首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The physicochemical qualities of the final effluents of an urban wastewater treatment plant in South Africa were assessed between August 2007 and July 2008 as well as their impact on the receiving watershed. The pH values across all sampling points ranged between 6.8 and 8.3, while the temperature varied from 18°C to 25°C. Electrical conductivity (EC) of the samples was in the range of 29–1,015 μS/cm, and turbidity varied between 2.7 and 35 NTU. Salinity and total dissolved solids (TDS) varied from 0.36 to 35 psu and 16 to 470 mg/L, respectively. The concentrations of the other physicochemical parameters are as follows: chemical oxygen demand (COD, 48–1,180 mg/L); dissolved oxygen (DO, 3.9–6.6 mg/L); nitrate (0.32–6.5 mg NO $_{3}^{-}$ as N/L); nitrite (0.06–2.4 mg NO $_{2}^{-}$ as N/L); and phosphate (0.29–0.54 mg PO $_{4}^{3-}$ as P/L). pH, temperature, EC, turbidity, TDS, DO, and nitrate varied significantly with season and sampling point (P?<?0.05 and P?<?0.01, respectively), while salinity varied significantly with sampling point (P?<?0.01) and COD and nitrite varied significantly with season (P?<?0.05). Although the treated effluent fell within the recommended water quality standard for pH temperature, TDS, nitrate and nitrite, it fell short of stipulated standards for other parameters. The result generally showed a negative impact of the discharged effluent on the receiving watershed and calls for a regular and consistent monitoring program by the relevant authorities to ensure best practices with regard to treatment and discharge of wastewater into the receiving aquatic milieu in South Africa.  相似文献   

2.
A geophysical survey was conducted over an industrial belt encompassing 80 functional leather factories in Southern India. These factories discharge untreated effluents which pollute shallow groundwater where electrical conductivity (EC) value had a wide range between 545 and 26,600 μS/cm (mean, 3, 901 μS/cm). The ranges of Na+ and Cl? ions were from 46 to 4,850 mg/L (mean, 348 mg/L) and 25 to 10,390 mg/L (mean, 1,079 mg/L), respectively. Geoelectrical layer parameters of 37 vertical electrical soundings were analyzed to demarcate fresh and saline water zones. However, the analysis not did lead to a unique resolution of saline and fresh waters. It was difficult to assign a definitive value to the aquifer resistivity of any area. Thus, geophysical indicators, namely longitudinal unit conductance (S), transverse unit resistance (T), and average longitudinal resistivity (R s), were calculated for identifying fresh and saline waters. Spatial distributions of S, T, and R s reflected widely varying ranges for the saline and fresh water zones. Further, the empirical relation of formation factor (F) was established from pore-water resistivity and aquifer resistivity for fresh and saline aquifers, which may be used to estimate local EC values from the aquifer resistivity, where well water is not available.  相似文献   

3.
The water quality of the Akyatan Lagoon was characterized using hydrochemical methodology. The lagoon is located on the Mediterranean coast and is the largest wetland ecosystem in Turkey. In addition, the lagoon is classified as a hyper-salinity wetland. Water samples were collected monthly between December 2007 and November 2008. Eleven stations within the lagoon were determined, and triplicate grab samples were obtained from each station to characterize water quality as follows: T °C, pH, total alkalinity (TAlk), dissolved oxygen (DO), total dissolved solids (TDS), salinity, electrical conductivity (EC), and main anions, including chloride (Cl?), nitrates (NO3 ?), and sulfate (SO4 2?). Results from selected stations indicated varying TDS, EC, salinity, and Cl? concentrations, from 20,892 to 175,824 mg/L, from 35.7 to 99.6 mS/cm, from 22.3 to 71.0 ppt, and from 14,819 to 44,198 mg Cl?/L, respectively. Data indicated that the spatial distribution of water quality parameters was significantly affected by freshwater input via the constructed drainage channels which collect water from a catchment area and discharge water into the lagoon as a point source, thus preventing drainage water to reach the lagoon as a nonpoint source.  相似文献   

4.
Monitoring of microalgae in water supplies and industrial applications are becoming increasingly important, yet there are few options available that are simple and accurate, and can provide real-time information. The present work illustrates a new method to determine the concentration of microalgae in water and wastewater using spectrophotometry and the first derivative of absorbance. Chlorella vulgaris was used as an indicator microalga, spiked in water samples representing a range of water qualities (distilled water, surface water, and wastewater), and correlations among C. vulgaris concentrations, absorbance, and the first derivative of absorbance measurements were investigated. In addition, detection limits were established and sensitivity analyses were carried out to determine the lowest C. vulgaris concentrations that can be confidently measured in different water matrices. Finally, the study compared the performance and detection limits of the spectrophotometry-based methods with the well-accepted chlorophyll extraction method. A strong linear relationship (R2?>?0.97) was found between C. vulgaris concentration and absorbance at 695 nm. Using the first derivative of absorbance improved C. vulgaris detection limits by reducing the effects of the background noise and interferences from other substances. The detection limits established using the first derivative method were 0.47, 0.56, and 1.96 mg TVS/L in distilled water, surface water, and wastewater, respectively. In comparison, the detection limits of the chlorophyll extraction method were found to be 19.6, 38.6, and 48.3 mg TVS/L in the same water matrices. These results indicate that first derivative of absorbance can be successfully used for monitoring of microalgae in surface waters and environmental samples as well as in bioreactors used for microalgae cultivation in industrial applications.  相似文献   

5.
Mae Moh is a risky area for arsenic contamination caused by the effluent from biowetland ponds in Mae Moh lignite-fuelled power plant. The objective of this study was to investigate the arsenic concentrations of Mae Moh biowetland ponds and determine the main factors which are important for arsenic phytoremediation in the treatment system. The result revealed that arsenic concentrations in the supernant were in the range of less than 1.0 μg As L???1 to 2.0 μg As L???1 while those in the sediment were in the range of 25–200 μg As kg soil???1. Both values were below the Thailand national standard of 0.25 mg As L???1 for water and 27 mg As kg soil???1 for the soil. Arsenic accumulation in the biomass of 5 aquatic plants at the biowetland ponds ranged from 123.83 to 280.53 mg As kgPlant???1. Regarding the result of regression analysis (R 2?= 0.474 to 0.954), high concentrations of organic matter and other soluble ions as well as high pH value in the sediment could significantly enhance the removal of soluble arsenic in the wetland ponds. From the regression equation of accumulated arsenic concentration in each aquatic plant, Eichhornia crassipes (Mart.) Solms. (R 2?= 0.954), Ipomoea aquatica Forsk. (R 2?= 0.850), and Typha angustifolia (L.) (R 2?= 0.841) were found to be preferable arsenic removers for wastewater treatment pond in the condition of low Eh value and high content of solid phase EC and phosphorus. On the other hand, Canna glauca (L.) (R 2?= 0.749) appeared to be favorable arsenic accumulator for the treatment pond in the condition of high Eh value and high concentration of soluble EC.  相似文献   

6.
Urban wastewater in Turkey is primarily discharged without treatment to marine environments, streams and rivers, and natural and artificial lakes. Since it has been well established that untreated effluent in multi-use waters can have acute and chronic impacts to both the environment and human health, it is important to evaluate the consequences of organic enrichment relative to the structure and function of aquatic environment. We investigated the impacts of untreated municipal wastewater discharge from the city of Gumushane in the Eastern Black Sea Region of Turkey on the surface water quality of the stream Harsit. Several key water-quality indicators were measured: chemical oxygen demand (COD), ammonium nitrogen (NH 4 + –N), nitrite nitrogen (NO 2 ? –N), nitrate nitrogen (NO 3 ? –N), total Kjeldahl nitrogen (TKN), total nitrogen (TN), orthophosphate phosphorus (PO 4 3? –P), methylene blue active substances (MBAS), water temperature (t), pH, dissolved oxygen (DO), and electrical conductivity (EC). The monitoring and sampling studies were conducted every 15 days from March 2009 to February 2010 at three longitudinally distributed stations. While t, pH, DO, and EC demonstrated relatively little variability over the course of the study, other parameters showed substantial temporal and spatial variations. The most dramatic differences were noted in COD, NH 4 + –N, NO 2 ? –N, TKN, TN, PO 4 3— P, and MBAS immediately downstream of the wastewater discharge. Concentration increases of 309 and 418 % for COD, 5,635 and 2,162 % for NH 4 + –N, 2,225 and 674 % for NO 2 ? –N, 283 and 478 % for TKN, 208 and 213 % for PO 4 3? –P, and 535 and 1,260 % for MBAS were observed in the summer and autumn, respectively. These changes were associated with greatly diminished seasonal stream flows. Based on NO 2 ? –N, TKN, PO 4 3— P, and MBAS concentrations, it was concluded that Harsit stream water was correctly classified as polluted. The most telling parameter, however, was NH 4 + –N, which indicated highly polluted waters in both the summer and autumn. The elevated concentrations of both P and N in the downstream segment of the stream triggered aggressive growth of submerged algae. This eutrophication of river systems is highly representative of many urban corridors and is symptomatic of ongoing organic enrichment that must be addressed through improved water treatment facilities.  相似文献   

7.
A dissolved oxygen (DO) model is calibrated and verified for a highly polluted River Ravi with large flow variations. The model calibration is done under medium flow conditions (431.5 m3/s), whereas the model verification is done using the data collected during low flow conditions (52.6 m3/s). Biokinetic rate coefficients for carbonaceous biochemical oxygen demand (CBOD) and nitrogenous biochemical oxygen demand (NBOD) (i.e, K cr and K n ) are determined through the measured CBOD and ammonia river profiles. The calculated values of K cr and K n are 0.36 day?1 and 0.34 day?1, respectively. The close agreement between the DO model results and the field values shows that the verified model can be used to develop DO management strategies for the River Ravi. The biokinetic coefficients are known to vary with degree of treatment (DOT) and therefore need to be adjusted for a rational water quality management model. The effect of this variation on level of treatment has been evaluated by using the verified model to attain a DO standard of 4 mg/L in the river using the biokinetic rate coefficients as determined during the model calibration and verification process. The required DOT in this case is found to be 96 %, whereas the DOT is 86 % if adjusted biokinetic rate coefficients are used to reflect the effect of wastewater treatment. The cost of wastewater treatment is known to increase exponentially as the removal efficiency increases; therefore, the use of appropriate biokinetic coefficients to manage the water quality in rivers is important.  相似文献   

8.
The study aims to establish denitrification potential of the Northern Arabian Gulf (NAG), as nitrogen critically affects the ocean productivity, obliterates acidity, oxidative capacity and radiative transfer capability of atmosphere. The experimental study was conducted by taking cores from intertidal zones from two different sites in North and South, referred as sites N and S; representing two distinct environmental milieu. The experiment was conducted in controlled laboratory conditions simulating the tidal cycles. Multiple cores were taken and loaded with seawater with different N concentrations, the redox potential was established for each condition. Redox potential was significantly lower at 10?cm depth compared to the surface in all cores (P?<?0.001). The redox potential at surface and at 10?cm depth was significantly lower at site S compared to site N (P?<?0.001; F?=?714.2), suggesting anaerobic sediments at site S. Effects of nitrate spiked seawater on denitrification under nonflooded and flooded conditions at the two sites were also studied. Three-way ANOVA analysis indicated that site, nitrate concentration, and flooding had significant main and interactive effects on the rate of denitrification. The results suggest that under ambient nitrate concentrations (0.03?mg NO3-N?l?1), 6.3?±?2.1?g NO3-N?ha?day can be denitrified by inter-tidal zone sediments. At a nitrate concentration of 1?mg NO3-N?l?1, 92?±?16?g NO3-N?ha?day may be denitrified whilst at a very high nitrate load of 10?mg NO3-N?l?1, the sediments may attain a rate of denitrification close to 404?±?78?g NO3-N?ha?day.  相似文献   

9.
Probability-based nitrate contamination map of groundwater in Kinmen   总被引:1,自引:0,他引:1  
Groundwater supplies over 50 % of drinking water in Kinmen. Approximately 16.8 % of groundwater samples in Kinmen exceed the drinking water quality standard (DWQS) of NO3 ?-N (10 mg/L). The residents drinking high nitrate-polluted groundwater pose a potential risk to health. To formulate effective water quality management plan and assure a safe drinking water in Kinmen, the detailed spatial distribution of nitrate–N in groundwater is a prerequisite. The aim of this study is to develop an efficient scheme for evaluating spatial distribution of nitrate–N in residential well water using logistic regression (LR) model. A probability-based nitrate–N contamination map in Kinmen is constructed. The LR model predicted the binary occurrence probability of groundwater nitrate–N concentrations exceeding DWQS by simple measurement variables as independent variables, including sampling season, soil type, water table depth, pH, EC, DO, and Eh. The analyzed results reveal that three statistically significant explanatory variables, soil type, pH, and EC, are selected for the forward stepwise LR analysis. The total ratio of correct classification reaches 92.7 %. The highest probability of nitrate–N contamination map presents in the central zone, indicating that groundwater in the central zone should not be used for drinking purposes. Furthermore, a handy EC–pH-probability curve of nitrate–N exceeding the threshold of DWQS was developed. This curve can be used for preliminary screening of nitrate–N contamination in Kinmen groundwater. This study recommended that the local agency should implement the best management practice strategies to control nonpoint nitrogen sources and carry out a systematic monitoring of groundwater quality in residential wells of the high nitrate–N contamination zones.  相似文献   

10.
Our objective was to evaluate changes in water quality parameters during 1983–2007 in a subtropical drinking water reservoir (area: 7 km2) located in Lake Manatee Watershed (area: 338 km2) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg?l?1 in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg?l?1) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg?l?1), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg?l?1. Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983–2007. Mean concentrations of total N (n?=?215; 1.24 mg?l?1) were lower, and total P (n?=?286; 0.26 mg?l?1) was much higher than the EPA numeric criteria of 1.27 mg total N l?1 and 0.05 mg total P l?1 for Florida’s colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June–September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.  相似文献   

11.
To investigate seasonal variations of nutrient distribution in the mudflat–shallow water system, we conducted field surveys once a month from August 2007 to July 2008 in the inner area of Ariake Bay (IAB), Japan. The NH4 +–N concentration of the water column increased in autumn because of the high NH4 + release from the sediments, ranging from 850 to 3,001 μmol?m?2?day?1. The NO3 ?–N concentration was maximal in January, which was thought to be caused by NO3 ? release from the oxic sediments and by NO3 ? regeneration due to water column nitrification. The PO4 3?–P concentration of the water column was high in summer–autumn due to the high PO4 3? release from the reduced sediments, ranging from 22 to 164 μmol?m?2?day?1. We estimated the total amounts of DIN and PO4 3?–P release (R DIN and $ {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} $ , respectively) from the muddy sediment area of the IAB. In summer–autumn, R DIN and $ {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} $ corresponded to about 47.7 % of DIN input and about 116.6 % of PO4 3?–P input from the river, respectively. Thus, we concluded that the muddy sediments were an important source of nutrients for the water column of the IAB during summer–autumn. In addition, we found that phosphorus necessary for the growth of Porphyra (Porphyra yezoensis, Rhodophyceae) would be insufficient in the water column when phosphorus during the Porphyra aquaculture period is supplied only from the river. Therefore, the phosphorus release from the muddy sediments was thought to play an important role in the sustainable production of Porphyra in Ariake Bay.  相似文献   

12.
Study of harmful algal blooms in a eutrophic pond, Bangladesh   总被引:2,自引:0,他引:2  
The purpose of this research was to analyze the underlying mechanisms and contributing factors related to the seasonal dynamic of harmful algal blooms in a shallow eutrophic pond, Bangladesh during September 2005–July 2006. Two conspicuous events were noted simultaneously throughout the study period: high concentration of phosphate–phosphorus (>3.03; SD 1.29 mg l???1) and permanent cyanobacterial blooms {>3,981.88 × 103 cells l???1 (SD 508.73)}. Cyanobacterial blooms were characterized by three abundance phases, each of which was associated with different ecological processes. High nitrate–nitrogen (>2.35; SD 0.83 mg l???1), for example, was associated with high cyanobacterial abundance, while low nitrate–nitrogen (0.36; SD 0.2 mg l???1) was recorded during moderate abundance phase. Extremely low NO3–N/PO4–P ratio (>3.55, SD 2.31) was recorded, and all blooming taxa were negatively correlated with this ratio. Cyanobacterial blooms were positively correlated with temperature (r?=?0.345) and pH (0.833; p?=?0.05) and negatively correlated with transparency (r?=???0.956; p?=?0.01). Although Anabaena showed similar relationship with water quality parameters as cyanobacteria, the co-dominant Microcystis exhibited negative relationship with temperature (r?=???0.386) and nitrate–nitrogen (r?=???0.172). This was attributed to excessive growth of Anabaena that suppressed Microcystis’s growth. Planktothrix was the third most dominant taxa, while Euglena was regarded as opportunistic.  相似文献   

13.
The wastewater pollution in industrial areas is one of the most important environmental problems. Heavy metal pollution, especially chromium pollution in the wastewater sources from electroplating, dyeing, and tannery, has affected the life on earth. This pollution can affect on all ecosystems and human health directly or by food chain. Therefore, the determination of total chromium in this study is of great importance. In this study, accurate, rapid, sensitive, selective, simple, and low-cost technique for the direct determination of total Cr in wastewater samples collected from the some Cr electroplating factories in March 2008 by inductively coupled plasma-atomic emission spectrometry has been developed. The analysis of a given sample is completed in about 15 min by this technique applied. As the result of the chromium analysis, the limit of quantification for the total Cr were founded to be over the limit value (0.05 mg L???1; WHO, EPA, TSE 266, and inland water quality classification) as 1,898.78 ± 0.34 mg/L at station 1 and 3,189.02 ± 0.56 mg/L at station 2. The found concentration of total Cr has been determined to be IV class quality water according to the inland water classification. In order to validate the applied method, recovery studies were performed.  相似文献   

14.
In this study, environmental impact on air quality was evaluated for a typical Cement Industry in Nigeria. The air pollutants in the atmosphere around the cement plant and neighbouring settlements were determined using appropriate sampling techniques. Atmospheric dust and CO2 were prevalent pollutants during the sampling period; their concentrations were recorded to be in the range of 249–3,745 mg/m3 and 2,440–2,600 mg/m3, respectively. Besides atmospheric dust and CO2, the air pollutants such as NO x , SO x and CO were in trace concentrations, below the safe limits approved by FEPA that are 0.0062–0.093 mg/m3 NO x , 0.026 mg/m3 SO x and 114.3 mg/m3 CO, respectively. Some cost-effective mitigating measures were recommended that include the utilisation of readily available and low-cost pozzolans material to produce blended cement, not only could energy efficiency be improved, but carbon dioxide emission could also be minimised during clinker production; and the installation of an advance high-pressure grinding rolls (clinker–roller-press process) to maximise energy efficiency to above what is obtainable from the traditional ball mills and to minimise CO2 emission from the power plant.  相似文献   

15.
This paper highlights the levels of anions (nitrate, nitrite, sulfate, bromide, chloride, and fluoride) and cations (potassium, sodium, magnesium, and calcium) in selected springs and groundwater sources in the urban-west region of Zanzibar Island. The levels of total dissolved solids (TDS) and sodium adsorption ratio (SAR) were also studied. Thirty water samples were collected in December 2012 from various types of water sources, which included closed hand-dug wells (CHDW), open hand-dug wells (OHDW), springwater (SW), public bore wells (PBW), and bore wells owned by private individuals (BWP), and analyzed after filtration and sometimes dilution. The cations were analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES). The anions were analyzed by chemically suppressed ion chromatography (IC). The ranges of the levels of the investigated parameters were as follows: Na 13.68–3,656 mg L?1, K 2.66–583 mg L?1, Mg 0.63–131.10 mg L?1, Ca 16.79–189.9 mg L?1, Cl? 8.61–4,340.97 mg L?1, F? 0–1.02 mg L?1, Br? 0–10.88 mg L?1, NO3 ? 0.18–342.4 mg L?1, NO2 ? 0–1.39, SO4 2? 4.43–534.02 mg L?1, TDS 7–6,380 mg L?1, and SAR 0.63–50. Except fluoride, most of the studied parameters in the water samples had concentrations beyond the permissible limits of the World Health Organization (WHO). The elevated concentrations are a result of seepage of contaminated water from on-site septic tanks, pit latrines, landfill leachates, fertilizer applications, and domestic effluents. These results should alert domestic water stakeholders in Zanzibar to the urgent task of initiating a quick mitigation response to control these alarming water risks.  相似文献   

16.
The Toluca Valley is located on the high plains of Mexico, where there are significant industrial zones and large populations. Water needs are almost exclusively met by groundwater, which has brought about intense exploitation of the aquifer and indication of some contamination. The present study investigates the effect of urbanization, related to industrialization of the region, on groundwater in the central portion of the Toluca Valley aquifer—a zone with high population density and where the largest industrial park is located. A general decline in the groundwater level has been found over the years, at a rate of as much as 2.5 m/year. The appearance of a large drawdown cone was identified, indicating changes in the direction of groundwater flow. Also identified was the presence of several ground fissures, the location of which coincided with the drawdown cone. In hydrochemical terms, the water type is sodium-magnesium bicarbonate and this characteristic has not changed over time, although it has been possible to detect the presence of larger quantities of sulfates (up to 117 mg/L) and nitrates (up to 47 mg/L) in recent years, likely associated with contamination from industrial and urban wastewater. Factor analysis made it possible to identify ions that would characterize natural processes involving the acquisition of salts (HCO3 ?, Na+, Mg2+, and Si), as well as anthropic activities (SO4 2?, NO3 ?, Cl?, Ca2+, and K+).  相似文献   

17.
Riyadh, Saudi Arabia is supplied with drinking water fromboth desalinated sea water and treated groundwater sources. Sampleswere analysed for NO3 from selected deep and shallow wells, two locations within the city's six groundwater treatment plants, thedesalinated sea water and distribution network. Average nitrateconcentrations (as NO3) were 8.2 and 15.8 mg/L for deep andshallow well waters, respectively. The average nitrate concentrations (asNO3) in the groundwater treatment plants influent waters and thefinal product water were 16.2 and 8.5 mg/L, respectively. Due toblending of the plants' product water with the desalinated sea water, theaverage network nitrate concentration was 4.4 mg/L. The scheduledwater interruption does not seem to cause any appreciable change in thenitrate levels in the distribution network.  相似文献   

18.
Water with high nitrate concentration (NO3 ) is unfit for human consumption, especially when its concentration exceeded the threshold limit (50 mg/l) recommended by the health authorities such as the World Health Organization (WHO). In Jordan, there is a great concern for determination and monitoring organic and inorganic pollutants that may reach groundwater. Nitrate is highly mobile and present in domestic, agricultural and industrial waste in Jordan, and thus this study focused initially on nitrate as both a contaminant of concern and as an indicator of potential groundwater contamination. The present study determined the extent of nitrate contamination in groundwater in the study area and examined the likely sources of NO3 . A total of 248 groundwater samples were collected from 16 wells in different sites of Al-Hashimiya area, Zerqa Governorate, Jordan, and investigated for NO3 concentrations. Moreover, measurements of temperature, electrical conductivity and pH were carried out in the field. Analysis was carried out according to the methods described by the American Public Health Association (APHA). Results showed that there was a dramatic increasing in NO3 concentrations from the year 2001 to 2006 for some selected wells in the present study. NO3 concentration in 2006 was ranged from 10 to 330 mg/l with an average of 77 mg/l. Overall, groundwater had elevated nitrate concentration with 92% of the samples containing more than 20 mg/l NO3 , indicating the influence of human activities. This study has shown that there is a strong correlation between the nitrate concentration and the wastewater effluents as a source of pollution.  相似文献   

19.
Increased use of nitrogenous fertilizers in the intensively cultivated rice (Oryza sativa)?Cwheat (Triticum aestivum) cropping system (covers a 13.5-ha m area in South Asia) has led to the concentration of nitrates (NO3-N) in the groundwater (GW) in Haryana State of India. Six districts from the freshwater zone were selected to identify factors affecting NO3-N enrichment in GW. Water and soil samples were collected from 1,580 locations and analyzed for their chemical properties. About 3% (26,796, and 10,588 ha) of the area was estimated to be under moderately high (7.5?C10 mg l???1) and high (>10 mg l???1) risk categories, respectively. The results revealed that NO3-N was 10?C50% higher during the pre-monsoon season than in the monsoon season. Nitrate-N decreased with the increase in aquifer depth (r 2?=?0.99). Spatial and proximity analyses using ArcGIS (9.2) revealed that (1) clay material in surface and sub-surface texture restricts N leaching, (2) piedmont and rolling plains act as an N sink, and (3) perennial rivers bring a dilution effect whereas seasonal rivers provide favorable conditions for NO3 ? enrichment. The study concludes that chemical N fertilizers applied in agro-ecosystems are not the sole factor determining the NO3 in groundwater; rather, it is an integrated process governed by several other factors including physical and chemical properties of soils, proximity and type of river, and geomorphologic and geographical aspects. Therefore, future studies should adopt larger area (at least watershed scale) to understand the mechanistic pathways of NO3 enrichment in groundwater and interactive role of the natural drainage system and surrounding physical features. In addition, the study also presents a conceptual framework to describe the process of nitrate formation and leaching in piedmont plains and its transportation to the mid-plain zone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号