC contents exhibited the most violation of drinking water standards with percent violations of 100, 52.4, 47.6, and 47.6%, respectively. Parameters, such as Mn, Ca2+, NO3?, and CO32?, were within the WHO guideline values for drinking water in all the samples. The highest level of significant correlation was found to exist between Na+ and Cl? (r?=?0.84, α?=?0.01). Six principal components, which explained 83.5% of the variation in water quality, were extracted with the first (34.1%) and second components (15.7%) representing the influence of mineral dissolution and anthropogenic practices, respectively, on the hydrochemistry of the area. Four hydrochemical clusters were identified with distinctly partitioned water quality. Further analysis revealed that 38, 29, 24, and 9% of the samples were the Na-K-HCO3, Na-K-Cl-SO4, Ca-Mg-HCO3, and Ca-Mg-Cl-SO4 types, respectively. Anthropogenic activities are increasing threat to groundwater quality in the study location and therefore call for urgent attention. There is also a need for routine monitoring of groundwater in Abeokuta.  相似文献   

8.
Fourteen (14) characters from six (6) water samples collected from springs, ponds, and streams located in Lower Cretaceous sedimentary area of Afikpo Basin have been analyzed. These include pH, turbidity, conductivity, total dissolved solid, hardness, Fe2+, Ca2+, Mg2+, K+, NO3 ?, Cl?, SO4 2?, and Na+. These sediments, which are Turonian and Coniacian in age, are subdivided into two by a basic rock dyke. Results of the analyses show clearly that the Turonian sediments, intruded by dolerite, have net Fe2+, HCO3 ?, Ca2+, Mg2+, Mn2+, Cl?, and SO4 2? concentration while those from the younger Coniacian sediment have net higher amounts of K+, Na+, and Mn2+. The overriding mafic minerals in the basic intrusive rock possibly led to higher leaching into ground water system near it. On the other hand, the presence of feldsparthic to kaolinitic sands of the younger Coniacian units led to higher K+ and Na+ matter in the water from these zones. The formations dip away from the older sediments. Concentrations of these characters are within acceptable drinking water standards by World Health Organization but noticeable anomalous zones for Fe2+, Mg2+, and Ca2+ are zones of basic rock suites. Areas with greater Na+ and K+ are traceable to sandy units. It is thus concluded that more analysis of surface, subsurface, and pond water samples can be utilized for minerals search and geological mapping. At this stage, it forms a veritable reconnaissance tool.  相似文献   

9.
重庆市黔江区降水地球化学特征   总被引:2,自引:1,他引:1  
为了解生态旅游城市重庆市黔江区大气污染状况,2015年采集了91个降水样品,分析了降水中离子组分分布特征,运用富集因子法、海盐示踪法、相关性分析、主成分分析、聚类分析和HYSPLIT模型分析了降水化学组分来源。研究结果表明:黔江区域降水p H为5.66~6.96,加权平均值为6.34,降水离子组分浓度大小次序为SO_4~(2-)Ca~(2+)NH_4~+Mg~(2+)NO_3~-Cl~-Na~+K~+F~-,SO_4~(2-)、Ca~(2+)之和占总离子的63.95%;除Mg~(2+)和K+外,其余组分离子浓度与总离子浓度随季节变化(冬季春季秋季夏季)呈同样的变化特征。Ca~(2+)、Mg~(2+)和K+大部分均来源于陆源贡献,Na~+可能受到了海洋源的影响,SO_4~(2-)和NO_3~-主要来源于人为输入源的贡献,Cl~-是受土壤物质和海洋的双重影响。轨迹水汽运输结果表明:黔江区域的降水主要受到西北气团、西南季风、西风环流和极地气候共同作用输入。降水中各个离子组分均表现出显著性或极显著性关系,主成分分析结果表明,第一主成分上研究的降水离子组分中都具有相对较大正载荷,第二组分pH、降水量和气温为一类。  相似文献   

10.
The hydrochemical characterization of groundwater is important to bring out its nature and usefulness. The main objective of this paper was to discuss the major ion chemistry of groundwater in the Mambakkam mini watershed. Besides its semi-arid nature, rapid socioeconomic development encourages a greater demand for water, which leads to uncontrolled groundwater development. The groundwater of the study area is characterized by the dominance of alkaline earth (Ca2+, Mg2+) and strong acids (Cl, SO4) over alkalies (Na+, K+) and weak acids (HCO3, CO3) during both post-monsoon and pre-monsoon seasons of the year 2010, based on the hydrochemical facies. These have been probably derived from natural chemical weathering of rock minerals, ion exchange and anthropogenic activities of the fertilizer source. The classification based on the total hardness reveals that a majority of groundwater samples fall in the hard to very hard category during the pre-monsoon season. Based on the values of EC, SAR and RSC and the diagrams of USSL and Wilcox, most of the groundwater samples range from excellent to permissible for irrigation purposes, with a low alkalinity and high salinity hazard, except for a few samples in the study area.  相似文献   

11.
Nagpur City located in semiarid area of central India is a fast-growing industrial centre. In recent years, rapid development has created an increased demand for drinking water, which is increasingly being fulfilled by groundwater abstraction. The present study was undertaken to assess major ion chemistry of shallow groundwater to understand geochemical evolution of groundwater and water quality for promoting sustainable development and effective management of groundwater resources. A total of 47 water samples were collected from shallow aquifer of selected parts of the city and the water chemistry of various ions viz. Ca2 + , Mg2 + , Na + , K + , CO3  2-_{3}^{\ \, 2-}, HCO3  -_{3}^{\ \, -}, Cl − , SO4  2-_{4}^{\ \,2-} and NO3  -_{3}^{\ \,-} are carried out. The chemical relationships in Piper diagram identify Ca–HCO3–Cl and mixed Ca–Na–HCO3–Cl as most prevalent water types. Alkaline earth exceeds alkalis and weak acids exceed strong acids. Ionic ratios and Gibb’s diagram suggest that silicate rock weathering and anthropogenic activities are the main processes that determine the ionic composition in the study area. The nitrate appeared as a major problem of safe drinking water in this region. We recorded highest nitrate concentration, i.e., 411 mg/l in one of the dug well. A comparison of groundwater quality in relation to drinking water quality standards revealed that about half of the shallow aquifer samples are not suitable for drinking.  相似文献   

12.
The Toluca Valley is located on the high plains of Mexico, where there are significant industrial zones and large populations. Water needs are almost exclusively met by groundwater, which has brought about intense exploitation of the aquifer and indication of some contamination. The present study investigates the effect of urbanization, related to industrialization of the region, on groundwater in the central portion of the Toluca Valley aquifer—a zone with high population density and where the largest industrial park is located. A general decline in the groundwater level has been found over the years, at a rate of as much as 2.5 m/year. The appearance of a large drawdown cone was identified, indicating changes in the direction of groundwater flow. Also identified was the presence of several ground fissures, the location of which coincided with the drawdown cone. In hydrochemical terms, the water type is sodium-magnesium bicarbonate and this characteristic has not changed over time, although it has been possible to detect the presence of larger quantities of sulfates (up to 117 mg/L) and nitrates (up to 47 mg/L) in recent years, likely associated with contamination from industrial and urban wastewater. Factor analysis made it possible to identify ions that would characterize natural processes involving the acquisition of salts (HCO3 ?, Na+, Mg2+, and Si), as well as anthropic activities (SO4 2?, NO3 ?, Cl?, Ca2+, and K+).  相似文献   

13.
The present study deals with detailed hydrochemical assessment of groundwater within the Saq aquifer. The Saq aquifer which extends through the NW part of Saudi Arabia is one of the major sources of groundwater supply. Groundwater samples were collected from about 295 groundwater wells and analyzed for various physico-chemical parameters such as electrical conductivity (EC), pH, temperature, total dissolved solids (TDS), Na+, K+, Ca2+, Mg2+, CO3 ?, HCO3 ?, Cl?, SO4 2?, and NO3 ?. Groundwater in the area is slightly alkaline and hard in nature. Electrical conductivity (EC) varies between 284 and 9,902?μS/cm with an average value of 1,599.4 μS/cm. The groundwater is highly mineralized with approximately 30 % of the samples having major ion concentrations above the WHO permissible limits. The NO3 ? concentration varies between 0.4 and 318.2 mg/l. The depth distribution of NO3 ? concentration shows higher concentration at shallow depths with a gradual decrease at deeper depths. As far as drinking water quality criteria are concerned, study shows that about 33 % of samples are unfit for use. A detailed assessment of groundwater quality in relation to agriculture use reveals that 21 % samples are unsuitable for irrigation. Using Piper’s classification, groundwater was classified into five different groups. Majority of the samples show Mix-Cl-SO4- and Na-Cl-types water. The abundances of Ca2+ and Mg2+ over alkalis infer mixed type of groundwater facies and reverse exchange reactions. The groundwater has acquired unique chemical characteristics through prolonged rock-water interactions, percolation of irrigation return water, and reactions at vadose zone.  相似文献   

14.
An approach is described for viewing the interrelationship between different variables and also tracing the sources of pollution of groundwater of north Chennai (India). The data set of 43 variables which include major ions, minor ions and trace metal speciation (Cu, Pb, Cd and Zn) collected during the pre-monsoon and post-monsoon seasons of the year 2000–2001, was subjected to R-mode factor analysis to comprehend the distribution pattern of the said variables. It was found that first factor measures salinity and hardness which explained 19.12% of the total variance (comprised of variables EC, TDS, Na+, K+, Ca2+, Mg2+, total hardness, Cl and SO4 2−) during pre-monsoon, while it was 25.08% during post-monsoon. The second and third factors were attributed to speciation of zinc and copper ions during both pre-monsoon and post-monsoon. Although there were two more factors, loaded with speciation parameters of lead and cadmium, the variance of them were less than 10%. From this study it is seen that sea water intrusion, municipal solid waste disposal are the identified sources of component of pollution. The importance of metal ions is taking a secondary role and the anthropogenic origin-industrial activity, is the reason in the evaluation of pollution status as they come in the second, third, fourth and fifth factors. As the trace metal speciation was grouped in separate factors, linear regression model (LRM) with correlation analysis was applied to check its validity for prediction of speciation and to apply LRM for rapid monitoring of water pollution.  相似文献   

15.
Fog water samples were collected in the months of December and January during 1998–2000 at Agra, India. The samples were analyzed for pH, major anions (F, Cl, SO4 2−, NO3 , HCOO and CH3COO), major cations (Ca2+, Mg2+, Na+ and K+) and NH4 + using ion chromatography, ICP-AES and spectrophotometer methods, respectively. pH of fog water samples ranged between 7.0 and 7.6 with a volume weighted mean of 7.2, indicating its alkaline characteristic. NH4 + contributed 40%, SO4 2− and NO3 accounted for 28%, while Ca2+, Mg2+, Na+ and K+ accounted for 16% of the total ionic concentration. The ratios of Mg2+/Ca2+ and Na+/Ca2+ in fog water indicates that 50–75% of fog water samples correspond to the respective ratios in local soil. Significant correlation between Ca2+, Mg2+, Na+ and K+ suggests their soil origin. The order of neutralization, NH4 + (1.4) > Ca2+ (0.28) > Mg2+ (0.12), indicates that NH4 + is the major neutralizing species. Fog water and atmospheric alkalinity were also computed and were found to be 873 and 903 neqm−3, respectively. Both of these values are higher than values reported from temperate sites and thus indicate that at the present level of pollutants, there is no risk of acid fog problem. The study also shows that the alkaline nature of fog water is due to dissolution of ammonia gas and partly due to interaction of fog water with soil derived aerosols.  相似文献   

16.
Groundwater hydrogeochemistry of Trikala municipality, central Greece   总被引:1,自引:0,他引:1  
Sixty-four samples from the groundwater resources of Trikala municipality, central Greece, were collected during two periods (2006 and 2007) and analyzed for physico-chemical parameters (temperature, pH, specific electrical conductivity, and total dissolved solids), major ions (Ca2+, Cl?, HCO 3 ? , K+, Mg2+, Na+, NO 3 ? , SO 4 2? ), and several potentially toxic elements (Al, B, Ba, Br, Ca, Ce, Cl, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Rb, S, Sc, Si, Sn, Sr, U, V, Y, Zn). European Council directives and USEPA guidelines were used to assess the water quality. The results indicate that all samples are fresh water, suitable for human consumption. All basic ions and physico-chemical parameters have average concentrations below their recommended optimum limits with the exception of electrical conductivity, for January 2007, and nitrate for October 2006 and January 2007 sampling periods. This exceedance is the result of dissolution of minerals such as calcite and dolomite that are present in the surrounding rocks and the application of fertilizers, respectively. Lead is the only element with an average value that exceeds the recommended EC guideline, while special attention should be paid to one borehole (T9) which has elevated NO 3 ? values which may pose a risk to human health.  相似文献   

17.
The hydrochemistry of groundwater in the Densu River Basin, Ghana   总被引:1,自引:0,他引:1  
Hydrochemical analyses of groundwater samples were used to establish the hydrochemistry of groundwater in the Densu River Basin. The groundwater was weakly acidic, moderately mineralized, fresh to brackish with conductivity ranging from of 96.6 μS cm???1 in the North to 10,070 μS cm???1 in the South. Densu River basin have special economic significance, representing the countries greatest hydrostructure with freshwater. Chemical constituents are generally low in the North and high in the South. The order of relative abundance of major cations in the groundwater is Na?+??> Ca2?+??> Mg2?+??> K?+? while that of anions is Cl????> HCO $_{3}^{-} >$ SO $_{4}^{2-} >$ NO $_{3}^{-}$ . Four main chemical water types were delineated in the Basin. These include Ca–Mg–HCO3, Mg–Ca–Cl, Na–Cl, and mixed waters in which neither a particular cation nor anion dominates. Silicate weathering and ion exchange are probably the main processes through which major ions enter the groundwater system. Anthropogenic activities were found to have greatly impacted negatively on the quality of the groundwater.  相似文献   

18.
Atmospheric deposition of major and trace elements in Amman, Jordan   总被引:1,自引:0,他引:1  
Wet and dry deposition samples were collected in the capital of Jordan, Amman. Concentrations of Al, Ba, Bi, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, V, Zn, Fe, Sr, Mg2+, Ca2+, Na+, K+, Cl, NO3 and SO4 2−, along with pH were determined in collected samples. Mean trace metal concentrations were similar or less than those reported for other urban regions worldwide, while concentrations of Ca2+ and SO4 2− were among the highest. High Ca2+ concentrations were attributed to the calcareous nature of the local soil and to the influence of the Saharan dust. However, high SO4 2− concentrations were attributed to the influence of both anthropogenic and natural sources. Except for Cl, NO3 , SO4 2− and Cu, monthly dry deposition fluxes of all measured species were higher than wet deposition fluxes. The annual wet deposition fluxes of trace metals were much lower than those reported for other urban areas worldwide.  相似文献   

19.
In this study, chemical composition of the rain water in Mugla was investigated from February to April 2002. Rain water samples were obtained from Mugla, a small city in south western Turkey. The Yatagan Power Plant is located 30 km northwest of Mugla city. The values of pH and the concentrations of major ions (Ca2+, Na+, K+, SO4 2−, NO3 , NH4 +) in the rainwater samples were analyzed. The pH varied from 4.5 to 7.7 with an average of 6.9 which was in alkaline range considering 5.6 as the neutral pH of cloud water with atmospheric CO2 equilibrium. In the total 30 rain events, only two events were observed in acidic range (< 5.6) which occurred after continuous rains. The equivalent concentration of components followed the order: Ca2+ > SO4 2− > NH4 + > NO3 > Na+ > K+ > H+. The volume-weighted mean (VWM) of the measured ionic sum is 371.62 μeq/l. The ratio of between sum cations and sum anions (∑cations /∑ anions) is 1.52 μeq/l. The alkaline components (Ca2+, Na+, K+) contribute 52%, NH4 + 8%, whereas, the contribution from the acidic components is relatively small (40%). The low concentrations of H+ found in rainwater samples from Mugla suggest that an important portion of H2SO4 and HNO3 have been neutralized by alkaline particles in the atmosphere. The dust-rich local and surrounding limestone environment might have caused the high concentration of Ca2+ in Mugla area. The relatively high concentration of NH4 + observed at Mugla is suspected to be due to surrounding agricultural. The results obtained in this study are compared with those other studies conducted at various places in the world.  相似文献   

20.
Groundwater is the most important natural resource which cannot be optimally used and sustained unless its quality is properly assessed. In the present study, the spatial and temporal variations in physicochemical quality parameters of groundwater of Araniar River Basin, India were analyzed to determine its suitability for drinking purpose through development of drinking water quality index (DWQI) maps of the post- and pre-monsoon periods. The suitability for drinking purpose was evaluated by comparing the physicochemical parameters of groundwater in the study area with drinking water standards prescribed by the World Health Organization (WHO) and Bureau of Indian Standards (BIS). Interpretation of physicochemical data revealed that groundwater in the basin was slightly alkaline. The cations such as sodium (Na+) and potassium (K+) and anions such as bicarbonate (HCO3 ?) and chloride (Cl?) exceeded the permissible limits of drinking water standards (WHO and BIS) in certain pockets in the northeastern part of the basin during the pre-monsoon period. The higher total dissolved solids (TDS) concentration was observed in the northeastern part of the basin, and the parameters such as calcium (Ca2+), magnesium (Mg2+), sulfate (SO4 2?), nitrate (NO3 ?), and fluoride (F?) were within the limits in both the seasons. The hydrogeochemical evaluation of groundwater of the basin demonstrated with the Piper trilinear diagram indicated that the groundwater samples of the area were of Ca2+-Mg2+-Cl?-SO4 2?, Ca2+-Mg2+-HCO3 ? and Na+-K+-Cl?-SO4 2? types during the post-monsoon period and Ca2+-Mg2+-Cl?-SO4 2?, Na+-K+-Cl?-SO4 2? and Ca2+-Mg2+-HCO3 ? types during the pre-monsoon period. The DWQI maps for the basin revealed that 90.24 and 73.46 % of the basin area possess good quality drinking water during the post- and pre-monsoon seasons, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号