共查询到20条相似文献,搜索用时 31 毫秒
1.
C. K. Jain A. Bandyopadhyay A. Bhadra 《Environmental monitoring and assessment》2010,166(1-4):663-676
The ground water quality of District Nainital (Uttarakhand, India) has been assessed to see the suitability of ground water for drinking and irrigation applications. This is a two-part series paper and this paper examines the suitability of ground water including spring water for drinking purposes. Forty ground water samples (including 28 spring samples) were collected during pre- and post-monsoon seasons and analyzed for various water quality constituents. The hydrochemical and bacteriological data was analyzed with reference to BIS and WHO standards and their hydrochemical facies were determined. The concentration of total dissolved solids exceeds the desirable limit of 500 mg/L in about 10% of the samples, alkalinity values exceed the desirable limit of 200 mg/L in about 30% of the samples, and total hardness values exceed the desirable limit of 300 mg/L in 15% of the samples. However, no sample crosses the maximum permissible limit for TDS, alkalinity, hardness, calcium, magnesium, chloride, sulfate, nitrate, and fluoride. The concentration of chloride, sulfate, nitrate, and fluoride are well within the desirable limit at all the locations. The bacteriological analysis of the samples does not show any sign of bacterial contamination in hand pump and tube-well water samples. However, in the case of spring water samples, six samples exceed the permissible limit of ten coliforms per 100 ml of sample. It is recommended that water drawn from such sources should be properly disinfected before being used for drinking and other domestic applications. Among the metal ions, the concentration of iron and lead exceeds the permissible limit at one location whereas the concentration of nickel exceeds the permissible limit in 60 and 32.5% of the samples during pre- and post-monsoon seasons, respectively. The grouping of samples according to their hydrochemical facies indicates that majority of the samples fall in Ca–Mg–HCO3 hydrochemical facies. 相似文献
2.
Parashar C Verma N Dixit S Shrivastava R 《Environmental monitoring and assessment》2008,140(1-3):119-122
Pollution of water bodies is one of the areas of major concern to environmentalists. Water quality is an index of health and
well being of a society. Industrialization, urbanization and modern agriculture practices have direct impact on the water
resources. These factors influence the water resources quantitatively and qualitatively. The study area selected were the
Upper lake and Kolar reservoir of Bhopal, the state capital of Madhya Pradesh, India. The Upper lake and Kolar reservoir both
are the important sources of potable water supply for the Bhopal city. The physico–chemical parameters like temperature, pH,
turbidity, total hardness, alkalinity, BOD, COD, Chloride, nitrate and phosphate were studied to ascertain the drinking water
quality. 相似文献
3.
The coastal water quality of Mumbai is deteriorating due to various point and non-point wastewater sources. Hence, it is desirable to monitor coastal water quality for various water-related activities like bathing, contact water sports, recreation, and commercial fishing. The objective of this paper is to assess the seasonal water quality on the basis of seawater standards. Based on water-quality analysis of 17 seafronts and beaches, most of the parameters were exceeding the standards. The statistical cluster analysis was carried out for evaluating impact of wastewater and sewage discharges. The hierarchical cluster analysis resulted into three clustered groups, namely less polluted, moderately polluted, and highly polluted sites with similar characteristics of water quality. Mahim was found to be worst-affected beach due to incoming organic load from the Mithi river in comparison to other seafronts and beaches. Unaccounted sources of sewage and wastewater should be identified and rerouted through sewerage system by improving collection efficiency, treatment, and proper disposal for achieving designated receiving water quality standards. 相似文献
4.
Pei-Ling Chung Chung-Yi Chung Shao-Wei Liao Chang-Ling Miaw 《Environmental monitoring and assessment》2009,159(1-4):207-216
In this study, a questionnaire survey of school drinking water quality of 42 schools in Pingtung County was conducted according to the water sources, treatment facilities, location of school as well as different grade levels. Among them, 45% of schools used tap water as the main source of drinking water, and the schools using groundwater and surface water as drinking water source account for 29% and 26%, respectively. The schools above senior high school level in the city used tap water as drinking water more than underground water, while the schools under junior high school level in the rural area used surface water as their main source of drinking water. The surface water was normally boiled before being provided to their students. The reverse osmosis system is a commonly used water treatment equipment for those schools using tap water or underground water. Drinking fountain or boiled water unit is widely installed in schools above senior high school level. For schools under junior high school level, a pipeline is stretched across the campus. Relative test shows that the unqualified rate of microbe in water is 26.2%. All parameters for physical and chemical properties and metal content had met the domestic standards except that the turbidity of schools under junior high school level using tap water is slightly higher than the standard value. 相似文献
5.
Assessment of water quality using multivariate statistical techniques in the coastal region of Visakhapatnam,India 总被引:1,自引:0,他引:1
Sangeeta Pati Mihir K. Dash C. K. Mukherjee B. Dash S. Pokhrel 《Environmental monitoring and assessment》2014,186(10):6385-6402
The present study was intended to develop a Water Quality Index (WQI) for the coastal water of Visakhapatnam, India from multiple measured water quality parameters using different multivariate statistical techniques. Cluster analysis was used to classify the data set into three major groups based on similar water quality characteristics. Discriminant analysis was used to generate a discriminant function for developing a WQI. Discriminant analysis gave the best result for analyzing the seasonal variation of water quality. It helped in data reduction and found the most discriminant parameters responsible for seasonal variation of water quality. Coastal water was classified into good, average, and poor quality considering WQI and the nutrient load. The predictive capacity of WQI was proved with random samples taken from coastal areas. High concentration of ammonia in surface water during winter was attributed to nitrogen fixation by the phytoplankton bloom which resulted due to East India Coastal Current. This study brings out the fact that water quality in the coastal region not only depends on the discharge from different pollution sources but also on the presence of different current patterns. It also illustrates the usefulness of WQI for analyzing the complex nutrient data for assessing the coastal water and identifying different pollution sources, considering reasons for seasonal variation of water quality. 相似文献
6.
Geochemical study of groundwater from a structurally deformed granitic terrain near Hyderabad (India) was carried out to understand
and evaluate the hydrogeochemical processes and quality of groundwater. Several trace elements (Fe, Mn, Be, Al, V, Cr, Co,
Ni, Cu, Zn, As, Sr, Mo, Cd, Sb, Ba, Pb, U) along with major ions and minor elements were precisely estimated in shallow and
drilled wells to know the suitability of water for drinking and irrigation purposes. Analytical data shows that pH and major
ion chemistry in dug wells and bore wells do not vary significantly, while some trace elements (Fe, Mn, Al, Be, Co, Pb, U
and Zn) vary in dug wells and bore wells, which can be attributed to differential mineral weathering and dissolution/precipitation
reactions along fractures/joints. Although the water is not potable, it was found to be suitable for irrigation with little
danger in the development of harmful level of exchangeable sodium. It is inferred that the chemical composition of the groundwater
in this region is likely to have its origin from silicate weathering reactions and dissolution/precipitation processes supported
by rainfall and groundwater flow. 相似文献
7.
Evaluation of water quality index for drinking purposes for river Netravathi, Mangalore, South India 总被引:1,自引:0,他引:1
An attempt has been made to develop water quality index (WQI), using six water quality parameters Dissolved oxygen (DO), Biochemical oxygen Demand (BOD), Most Probable Number (MPN), Turbidity, Total Dissolved Solids (TDS) and pH measured at eight different stations along the river basin. Rating curves were drawn based on the tolerance limits of inland waters and health point of view. Bhargava WQI method and Harmonic Mean WQI method were used to find overall WQI along the stretch of the river basin. Five point rating scale was used to classify water quality in each of the study areas. It was found that the water quality of Netravathi varied from Excellent to Marginal range by Bhargava WQI method and Excellent to Poor range by Harmonic Mean WQI method. It was observed that the impact of human activity was severe on most of the parameters. The MPN values exceeded the tolerable limits at almost all the stations. It was observed that the main cause of deterioration in water quality was due to the lack of proper sanitation, unprotected river sites and high anthropogenic activities. 相似文献
8.
Creed PA Gallawa CM Young AR Schwegel CA Lytle D Sorg TJ Creed JT 《Journal of environmental monitoring : JEM》2006,8(9):968-972
A sequential extraction approach was utilized to estimate the distribution of arsenite [As(iii)] and arsenate [As(v)] on iron oxide/hydroxide solids obtained from drinking water distribution systems. The arsenic (As) associated with these solids can be segregated into three operationally defined categories (exchangeable, amorphous and crystalline) according to the sequential extraction literature. The exchangeable As, for the six drinking water solids evaluated, was estimated using 10 mM MgCl(2) and 10 mM NaH(2)PO(4) and represented between 5-34% of the total As available from the solid. The amorphously bound As was estimated using 10 mM (NH(4))(2)C(2)O(4) and represented between 57-124% of the As available from the respective solid. Finally, the crystalline bound As was estimated using titanium citrate and this represented less than 1.5% of the As associated with the solids. A synthetic stomach/intestine extraction approach was also applied to the distribution solids. The stomach fluid was found to extract between 0.5-33.3 microg g(-1) As and 120-2,360 microg g(-1) iron (Fe). The As concentrations in the intestine fluid were between 0.02-0.04 microg g(-1) while the Fe concentration ranged from 0.06-0.7 microg g(-1) for the first six drinking water distribution solids. The elevated Fe levels associated with the stomach fluid were found to produce Fe based precipitates when the intestinal treatment was applied. Preliminary observations indicate that most of the aqueous Fe in the stomach fluid is ferric ion and the observed precipitate produced in the intestine fluid is consistent with the decreased solubility of ferric ion at the pH associated with the intestine. 相似文献
9.
Assessment of water quality parameters of the Harike wetland in India, a Ramsar site, using IRS LISS IV satellite data 总被引:1,自引:0,他引:1
Samson Okongo Mabwoga Amit Chawla Ashwani Kumar Thukral 《Environmental monitoring and assessment》2010,170(1-4):117-128
This study aims at the classification and water quality assessment of Harike wetland (Ramsar site) in India using satellite images from the Indian Remote Sensing satellite, Resourcesat (IRS P6). The Harike wetland is a converging zone of two rivers, Beas and Sutlej. The satellite images of IRS Linear Imaging Self Scanner (LISS) IV multispectral sensor with three bands (green, red, and near infrared (NIR)) and a spatial resolution of 5.8 m were classified using supervised image classification techniques. Field points for image classification and water sampling were recorded using a Garmin eTrex Global Positioning System. The water quality parameters assessed were dissolved oxygen, conductivity, pH, turbidity, total and suspended solids (SS), chemical oxygen demand, and Secchi disk transparency (SDT). Correlations were established between turbidity and SS, SS and SDT, and total solids and turbidity. Using reflectance values from the green, red, and NIR bands, we then plotted the water quality parameters with the mean digital number values from the satellite imagery. The NIR band correlated significantly with the water quality parameters, whereas, using SDT values, it was observed that the green and the red reflectance bands were able to distinguish the waters from the two rivers, which have different water qualities. 相似文献
10.
Physicochemical quality evaluation of groundwater and development of drinking water quality index for Araniar River Basin, Tamil Nadu, India 总被引:1,自引:0,他引:1
Groundwater is the most important natural resource which cannot be optimally used and sustained unless its quality is properly assessed. In the present study, the spatial and temporal variations in physicochemical quality parameters of groundwater of Araniar River Basin, India were analyzed to determine its suitability for drinking purpose through development of drinking water quality index (DWQI) maps of the post- and pre-monsoon periods. The suitability for drinking purpose was evaluated by comparing the physicochemical parameters of groundwater in the study area with drinking water standards prescribed by the World Health Organization (WHO) and Bureau of Indian Standards (BIS). Interpretation of physicochemical data revealed that groundwater in the basin was slightly alkaline. The cations such as sodium (Na+) and potassium (K+) and anions such as bicarbonate (HCO3 ?) and chloride (Cl?) exceeded the permissible limits of drinking water standards (WHO and BIS) in certain pockets in the northeastern part of the basin during the pre-monsoon period. The higher total dissolved solids (TDS) concentration was observed in the northeastern part of the basin, and the parameters such as calcium (Ca2+), magnesium (Mg2+), sulfate (SO4 2?), nitrate (NO3 ?), and fluoride (F?) were within the limits in both the seasons. The hydrogeochemical evaluation of groundwater of the basin demonstrated with the Piper trilinear diagram indicated that the groundwater samples of the area were of Ca2+-Mg2+-Cl?-SO4 2?, Ca2+-Mg2+-HCO3 ? and Na+-K+-Cl?-SO4 2? types during the post-monsoon period and Ca2+-Mg2+-Cl?-SO4 2?, Na+-K+-Cl?-SO4 2? and Ca2+-Mg2+-HCO3 ? types during the pre-monsoon period. The DWQI maps for the basin revealed that 90.24 and 73.46 % of the basin area possess good quality drinking water during the post- and pre-monsoon seasons, respectively. 相似文献
11.
12.
Gallagher PA Schwegel CA Wei X Creed JT 《Journal of environmental monitoring : JEM》2001,3(4):371-376
The native distribution of As(III) and As(v) in drinking water supplies can influence the treatment removal strategy. The stability of As(III) and As(v) in iron-rich drinking waters can be affected by the formation of Fe precipitates (Fe oxides and/or hydroxides designated by "FeOOH"). These precipitates (ppts) can form during the transport of the sample to the laboratory for arsenic speciation analysis. The analysis of the ppt indicates considerable loss of the aqueous arsenic species (As(aq)) to the solid phase "FeOOH" ppt. Studies of laboratory reagent water containing both As(III) and Fe(III) indicate that the resulting "FeOOH" ppt contained a mixture of As(III) and As(v) with near quantitative removal of the As(aq) in 18 hr. The corresponding aqueous fraction after filtration through a 0.45 microm filter was composed primarily of As(v). The formation of "FeOOH" ppt and the loss of As(aq) to the ppt can be virtually eliminated by the use of EDTA, which sequesters the FeIII). Reagent water fortified with Fe(III), As(III) and EDTA produced less than a 1 ppb change in the As(III)aq concentration over 16 d. The EDTA treatment was also tested on three well waters with different native As(III )/As(v) ratios. The native distribution of As(III)/As(v) was stabilized over a period of 10 d with a worst case conversion of As(III) to As(v) of 2 ppb over a 30 d period. All well waters not treated with EDTA had dramatic losses (a factor of 2-5) of As(aq) in less than 1 d. These results indicated that EDTA preservation treatment can be used to preserve As(aq) in waters where the predominant species is the reduced form [As(III)] or in waters which the predominant species is the oxidized form [As(v)]. This preliminary investigation of EDTA to preserve As species in Fe-rich waters indicates stability can be achieved for greater than 14 d. 相似文献
13.
Different multivariate statistical analysis such as, cluster analysis, principal component analysis, and multidimensional
scale plot were employed to evaluate the trophic status of water quality for four monitoring stations. The present study was
carried out to determine the physicochemical parameters of water and sediment characteristics of Pondicherry mangroves—southeast
coast of India, during September 2008–December 2010. Seasonal variations of different parameters investigated were as follows:
salinity (10.26–35.20 psu), dissolved oxygen (3.71–5.33 mg/L), pH (7.05–8.36), electrical conductivity (26.41–41.33 ms−1), sulfide (1.98–40.43 mg/L), sediment texture sand (39.54–87.31%), silt (9.89–32.97%), clay (3.06–31.20%), and organic matter
(0.94–4.64%). pH, temperature, salinity, sand, silt, clay, and organic matter indicated a correlation at P < 0.01. CA grouped the four seasons in to four groups (pre-monsoon, monsoon, post-monsoon, summer) and the sampling sites
in to three groups. PCA identified the spatial and temporal characteristics of trophic stations and showed that the water
quality was worse in stations 3 and 4 in the Pondicherry mangroves. 相似文献
14.
15.
To ascertain the quality of drinking water being supplied and maintained at Guwahati, the study was conducted on the status of water supply in city through surveillance of drinking water quality for consecutive 7 days at various treatment stages, distribution network and consumer ends. The performance of five water treatment plants (WTPs), viz. Panbazar WTP, Satpukhuri WTP, Kamakhya WTP, PHED WTP and Hegrabari WTP were assessed for summer, piost-post-monsoon and winter seasons. No significant change in raw water quality was observed on day-to-day basis. Residual chlorine was found in the range of nil to 0.2 mg/L in the treated water. During post-monsoon, winter, and summer seasons the thermotolerent TC and FC counts ranged between Nil to 168 CFU/100 ml and Nil to 84 CFU/100 ml; Nil to 3356 CFU/100 ml and Nil to 152 CFU/100 ml; and Nil to 960 CFU/100 ml and Nil to 108 CFU/100 ml respectively. There was variation in bacterial counts among the different service reservoirs and consumer ends, which may be attributed to the general management practices for maintenance of service reservoirs and the possibility of enroute contamination. Evaluation of the raw water quality indicate that the water is suitable for drinking after conventional treatment followed by disinfection. The finished water quality meets the level of standards described as per Bureau of Indian Standard specifications (BIS:10500 1991) for potability in terms of its physico-chemical characteristics. 相似文献
16.
This study was undertaken to assess the heavy metal concentration of the drinking water with respect to zinc, copper, cadmium, manganese, lead and arsenic in Kamrup district of Assam, India. Ground water samples were collected from tube wells, deep tube wells and ring wells covering all the major hydrogeological environs. Heavy metals in groundwater are estimated by using Atomic Absorption Spectrometer, Perkin Elmer Analyst 200. Data were assessed statistically to find the distribution pattern and other related information for each metal. The study revealed that a good number of the drinking water sources were contaminated with cadmium, manganese and lead. Arsenic concentrations although did not exceeded WHO limits but was found to be slightly elevated. Copper and zinc concentrations were found to be within the prescribed WHO limits. An attempt has also been made to ascertain the possible source of origin of the metals. Positive and significant correlation existing between manganese with zinc and copper indicates towards their similar source of origin and mobility. In view of the present study and the level of heavy metal contamination, it could be suggested to test the potability of the water sources before using it for drinking purpose. 相似文献
17.
Drinking water samples collected from rural areas of three districts of Haryana during pre-monsoon and post-monsoon periods
were analysed for the presence of organochlorine pesticide residues. The main source of drinking water in rural areas, i.e.
groundwater in Ambala and Gurgaon districts and surface water supply in Hisar district, was found to be contaminated with
isomers of HCH and endosulfan and metabolites of DDT, whereas dieldrin remained below detection limits. During the study period,
the mean values observed for total HCH, DDT and endosulfan were 87.6, 848.2, and 27.4 ng/L and 99.8, 275.3 and 164.2 ng/L,
respectively, for Ambala and Gurgaon districts. In the case of Hisar district, the values were 78.5, 115.9, and 53.0 ng/L,
respectively. During the study period, 37% of the samples exceeded the total pesticide level of 500 ng/L indicated in the
EECD directive for drinking water. Seasonal variations of pesticide residues were also observed during the study period. 相似文献
18.
Assessment of temporal variation in water quality of some important rivers in middle Gangetic plains, India 总被引:2,自引:0,他引:2
Nipunika Rani Ravindra Kumar Sinha Kriteshwar Prasad Dilip Kumar Kedia 《Environmental monitoring and assessment》2011,174(1-4):401-415
The study explains water quality of three important tributaries of the Ganga River in the middle Gangetic plains in India. Seasonal changes in the water quality of the studied rivers: Gandak, Ghaghra, and Sone were observed. During monsoon, several water quality parameters show considerable changes due to increased runoff from the catchments and other seasonal factors. Multivariate discriminant analysis delineated a few parameters responsible for temporal variation in water quality. Seasonal variation in water quality of the Gandak River was rendered by seven parameters??turbidity, sulfate, pH, phosphate, water temperature, total alkalinity, and sodium, while total alkalinity and water temperature were responsible for seasonal discrimination in water quality of Ghaghra River. Water temperature, turbidity, total dissolved solids, total suspended solids, calcium, and phosphate were important for seasonal discrimination in water quality of Sone River. The seasonal changes in water quality of the rivers were due to seasonal effects and catchment characteristics. The discriminant functions classified most of the cases correctly. 相似文献
19.
Concern over the presence of fecal coliform in public drinking water supplies has been expressed in recent years in Pakistan since it has been regarded as pathogenic organism of prime importance in gastroenteritis. Two major drinking water distribution systems in the Cantt area of Rawalpindi district covering the Westridge and Tench areas was monitored over a 2-month period to determine the prevalence of fecal coliform and chlorine residual. The collected samples were examined for total chlorine, free chlorine residual, chloramines, total coliforms, fecal coliforms, and turbidity. The drinking water quality monitoring in the distribution network was performed by collecting samples from water source, overhead reservoir, and residential taps. In the Westridge area, total chlorine varied from the lowest value of 0.27 mg/L at Station # W-5 to the highest value of 0.42 mg/L at Station # W-2, total coliforms varied from 1.1 to 3.6 most probable number (MPN)/100 mL with presence of Escherichia coli in all samples, total dissolved solids (TDS) ranged from 199.5 to 205 mg/L, conductivity fluctuated between 399 and 411 microS/cm, and turbidity varied from 0.43 to 0.73 NTU. In the Tench area, the value of total chlorine ranged from 0.14 mg/L at Station # T-7 to 0.55 mg/L at Station # T-1. Total coliform varied from 3.6 to 5.1 MPN/100 mL and fecal coliform were detected at all the stations except at Station # T-1. TDS ranged from 201.4 to 257 mg/L, conductivity varied from 343 to 513 microS/cm, and turbidity ranged between 0.66 and 1.55 NTU. It is recommended to the respective agencies to ensure that the chlorine residual is available at consumer end. 相似文献