首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract:  The U.S. Endangered Species Act (ESA) requires designation of critical habitat concurrent with species listing. The U.S. Fish and Wildlife Service often has not designated critical habitat, based on the legal exceptions in the ESA of "not prudent" or "not determinable." This lack of habitat designation has led to numerous lawsuits and court orders to designate critical habitat for listed species. Court-mediated implementation of critical habitat is costly and delays listing for at-risk species. Legal, policy, judicial, and biological issues all contribute to the current inability of the law as enforced to lead to timely and cost-effective critical habitat designation. Although increased appropriations and delaying critical habitat designation until recovery planning have been proposed as solutions, we find that it will be essential to change the critical-habitat guidelines to a decision-analysis framework to make critical habitat scientifically and legally workable as a conservation tool.  相似文献   

2.
Despite its successes, the U.S. Endangered Species Act (ESA) has proven challenging to implement due to funding limitations, workload backlog, and other problems. As threats to species survival intensify and as more species come under threat, the need for the ESA and similar conservation laws and policies in other countries to function efficiently has grown. Attempts by the U.S. Fish and Wildlife Service (USFWS) to streamline ESA decisions include multispecies recovery plans and habitat conservation plans. We address species status assessment (SSA), a USFWS process to inform ESA decisions from listing to recovery, within the context of multispecies and ecosystem planning. Although existing SSAs have a single-species focus, ecosystem-based research can efficiently inform multiple SSAs within a region and provide a foundation for transition to multispecies SSAs in the future. We considered at-risk grassland species and ecosystems within the southeastern United States, where a disproportionate number of rare and endemic species are associated with grasslands. To initiate our ecosystem-based approach, we used a combined literature-based and structured World Café workshop format to identify science needs for SSAs. Discussions concentrated on 5 categories of threats to grassland species and ecosystems, consistent with recommendations to make shared threats a focus of planning under the ESA: (1) habitat loss, fragmentation, and disruption of functional connectivity; (2) climate change; (3) altered disturbance regimes; (4) invasive species; and (5) localized impacts. For each threat, workshop participants identified science and information needs, including database availability, research priorities, and modeling and mapping needs. Grouping species by habitat and shared threats can make the SSA process and other planning processes for conservation of at-risk species worldwide more efficient and useful. We found a combination of literature review and structured discussion effective for identifying the scientific information and analysis needed to support the development of multiple SSAs. Article impact statement: Species status assessments can be improved by an ecosystem-based approach that groups imperiled species by shared habitats and threats.  相似文献   

3.
Abstract:  The U.S. Endangered Species Act (ESA) allows listing of subspecies and other groupings below the rank of species. This provides the U.S. Fish and Wildlife Service and the National Marine Fisheries Service with a means to target the most critical unit in need of conservation. Although roughly one-quarter of listed taxa are subspecies, these management agencies are hindered by uncertainties about taxonomic standards during listing or delisting activities. In a review of taxonomic publications and societies, we found few subspecies lists and none that stated standardized criteria for determining subspecific taxa. Lack of criteria is attributed to a centuries-old debate over species and subspecies concepts. Nevertheless, the critical need to resolve this debate for ESA listings led us to propose that minimal biological criteria to define disjunct subspecies (legally or taxonomically) should include the discreteness and significance criteria of distinct population segments (as defined under the ESA). Our subspecies criteria are in stark contrast to that proposed by supporters of the phylogenetic species concept and provide a clear distinction between species and subspecies. Efforts to eliminate or reduce ambiguity associated with subspecies-level classifications will assist with ESA listing decisions. Thus, we urge professional taxonomic societies to publish and periodically update peer-reviewed species and subspecies lists. This effort must be paralleled throughout the world for efficient taxonomic conservation to take place.  相似文献   

4.
The Endangered Species Act (ESA) of the United States was enacted in 1973 to prevent the extinction of species. Recovery plans, required by 1988 amendments to the ESA, play an important role in organizing these efforts to protect and recover species. To improve the use of science in the recovery planning process, the Society for Conservation Biology (SCB) commissioned an independent review of endangered species recovery planning in 1999. From these findings, the SCB made key recommendations for how management agencies could improve the recovery planning process, after which the U.S. Fish and Wildlife Service and the National Marine Fisheries Service redrafted their recovery planning guidelines. One important recommendation called for recovery plans to make threats a primary focus, including organizing and prioritizing recovery tasks for threat abatement. We sought to determine the extent to which results from the SCB study were incorporated into these new guidelines and whether the SCB recommendations regarding threats manifested in recovery plans written under the new guidelines. Recovery planning guidelines generally incorporated the SCB recommendations, including those for managing threats. However, although recent recovery plans have improved in their treatment of threats, many fail to adequately incorporate threat monitoring. This failure suggests that developing clear guidelines for monitoring should be an important priority in improving ESA recovery planning.  相似文献   

5.
The U.S. Endangered Species Act grants protection to species, subspecies, and "distinct population segments" of vertebrate species. Historically, Congress included distinct population segments into endangered species legislation to enable the U.S. Fish and Wildlife Service to implement a flexible and pragmatic approach in listing populations of vertebrate species. Recently, the U.S. Fish and Wildlife Service and the National Marine Fisheries Service have proposed a policy that would narrowly define distinct population segments as evolutionarily significant units based on morphological and genetic distinctiveness between populations. Historically, the power to list species or populations as distinct population segments has been used to tailor management practices to unique circumstances; grant varied levels of protection in different parts of a species' range; protect species from extinction in significant portions of their ranges as well as to protect populations that are unique evolutionary entities. A strict redefinition of distinct population segments as evolutionarily significant units will compromise management efforts because the role of demographic and behavioral data will be reduced. Furthermore, strictly cultural, economic, or geographic justifications for listing populations as threatened or endangered will be greatly curtailed.  相似文献   

6.
Population trends from the Breeding Bird Survey are widely used to focus conservation efforts on species thought to be in decline and to test preliminary hypotheses regarding the causes of these declines. A number of statistical methods have been used to estimate population trends, but there is no consensus as to which is the most reliable. We quantified differences in trend estimates or different analysis methods applied to the same subset of Breeding Bird Survey data. We estimated trends for 115 species in British Columbia using three analysis methods: U.S. National Biological Service route regression, Canadian Wildlife Service route regression, and nonparametric rank-trends analysis. Overall, the number of species estimated to be declining was similar among the three methods, but the number of statistically significant declines was not similar (15, 8, and 29 respectively). In addition, many differences existed among methods in the trend estimates assigned to individual species. Comparing the two route regression methods, Canadian Wildlife Service estimates had a greater absolute magnitude on average than those of the U.S. National Biological Service method. U.S. National Biological Service estimates were on average more positive than the Canadian Wildlife Service estimates when the respective agency's data selection criteria were applied separately. These results imply that our ability to detect population declines and to prioritize species of conservation concern depend strongly upon the analysis method used. This highlights the need for further research to determine how best to accurately estimate trends from the data. We suggest a method for evaluating the performance of the analysis methods by using simulated Breeding Bird Survey data.  相似文献   

7.
Abstract:  The U.S. Fish and Wildlife Service manages the 38-million-ha National Wildlife Refuge System, which is devoted primarily to wildlife conservation. I examined the capacity of the refuge system to conserve federally listed threatened and endangered animal species. Population viability data for a random sample of these species were analyzed and extrapolated. Three levels of population viability were distinguished: outbreeding, demographic, and evolutionary. One hundred eighty-six of the 514 federally listed animal species reside in whole or in part on the refuge system. Of these 186 species, approximately 81, 101, and 107 are supported by the system at evolutionary, demographic, and outbreeding viability levels, respectively. These figures correspond to 16%, 19%, and 21% of the 514 federally listed animal species, respectively. Various federal policies and programs facilitate the expansion of the refuge system, but other federal policies and programs facilitate economic growth, which tends to require the conversion of habitats faster than it provides for habitat conservation. Therefore the long-run effectiveness, extent, and endurance of the refuge system will depend largely on macroeconomic policy context.  相似文献   

8.
For species listed under the U.S. Endangered Species Act (ESA), the U.S. Fish and Wildlife Service and National Marine Fisheries Service are tasked with writing recovery plans that include “objective, measurable criteria” that define when a species is no longer at risk of extinction, but neither the act itself nor agency guidelines provide an explicit definition of objective, measurable criteria. Past reviews of recovery plans, including one published in 2012, show that many criteria lack quantitative metrics with clear biological rationale and are not meeting the measureable and objective mandate. I reviewed how objective, measureable criteria have been defined implicitly and explicitly in peer‐reviewed literature, the ESA, other U.S. statutes, and legal decisions. Based on a synthesis of these sources, I propose the following 6 standards be used as minimum requirements for objective, measurable criteria: contain a quantitative threshold with calculable units, stipulate a timeframe over which they must be met, explicitly define the spatial extent or population to which they apply, specify a sampling procedure that includes sample size, specify a statistical significance level, and include justification by providing scientific evidence that the criteria define a species whose extinction risk has been reduced to the desired level. To meet these 6 standards, I suggest that recovery plans be explicitly guided by and organized around a population viability modeling framework even if data or agency resources are too limited to complete a viability model. When data and resources are available, recovery criteria can be developed from the population viability model results, but when data and resources are insufficient for model implementation, extinction risk thresholds can be used as criteria. A recovery‐planning approach centered on viability modeling will also yield appropriately focused data‐acquisition and monitoring plans and will facilitate a seamless transition from recovery planning to delisting. Un Marco de Referencia para Desarrollar Criterios de Recuperación Objetivos y Medibles para Especies Amenazadas y en Peligro  相似文献   

9.
The U.S. Endangered Species Act (ESA) requires that the “best available scientific and commercial data” be used to protect imperiled species from extinction and preserve biodiversity. However, it does not provide specific guidance on how to apply this mandate. Scientific data can be uncertain and controversial, particularly regarding species delineation and hybridization issues. The U.S. Fish and Wildlife Service (FWS) had an evolving hybrid policy to guide protection decisions for individuals of hybrid origin. Currently, this policy is in limbo because it resulted in several controversial conservation decisions in the past. Biologists from FWS must interpret and apply the best available science to their recommendations and likely use considerable discretion in making recommendations for what species to list, how to define those species, and how to recover them. We used semistructured interviews to collect data on FWS biologists’ use of discretion to make recommendations for listed species with hybridization issues. These biologists had a large amount of discretion to determine the best available science and how to interpret it but generally deferred to the scientific consensus on the taxonomic status of an organism. Respondents viewed hybridization primarily as a problem in the context of the ESA, although biologists who had experience with hybridization issues were more likely to describe it in more nuanced terms. Many interviewees expressed a desire to continue the current case‐by‐case approach for handling hybridization issues, but some wanted more guidance on procedures (i.e., a “flexible” hybrid policy). Field‐level information can provide critical insight into which policies are working (or not working) and why. The FWS biologists’ we interviewed had a high level of discretion, which greatly influenced ESA implementation, particularly in the context of hybridization.  相似文献   

10.
Recent publications have reaffirmed that the red wolf ( Canis rufus ) is a hybrid of the coyote and the gray wolf. Besides the implications these results will likely have for future conservation efforts and allotment of resources through the Endangered Species Act for recovery of the red wolf, it is likely that broader consequences will be felt throughout the conservation community as species come under the scrutiny of a more powerful means of taxonomic identification. As molecular technology is refined in its ability to resolve taxonomic histories and uncertainties, it is likely that hybridization event(s) will be recognized in more species. This may be of particular importance for large carnivores, whose small population sizes make them susceptible to hybridization episodes with closely related, sympatric species. Because of negative perceptions, powerful antipredator advocates, conservation and resource constraints, and an enigmatic hybrid policy within the Endangered Species Act, how red-wolf taxonomy is decided by the U.S. Fish and Wildlife Service may affect the future of large carnivores in general.  相似文献   

11.
In 2014, the Fish and Wildlife Service (FWS) and National Marine Fisheries Service announced a new policy interpretation for the U.S. Endangered Species Act (ESA). According to the act, a species must be listed as threatened or endangered if it is determined to be threatened or endangered in a significant portion of its range (SPR). The 2014 policy seeks to provide consistency by establishing that a portion of the range should be considered significant if the associated individuals’ “removal would cause the entire species to become endangered or threatened.” We reviewed 20 quantitative techniques used to assess whether a portion of a species’ range is significant according to the new guidance. Our assessments are based on the 3R criteria—redundancy (i.e., buffering from catastrophe), resiliency (i.e., ability to withstand stochasticity), and representation (i.e., ability to evolve)—that the FWS uses to determine if a species merits listing. We identified data needs for each quantitative technique and considered which methods could be implemented given the data limitations typical of rare species. We also identified proxies for the 3Rs that may be used with limited data. To assess potential data availability, we evaluated 7 example species by accessing data in their species status assessments, which document all the information used during a listing decision. In all species, an SPR could be evaluated with at least one metric for each of the 3Rs robustly or with substantial assumptions. Resiliency assessments appeared most constrained by limited data, and many species lacked information on connectivity between subpopulations, genetic variation, and spatial variability in vital rates. These data gaps will likely make SPR assessments for species with complex life histories or that cross national boundaries difficult. Although we reviewed techniques for the ESA, other countries require identification of significant areas and could benefit from this research.  相似文献   

12.
Recovery planning for species listed under the U.S. Endangered Species Act has been hampered by a lack of consistency and transparency, which can be improved by implementing a standardized approach for evaluating species status and developing measurable recovery criteria. However, managers lack an assessment method that integrates threat abatement and can be used when demographic data are limited. To help meet these needs, we demonstrated an approach for evaluating species status based on habitat configuration data. We applied 3 established persistence measures (patch occupancy, metapopulation capacity, and proportion of population lost) to compare 2 conservation strategies (critical habitat designated by the U.S. Fish and Wildlife Service and the Forest Service's Carbonate Habitat Management Strategy) and 2 threat scenarios (maximum limestone mining, removal of all habitat in areas with mining claims; minimum mining, removal of habitat only in areas with existing operations and high‐quality ore) against a baseline of existing habitat for 3 federally listed plant species. Protecting all area within the designated critical habitat maintained a similar level (83.9–99.9%) of species persistence as the baseline, whereas maximum mining greatly reduced persistence (0.51–38.4% maintained). The 3 persistence measures provided complementary insights reflecting different aspects of habitat availability (total area, number of patches, patch size, and connectivity). These measures can be used to link recovery criteria developed following the 3 R principles (representation, redundancy, and resilience) to the resulting improvements in species viability. By focusing on amount and distribution of habitat, our method provides a means of assessing the status of data‐poor species to inform decision making under the Endangered Species Act.  相似文献   

13.
Determining evolutionarily significant units in endangered species is one of the most significant challenges facing conservation biology. Often genetic information has been used as the primary basis of recommendations for evolutionarily significant units, but these data should be evaluated carefully and used in conjunction with other information. The endangered Gila topminnow ( Poeciliopsis. o. occidentalis ) has been the subject of extensive conservation biology research and genetic investigation. We extended these data to highly variable genetic markers, examined variation in microsatellite loci, and compared it with previous measures of genetic diversity for the Gila topminnow from the four watersheds in Arizona in which they are still naturally extant. Fish from Monkey Spring were the most highly differentiated from the other populations. Overall, the amounts and patterns of genetic variation were consistent with known historical and physical differences among sites. The four watersheds are highly physically isolated from one another and differ in a number of important factors in their physical habitat, biota, and the life-history of the topminnows. Based on these geographic patterns and the genetic results, we recommend that the four watersheds all be managed and conserved separately.  相似文献   

14.
Abstract: Budget constraints require the U.S. Fish and Wildlife Service to prioritize species for recovery spending. Each listed species is ranked according to the degree of threat it faces, its recovery potential, and its taxonomic distinctness. We analyzed state and federal government expenditures for recovery of threatened and endangered birds ( n = 85 species) from 1992 to 1995 to determine if the priority system was being followed. Although recovery spending correlated with priority rank, priority rank explained <5% of the variation in spending. A small number of the same moderately ranked species dominated expenditures each year (41–79% of total annual budgets). Species with wide distributions, high recovery potential, and captive breeding programs received the most funding, and more funding than their priority ranks dictated. Island species received significantly less funding than expected based on priority rank. Twelve species, 10 of which resided on islands, received <$5000 at least once from 1992 to 1995. Recovery spending was unrelated to degree of threat, taxonomic distinctness, and migratory status. There also was no relationship between land-purchase expenditures and priority ranks. To improve the relationship between recovery spending on threatened and endangered birds and their priority rank, significant changes need to be made within the private sector ( less litigation and special-interest lobbying  ), U.S. Congress (increased budget and reduced earmarking  ), and the U.S. Fish and Wildlife Service (restructuring of regional offices and increased accountability).  相似文献   

15.
Status of Species Conservation Banking in the United States   总被引:1,自引:0,他引:1  
Abstract:  Receiving financial gains for protecting habitat may be necessary to proactively protect endangered species in the United States. Species conservation banking, the creation and trading of "credits" that represent biodiversity values on private land, is nearly a decade old. We detail the biological, financial, and political experience of conservation banking in the United States. We contacted agencies, nongovernmental organizations, and bank owners and compiled comprehensive accounts of the experiences of current banks. There are 76 properties identified as conservation banks in the United States, but only 35 of these are established under a conservation banking agreement approved by the U.S. Fish and Wildlife Service (USFWS). The 35 official conservation banks cumulatively cover 15,987 ha and shelter a range of biodiversity, including more than 22 species listed under the U.S. Endangered Species Act. Financial motives drove the establishment of 91% of conservation banks, and the majority of for-profit banks are breaking even or making money. With credit prices ranging from $3,000 to $125,000/0.41 ha (1 acre), banking agreements offer financial incentives that compete with development and provide a business-based argument for conserving habitat. Although the bureaucracy of establishing an agreement with the USFWS was burdensome, 63% of bank owners reported they would set up another agreement given the appropriate opportunity. Increasing information sharing, decreasing the time to establish agreements (currently averaging 2.18 years), and reducing bureaucratic challenges can further increase the amount of private property voluntarily committed to banking. Although many ecological uncertainties remain, conservation banking offers at least a partial solution to the conservation versus development conflict over biodiversity.  相似文献   

16.
Climate change is expected to be a top driver of global biodiversity loss in the 21st century. It poses new challenges to conserving and managing imperiled species, particularly in marine and estuarine ecosystems. The use of climate‐related science in statutorily driven species management, such as under the U.S. Endangered Species Act (ESA), is in its early stages. This article provides an overview of ESA processes, with emphasis on the mandate to the National Marine Fisheries Service (NMFS) to manage listed marine, estuarine, and anadromous species. Although the ESA is specific to the United States, its requirements are broadly relevant to conservation planning. Under the ESA, species, subspecies, and “distinct population segments” may be listed as either endangered or threatened, and taking of most listed species (harassing, harming, pursuing, wounding, killing, or capturing) is prohibited unless specifically authorized via a case‐by‐case permit process. Government agencies, in addition to avoiding take, must ensure that actions they fund, authorize, or conduct are not likely to jeopardize a listed species’ continued existence or adversely affect designated critical habitat. Decisions for which climate change is likely to be a key factor include: determining whether a species should be listed under the ESA, designating critical habitat areas, developing species recovery plans, and predicting whether effects of proposed human activities will be compatible with ESA‐listed species’ survival and recovery. Scientific analyses that underlie these critical conservation decisions include risk assessment, long‐term recovery planning, defining environmental baselines, predicting distribution, and defining appropriate temporal and spatial scales. Although specific guidance is still evolving, it is clear that the unprecedented changes in global ecosystems brought about by climate change necessitate new information and approaches to conservation of imperiled species. El Cambio Climático, los Ecosistemas Marinos y el Acta Estadunidense de Especies en Peligro  相似文献   

17.
Abstract: The salt marsh harvest mouse, Reithrodontomys raviventris , is endemic to the marshes of San Francisco Bay. Ultimate factors such as rising sea level and tectonic changes will play important roles in the future management of the mouse, causing a shift from tidal marshes threatened by submergence to diked marshes threatened by development Land values and government regulations force the United States Fish and Wildlife Service and other agencies into proximate management strategies to recover the species. Whether large enough areas of diked marsh can be acquired in the near future to adequately protect the mouse in perpetuity is questioned.  相似文献   

18.
Managing Boreal Forest Landscapes for Flying Squirrels   总被引:5,自引:0,他引:5  
Abstract: Flying squirrel (Pteromys volans) populations have declined severely during the past few decades, and the species has become a focal species in forest management and the conservation debate in Finland. We compared landscape structure around known flying squirrel home ranges with randomly chosen forest sites to determine which landscape patterns characterize the areas occupied by the species in northern Finland. We sought to identify the key characteristics of the landscape that support the remaining flying squirrel populations. We analyzed landscape structure within circular areas with 1- and 3-km radii around 63 forest sites occupied by flying squirrels, and around 96 random sites. We applied stepwise analysis of the landscape structure where landscapes were built up step-by-step by adding patch types in order of their suitability for the flying squirrel. The land-use and forest-resource data for the analysis were derived from multisource national forest inventory and imported to a geographical information system. Landscape patch types were divided into three suitability categories: breeding habitat (mixed spruce-deciduous forests); dispersal habitat ( pine and young forests); and unsuitable habitat ( young sapling stands, open habitats, water). Flying squirrel landscapes contained more suitable breeding habitat patches and were better connected by dispersal habitats than random landscapes. Our results suggest that for the persistence of the flying squirrel, forest managers should 1) maintain a deciduous mixture, particularly in spruce-dominated forests; 2) maintain physical connectivity between optimal breeding habitats; and 3) impose coarse-grained structures on northeastern Finnish landscapes at current levels of habitat availability.  相似文献   

19.
Toward Best Practices for Developing Regional Connectivity Maps   总被引:3,自引:0,他引:3  
Abstract: To conserve ecological connectivity (the ability to support animal movement, gene flow, range shifts, and other ecological and evolutionary processes that require large areas), conservation professionals need coarse‐grained maps to serve as decision‐support tools or vision statements and fine‐grained maps to prescribe site‐specific interventions. To date, research has focused primarily on fine‐grained maps (linkage designs) covering small areas. In contrast, we devised 7 steps to coarsely map dozens to hundreds of linkages over a large area, such as a nation, province, or ecoregion. We provide recommendations on how to perform each step on the basis of our experiences with 6 projects: California Missing Linkages (2001), Arizona Wildlife Linkage Assessment (2006), California Essential Habitat Connectivity (2010), Two Countries, One Forest (northeastern United States and southeastern Canada) (2010), Washington State Connected Landscapes (2010), and the Bhutan Biological Corridor Complex (2010). The 2 most difficult steps are mapping natural landscape blocks (areas whose conservation value derives from the species and ecological processes within them) and determining which pairs of blocks can feasibly be connected in a way that promotes conservation. Decision rules for mapping natural landscape blocks and determining which pairs of blocks to connect must reflect not only technical criteria, but also the values and priorities of stakeholders. We recommend blocks be mapped on the basis of a combination of naturalness, protection status, linear barriers, and habitat quality for selected species. We describe manual and automated procedures to identify currently functioning or restorable linkages. Once pairs of blocks have been identified, linkage polygons can be mapped by least‐cost modeling, other approaches from graph theory, or individual‐based movement models. The approaches we outline make assumptions explicit, have outputs that can be improved as underlying data are improved, and help implementers focus strictly on ecological connectivity.  相似文献   

20.
Aquatic species are threatened by climate change but have received comparatively less attention than terrestrial species. We gleaned key strategies for scientists and managers seeking to address climate change in aquatic conservation planning from the literature and existing knowledge. We address 3 categories of conservation effort that rely on scientific analysis and have particular application under the U.S. Endangered Species Act (ESA): assessment of overall risk to a species; long‐term recovery planning; and evaluation of effects of specific actions or perturbations. Fewer data are available for aquatic species to support these analyses, and climate effects on aquatic systems are poorly characterized. Thus, we recommend scientists conducting analyses supporting ESA decisions develop a conceptual model that links climate, habitat, ecosystem, and species response to changing conditions and use this model to organize analyses and future research. We recommend that current climate conditions are not appropriate for projections used in ESA analyses and that long‐term projections of climate‐change effects provide temporal context as a species‐wide assessment provides spatial context. In these projections, climate change should not be discounted solely because the magnitude of projected change at a particular time is uncertain when directionality of climate change is clear. Identifying likely future habitat at the species scale will indicate key refuges and potential range shifts. However, the risks and benefits associated with errors in modeling future habitat are not equivalent. The ESA offers mechanisms for increasing the overall resilience and resistance of species to climate changes, including establishing recovery goals requiring increased genetic and phenotypic diversity, specifying critical habitat in areas not currently occupied but likely to become important, and using adaptive management. Incorporación de las Ciencias Climáticas en las Aplicaciones del Acta Estadunidense de Especies en Peligro para Especies Acuáticas  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号