首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Main effects and interactions of light and temperature on rates of growth (), net photosynthesis (Ps), and dark respiration (R) of the red seaweedGracilaria tikvahiae were investigated in outdoor, nutrient-replete continuous-flow seawater culture chambers. Below 15°C,G. tikvahiae did not grow and between 15° and 30°C, both main effects and interactions of light and temperature on and Ps were significant, which explains the occurrence of this alga as a summer annual in its northern range. Temperature interacted with light (I) through its influence on the vs I and Ps vs I curves. The initial slope of the vs I curve, , the light saturation intensity, Is, and maximum growth rate, max, were all significantly lowerat 15°C compared to 20°, 25°, or 30°C. Maximum values of max, the Ps:R ratio and the net photosynthesis:gross photosynthesis ratio (Ps:Pg) all occurred at 25°C, suggesting that this is the best temperature for growth ofG. tikvahiae. Values for Pmax increased up to 30°C, indicating that the temperature for maximum growth and net photosynthesis are not the same forG. tikvahiae. Significant photoinhibition of growth and photosynthesis at full incident sunlight (I0) occurred at 15°C but not at 20°, 25°, or 30°C. Steele's equation fit the 15°C vs I data best, whereas the hyperbolic tangent function fit the 20°, 25°, and 30°C data best. Main effects and interactionof light intensity and temperature on rates of R were also significant (P<0.001). R was highly intercorrelated with and Ps (0.86r0.94), indicating that R inG. tikvahiae is primarily regulated by growth rate and not temperatureper se. Environmental factors that regulate growth, such as light intensity, exert a great influence on R inG. tikvahiae.  相似文献   

2.
The average grazing and ingestion rates of all stages of the marine planktonic copepod Calanus helgolandicus (Calanoida) from nauplius stage IV to adults were measured experimentally at 15°C in agitated cultures. The chain-forming diatom Lauderia borealis and the unarmoured dinoflagellate Gymnodinium splendens were offered as food. The food concentrations were close to natural conditions and ranged from 36 to 101 g of organic carbon per liter. The medium body weights expressed in g of organic carbon of almost all larval stages raised at 49 g C/1 were identical with the weight of the same stages caught in the Pacific Ocean off La Jolla, California, USA. In a log-log system, grazing and ingestion rates increased almost linearly with increasing body weight. Grazing rates ranged from 4 to 21 ml/day/nauplius stage IV to 286 ml to 773 ml/day/female. Ingestion rates increased from 0.2 g to 0.8 g C/day/nauplius stage IV to 18 g to 69 g C/day/female. Grazing and ingestion rates per unit body weight decreased gradually with increasing body weight. The daily ingested amount of food decreased from 292 to 481% of the body weight (g C) of nauplius stage V to 28–85% of the body weight of adult females. Grazing and ingestion performances of all stages increased with increasing particle size. Grazing rates decreased and ingestion rates increased with increasing food concentrations. The published data on food intake of the different age groups of C. helgolandicus show that the young stages of herbivorous planktonic copepods can play a major part in the consumption of phytoplankton in the sea due to their high grazing and ingestion rates.  相似文献   

3.
In order to assess the intake of lead and cadmium by consumers of home grown vegetables in urban areas, replicated experimental plots of uniform size, comprising summer and winter crops, were established in 94 gardens and allotments in nine towns and cities in England.The geometric mean lead and cadmium concentrations for the soils (n = 94) were 217 g g–1 (ranging from 27 to 1,676 g g–1) and 0.53 g g–1 (<0.2–5.9 g g–1), respectively. Compared with agricultural soils, the garden and allotment soils contained elevated levels of lead but not cadmium.Lead concentrations in the vegetables ranged from <0.25 g g–1 to 16.7 g g–1 dry weight and cadmium concentrations ranged from <0.025 g g–1 to 10.4 g g–1 dry weight. Lead concentrations were higher than reported background levels, although <1% exceeded the statutory limit for saleable food in the UK (1 g g–1 fresh weight). Cadmium concentrations were generally similar to background levels.  相似文献   

4.
An investigation on the abundance and distribution of trace metals (Fe, Cu, Zn, Mn, Cr, Cd and Pb) in water, and nine species of fish samples from Calabar river was carried out in 1992. The concentrations of iron (6000–7240gl–1), zinc (4910–7230gl–1), and cadmium (3–7gl–1) showed moderate pollution while those of copper (420–630gl–1), manganese (23–48gl–1), chromium (<10–20gl–1) and lead (<1–10gl–1) in water were well below WHO permissible levels. Significant seasonal changes (0.001p0.25) were obtained for iron, copper, zinc, manganese and cadmium in water. Furthermore, iron, zinc and cadmium showed statistically significant spatial changes (0.005p0.10). Of the nine fish species studied, no statistically significant relationship between body weight and the concentrations of the metals was observed. The concentrations of the metals per mean total body weight apparently decreases in the order Fe>Zn>Cu>Mn>Pb>Cd=Cr and were within the limits that were safe for consumption.  相似文献   

5.
Suspended particulate matter was comprehensively investigated from 6 to 17 April 1986 in the lagoon of Tikehau atoll (15°00S; 148°10W). Dry weight (DW), particulate organic carbon (POC), adenosine triphosphate (ATP), and chlorophyll a were measured for five size-classes (0.2 to 0.8 m, 0.8 to 3 m, 3 to 35 m, 35 to 200 m, and 200 to 2000 m). Taxa were identified and counted for the whole plankton (both autotrophic and heterotrophic). Particles <3 m accounted for 81% of the total POC (192 mg m-3), and detritus comprised 82% of the total POM. Phytoplankton (cyanobacteria plus algae) accounted for 35% of the living carbon, 75% of which consisted of heterotrophic bacteria and cyanobacteria. The zooplankton biomass was composed of 31% nano-, 26% micro-, and 43% mesoplankton.  相似文献   

6.
Michaelis-Menten uptake kinetics were observed at all light intensities. With constant illumination, the Vmax and K1 in nitrate uptake over the natural light intensity range of 0 to 2000 E were 0.343 g-at NO3–N(g)-1 at protein-N h-1 and 26 E, respectively. Nitrate uptake was inhibited at higher light intensities. The Ks for nitrate uptake did not vary as a function of light intensity remaining relatively constant at 0.62 g-at NO3–N 1-1. With intermittent illumination, the Vmzx for light intensity in nitrate uptake over a light intensity range of 0 to 5000 E was 0.341 g-at NO3–N(g)-1-at protein-N h-1. No inhibition of nitrate uptake was observed at higher than natural light intensities. Chaetoceros curvisetus will probably never experience light inhibition of nitrate uptake under natural conditions.  相似文献   

7.
Two studies were conducted to observe effects of dibutyltin (DBT) and tributyltin (TBT) on larvae of Mytilus edulis for an exposure period of 25 d. Endpoints for evaluation were shell growth and mortality measured at 33 d. Larvae were cultured in a new laboratory assay chamber in a recirculating static test. The control, 2, 20, and 200 g/l DBT-treated populations had mean shell lengths of 527, 523, 417, and 180 m, respectively. Survival was 1% for the 200 g/l DBT-treated population, but ranged from 73 to 83% for controls, 2, and 20 g/l treatments. The no-observed-effect concentration (NOEC) was 2 g/l for DBT, while the lowest-observed-effect concentration (LOEC) was 20 g/l. The chronic toxicity value was 6.3 g/l. In the TBT bioassay, mean shell lengths for the control, 0.006, 0.050, and 0.130 g/l-treated populations were 565, 437, 385, and 292 m, respectively. Control survival was 74%, whereas TBT-treated populations survival ranged from 52 to 58%. The NOEC for TBT was 0.006 g/l TBT and the LOEC was 0.050. A chronic toxicity value of 0.017 g/l was calculated. The results of this study indicated that the toxicity of DBT was less than that of TBT. It was concluded that shell length was inversely related to exposure level in both DBT and TBT bioassays. In this study, we have observed TBT effects at lower exposure levels in the laboratory than previously reported, and also report the first data for DBT effects on mussel larvae.  相似文献   

8.
A potentially high bioavailability of arsenic in gold mine tailings from a site in northern California has been suggested by solubility studies. To help address this issue, an in vivo dosing study was conducted using 12dayold Swiss Webster mouse pups (n=8/group). A sample of sizefractionated mine tailings from the site (<20m particle size, 691g g–1 arsenic) was prepared as an aqueous suspension and administered by gavage in a volume that provided 4mg As/kg body weight. The control group received the same volume of a commercial soil (1g g–1 As) of similar particle size (<60m). No mortality or toxic signs were noted in either group. Tissue samples were collected 1h after gavage, freezedried, microwavedigested and analysed for arsenic by ICP/MS (detection limit 2ng As g–1 dry weight). Arsenic concentrations (ng As g–1 dry weight) in tissues from the pups who received mine tailings were significantly higher than in control tissues. The mean elevation in arsenic concentration was highest in the liver (3364% of control, p<0.0001), followed by blood (818 of control, p<0.0001), skin (207% of control, p=0.07), and brain (143% of control, p<0.0001). The carcass arsenic concentration (excluding the GI tract, liver, brain and skin) was 138 of control (p=0.02). The data indicate uptake of arsenic from weathered mine tailings by the immature mouse pups after oral exposure.  相似文献   

9.
B. C. Booth 《Marine Biology》1988,97(2):275-286
In order to assess the relative importance of the pico- and nanoplankton fractions, the composition of entire phytoplankton communities at Weathership Station P (50°N; 145°W) and at 53°N; 145°W were studied in May and August, 1984, using epifluorescence, scanning electron, and inverted light microscopy. The biomass of major taxa within five size classes was estimated from cell volume and cell concentration. For both months, approximately twothirds of the total phytoplankton carbon were contributed by cells<5 m. In May, 16% of plant biomass was contributed by cells<2 m, and in August 39%. (In both months 90% of plant carbon<2 m was contributed by the bluegreen coccoid Synechococcus spp.) Cells 2 to 5 m contributed about 39% to total plant carbon; they were mostly flagellates in May and nonmotile coccoids in August. The remaining one-third of algal carbon was composed of dinoflagellates, cryptomonads, other flagellates and diatoms, all >5 m. Very little difference between taxa was observed with respect to vertical stratification. Small taxonomic changes were observed in the community between May and August, and within each month.Contribution No. 1694 of the School of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

10.
Quantitative measurements have been made on the ultra-structure and capillary supply to the axial muscles of the mesopelagic hatchet fish Argyropelecus hemigymnus (Cocco, 1829). Fish were collected at Eastern North Atlantic Ocean Station 10244, 32°48N; 31°15W during November 1980, from a depth of 480 to 550 m. Mitochondria with densely packed cristae occupy 44.3% of slow-fibre volume. Each myofibril is in direct contact with a mitochondrion. Compared with other fishes studied, the capillary supply to A. hemigymnus slow fibres is poorly developed. The average number of capillaries per fibre is 0.9, such that each m of capillary contact supplies 0.011 m2 of fibre cross-sectional area. The capillary surface area (m2) supplying 1 m3 of slow-fibre mitochondria is 0.17 in anchovy (Engraulis encrasicolus), 0.14 in rat-fish (Chimaera monstrosa), 0.14 in tench (Tinca tinca), 0.16 in catfish (Clarias mossambica), and only 0.025 for A. hemigymnus. It is suggested that, relative to the former species, some modifications in factors determining tissue oxygenation (e.g. myoglobin concentrations, blood flow, perfusion distribution or haemoglobin) and/or mitochondrial respiration rate are required in order to match oxygen supply and demand to the slow muscle in A. hemigymnus.  相似文献   

11.
Hydrobiological parameters during an annual cycle in the Arcachon Basin   总被引:1,自引:0,他引:1  
Temperature, salinity, nutrients and phytoplankton biomass were monitored on a weekly to bimonthly frequency at six stations in the Bay of Arcachon from July 1984 to July 1985. This particular period appears to have differed from the last ten years in displaying higher amplitudes of both temperature and salinity (1.5° to 24.5°C and 20 to 34.5) at high tide. However, although in spring both temperature and salinity were normal (14°C, 28), an important phytoplankton spring bloom occurred, with maximum chlorophyll levels reaching 15 g l-1 in April. Utilization of nutrients was high, particularly for nitrate and silicate, the concentrations of which decreased, respectively, from 10–15 to 0.1–2 M and 10–20 to 0.25–3 M from February to May. Exhaustion of nitrate was observed in May, except in areas subjected to river input. In contrast, silicate increased throughout the study area from May to July.  相似文献   

12.
A method is described for the incubation of undisturbed sediment cores under in situ conditions with the addition of low concentrations of 14C-glucose. Data are presented for respiration, gross uptake and actual uptake rate of glucose by bacteria in sandy, wave-washed beaches of the Baltic Sea. On the average, the bacteria respired 8% of the total glucose taken up. The gross uptake measured was between 2.3×10-3 and 6.8×10-3 g 14C-glucose g sediment-1 (dry weight) h-1 (average 4.7×10-3 g g-1 h-1). Minima in the gross uptake rate corresponded with maxima in the concentration of natural free dissolved glucose. For the actual uptake rate, however, very similar uptake rates were calculated for the sediments examined (between 1.4×10-1 and 1.9×10-1 g glucose g-1 h-1, average 1.7×10-1 g g-1 h-1).Publication No. 183 of the Joint Research Program at Kiel University (Sonderforschungsbereich 95 der Deutschen Forschungsgemeinschaft).  相似文献   

13.
C. E. Pesch 《Marine Biology》1979,52(3):237-245
Adult male Neanthes arenaceodentata were exposed to 0.10±0.015 mg l-1 copper in the seawater of a continuous-flow bioassay system in the presence of a sand, a mud, a mixture of the sand and mud, and no sediment, to assess the influence of sediment type on Cu-induced mortality. The sediment type did influence mortality. The time to 50% mortality was 7.8 days without sediment, 36.5 days with sand, 54.5 days with the mixture, and 50.0 days with mud. There was no threshold Cu body burden that caused death. The mean Cu concentration per gram of N. arenaceodentata (24 h after death) without sediment was 270 g, in sand 994 g, in the mixture 1047 g, and in mud 1464 g. The differences in the toxic responses are discussed.  相似文献   

14.
Cantelmo  F. R.  Rao  K. R. 《Marine Biology》1978,46(1):17-22
Aquaria containing clean sand received a continuous supply of seawater from Santa Rosa Sound, Florida, USA, mixed with known concentrations (7, 76 and 622 g l-1) of pentachlorophenol (PCP). After 9 weeks, nematodes accounted for 87% of the total meiofauna. Nematode biomass and densities were greatest in aquaria exposed to 76 g PCP l-1 and were least in aquaria exposed to 622 g PCP l-1. Epistrate feeders were abundant in control aquaria and aquaria exposed to 7 and 76 g PCP l-1, but not in aquaria exposed to 622 g PCP l-1. Selective deposit feeders were not abundant in the control aquaria and aquaria exposed to 7 g PCP l-1, but comprised 19% of the nematodes in aquaria exposed to 76 g PCP l-1 and 61% in aquaria exposed to 622 g PCP l-1.  相似文献   

15.
Vertical distributions of picophytoplankton (ppp) (<2 m) were studied by ship-board flow cytometry during two cruises in Western Pacific waters to Palau and to Australia in 1990. Weak red-fluorescing small ppp, supposed to be free-living prochlorophytes (Chisholm et al. 1988), were abundant in the area surveyed. These ppp, designated the prochlorophytes, were abundant in the surface waters (>104 cells ml-1) at the northern region (27°03N; 7°11N) in November, whereas in December at the southern tropical stations (0°23.54S; 9°20.30S; 13°50.6S), they formed subsurface maximum layers (>105 cells ml-1) on a nitracline at a depth of 3.5 to 5.4% surface irradiation. Their fluorescence intensity increased with depth below 10% surface irradiation. The prochlorophytes at a depth of 1% surface irradiation had ten times higher fluorescence than those at the surface layer. The total fluorescence intensity of the prochlorophytes accounted for 32 to 63% of the sum of the total fluorescence intensity of all fluorescing phytoplankton detected at subsurface chlorophyll maxima in the tropical area. These results suggest that distribution of the prochlorophytes is greatly affected by nitracline and by light intensity and that their chlorophyll is a major contributor to the subsurface chlorophyll maximum in the pelagic West Pacific Ocean.  相似文献   

16.
Amino acid uptake and respiration by marine heterotrophs   总被引:5,自引:0,他引:5  
The concentration and turnover of dissolved free amino acids were measured in samples from 25 and 100 m on three occasions at a station 6 miles off the California (USA) coast. Individual amino acid concentrations varied from undetectable (<0.05 g/l) to 3 g/l, the total amino acid concentration from 1.8 to 8.5 g/l. The greater concentration of total amino acids was always found at 25 m. The predominant amino acids were serine, lysine, aspartate, glutamate and alanine; reliable analyses could not be made for glycine because of a high blank. For the 10 individual amino acids studied, the rate of heterotrophic turnover ranged from undetectable to 1.2 g/l day-1; serine, aspartate, alanine and glutamate showed the highest rates. In samples from 25 m, the rates were 15 to 20 times higher than those taken from 100 m. The total calculated flux of the amino acids studied varied from 0.015 to 3.2 g/l day-1 and amounted to 1–10% of photosynthetic carbon dioxide fixation.  相似文献   

17.
The photosynthetic characteristics of prokaryotic phycoerythrin-rich populations of cyanobacteriaSynechococcus spp. and larger eukaryotic algae were compared at a neritic frontal station (Pl), in a warm-core eddy (P2), and at Wilkinson's Basin (P3) during a cruise in the Northwest Atlantic Ocean in the summer of 1984.Synechococcus spp. numerically dominated the 0.6 to 1 m fraction, and to a lesser extent the 1 to 5 m size fractions, at most depths at all stations. At P2 and P3, all three size categories of phytoplankton (0.6 to 1 m, 1 to 5 m, and >5 m) exhibited similar depth-dependent chages in both the timing and amplitude of diurnal periodicities of chlorophyllbased and cell-based photosynthetic capacity. Midday maxima in photosynthesis were observed in the upper watercolumn which damped-out in all size fractions sampled just below the thermocline. For all size fractions sampled near the bottom of the euphotic zone, the highest photosynthetic capacity was observed at dawn. At all depths, theSynechococcus spp.-dominated size fractions had lower assimilation rates than larger phytoplankton size fractions. This observation takes exception with the view that there is an inverse size-dependency in algal photosynthesis. Results also indicated that the size-specific contribution to potential primary production in surface waters did not vary appreciably over the day. However, estimates of the percent contribution ofSynechococcus spp. to total primary productivity in surface waters at the neritic front were significantly higher when derived from short-term incubator measurements of photosynthetic capacity rather than from dawn-to-duskin situ measurements of carbon fixation. The discrepancy was not due to photoinhibitory effects on photosynthesis, but appeared to reflect increased selective grazing pressure onSynechococcus spp. in dawn-to-dusk samples. Low-light photoadaptation was evident in analyses of the depth-dependency ofP-I parameters (photosynthetic capacity,P max; light-limited slope, alpha;P max alpha,I k ; light-intensity beyond which photoinhibition occurs,I b ) of the > 0.6 m communities at all three stations and was attributable to stratification of the water column. There was a decrease in assimilation rates andI k with depth that was associated with increases in light-limited rates of photosynthesis. No midday photoinhibition ofP max orI b was observed in any surface station. Marked photoinhibition was detected only in the chlorophyll maximum at the neritic front and below the surface mixed-layer at Wilkinson's Basin, where susceptibility to photoinhibition increased with the depth of the collected sample. The 0.6 to 1 m fraction always had lower light requirements for light-saturated photosynthesis than the > 5 m size fraction within the same sample. Saturation intensities for the 1 to 5 m and 0.6 to 1 m size fractions were more similar whenSynechococcus spp. abundances were high in the 1 to 5 m fraction. The > 5 m fraction appeared to be the prime contributor to photoinhibitory features displayed in mixed samples (> 0.6 m) taken from the chlorophyll maxima. InSynechococcus spp.-dominated 0.6 to 1 and 1 to 5 m size fractions, cellular chlorophylla content increased 50- to 100-fold with depth and could be related to increases in maximum daytime rates of cellularP max at the base of the euphotic zone. Furthermore, the 0.6 to 1 m and > 5 m fractions sampled at the chlorophyll maximum in the warm-core eddy had lower light requirements for photosynthesis than comparable surface samples from the same station. Results suggest that photoadaptation in natural populations ofSynechococcus spp. is accomplished primarily by changing photosynthetic unit number, occuring in conjuction with other accommodations in the efficiency of photosynthetic light reactions.  相似文献   

18.
Feeding, growth and bioluminescence of the thecate heterotrophic dinoflagellate Protoperidinium huberi were measured as a function of food concentration for laboratory cultures grown on the diatom Ditylum brightwellii. Ingestion of food increased with food concentration. Maximum ingestion rates were measured at food concentrations of 600 g C l-1 and were 0.7 g C individual-1 h-1 (1.8 D. brightwelli cells individual-1 h-1). Clearance rates decreased asymptotically with increasing food concentration. Maximum clearance rates at low food concentration were ca. 23 l ind-1 h-1, which corresponds to a volume-specific clearance rate of 5.9x105 h-1. Cell size of P huberi was highly variable, with a mean diameter of 42 m, but no clear relationship between cell size and food concentration was evident. Specific growth rates increased with food concentration until maximum growth rates of 0.7 d-1 were reached at a food concentration of 400 g C l-1 (1000 cells ml-1). Food concentrations as low as 10 g C l-1 of D. brightwellii (25 cells ml-1) were able to support growth of P. huberi. The bioluminescence of P. huberi varied with its nutritional condition and growth rate. Cells held without food lost their bioluminescence capacity in a matter of days. P. huberi raised at different food concentrations showed increased bioluminescence capacity, up to food concentration that supported maximum growth rates. The bioluminescence of P. huberi varied over a diel cycle, and these rhythmic changes persisted during 48 h of continuous darkness, indicating that the rhythm was under endogenous control.  相似文献   

19.
The separate and combined effects of ammonium (10M) and phosphate (2M) on the ultrastructure of zooxanthellae (Symbiodinium sp.) from giant clams, Tridacna maxima, were examined in the field. Nitrogen addition significantly changed the ultrastructure of the zooxanthellae inhabiting the clams. After 9 mo exposure, the cross-sectional area of zooxanthellae from N-treated clams was significantly lower than that from other treatments [N=39.3 m2; C=47.9 m2; P=43.2m2; N+P=44.5 m2; (P=0.001)]. There was also a significant decrease in the size of starch bodies, especially around the pyrenoid of the zooxanthellae from N and N+P treatments [N=1.2 m2; C=2.0 m2; P=1.8 m2; N+P=1.2 m2; (P=2.08E-11)]. This presumably occurs as a result of the mobilization of organic carbon stores in response to stimulated amino acid synthesis under enriched nutrient conditions. These data strongly suggest that the symbiotic zooxanthellae of clams are limited to some extent by the availability of inorganic nitrogen, and that relatively minor changes to the nutrient loading of the water column can have substantial effects on the biochemistry of symbioses such as that which exists between clams and zooxanthellae.  相似文献   

20.
An instance of bacterial inhibition in oceanic surface water   总被引:1,自引:0,他引:1  
Water from the 150 surface film 50 miles north of Puerto Rico at 19°30 N, 66°30W supported only a negligible microflora compared to that of adjacent stations. Bacteriostasis was indicated when a ten-fold dilution of the sample resulted in a ninety-fold increase in cultivable microorganisms. The surviving organisms, atypical pseudomonads, were biochemically inactive in comparison to isolates from the other stations. Net phytoplankters at this station were similar in relative composition and abundance to those at the adjacent station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号