首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution behavior of pyrene on humic acid (HA)-kaolin complexes, prepared by adsorbing HA on kaolin, was investigated by batch experiments. The distribution coefficient (Kd) of pyrene on the HA-kaolin complex increased with the fraction (f(oc)) of organic carbon adsorbed to the surface of the kaolin. This can be attributed to hydrophobic interactions between pyrene and the adsorbed HAs. The effects of adsorbed HAs were quantitatively evaluated by calculating the distribution coefficient (K(oc)) and affinity constant (K(oc)ads) for pyrene to the adsorbed HAs. A fluorescence quenching method was employed to determine the affinity constant (K(oc)aq) of pyrene to HAs dissolved in an aqueous solution. When the K(oc) values were compared with the K(oc)aq values, the K(oc) values were found to be 4 to 11 times larger than the K(oc)aq values. On the other hand, the K(oc)ads values were 4 to 9 times larger than the K(oc)aq values. These indicate that the affinity for pyrene is enhanced by the adsorption of HAs to kaolin. In addition, the K(oc) values increased with increasing average molecular weights of the HAs. These results demonstrate that HAs, when they are adsorbed to clay minerals, play an important role in the deposition of polycyclic aromatic hydrocarbons (PAHs) in a soil environment.  相似文献   

2.
Understanding pollutant sorption, bioremediation of these pollutants, and their interactions with humic substances requires knowledge of molecular-level processes. New developments with nuclear magnetic resonance (NMR) experiments and labeled compounds have improved the overall understanding of these mechanisms. The advancements made with two-dimensional NMR show great promise, as structural information and hydrogen-carbon bond connectivity can be discerned. This communication presents the application of improved two-dimensional NMR methods, the double quantum filtered (DQF) correlation spectroscopy (COSY) and echo/anti-echo heteronuclear single quantum coherence (HSQC) experiments, for use in structural studies of humic substances. Both experiments were found to produce significant improvements over the conventional COSY and heteronuclear multiple quantum coherence (HMQC) experiments that have been previously employed in similar studies. The more sensitive echo/anti-echo HSQC experiment produced more cross-peaks with higher resolution when compared with the HMQC spectra. The DQF-COSY significantly suppressed the diagonal signals and allowed numerous signals previously hidden in the standard COSY experiment to be observed. These improvements will aid current characterization strategies of humic substances from soils, sediments, and water and their subsequent reactions with pollutants and microorganisms.  相似文献   

3.
Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) is retained against leaching losses in soils principally by sorption to organic matter, but the mechanism of sorption has been a matter of controversy. Conflicting evidence exists for proton transfer, electron transfer, and hydrophobic interactions between atrazine and soil humus, but no data are conclusive. In this paper we add to the database by investigating the role of (i) hydroxyatrazine (6-hydroxy-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and (ii) hydrophobicity in the sorption of atrazine by Brazilian soil humic substances. We demonstrate, apparently for the first time, that hydroxyatrazine readily forms electron-transfer complexes with humic substances. These complexes probably are the cause of the well-known strong adsorption by humic acids and they may be the undetected cause of apparent electron-transfer complexes between soil organic matter and atrazine, whose transformation to the hydroxy form is facile. We also present evidence that supports the important contribution of hydrophobic interactions to the pH-dependent sorption of atrazine by humic substances.  相似文献   

4.
Organic pollutants are degraded in soil and simultaneously nonextractable residues are formed. However, proof is lacking that this fixation has a detoxifying effect. We investigated the transformation and binding of 2,4,6-trinitrotoluene (TNT) with catechol or soil humic acid as cosubstrates. Carbon-14-labeled TNT and its reaction products were quantified by radiocounting; extractable compounds were identified by high performance liquid chromatography (HPLC). Bound and extractable residues of 15N-labeled TNT and metabolites were studied by 15N nuclear magnetic resonance spectroscopy (15N NMR). Since TNT is not easily transformed under oxidizing conditions an anaerobic/aerobic treatment was used. Anaerobic microorganisms from cow manure were used to reduce TNT during the anaerobic phase and subsequently, a laccase from Trametes villosa was used in the aerobic phase to oxidatively couple the metabolites to humic matter. Seventy-four percent of TNT was immobilized with catechol as cosubstrate, but only 25% with humic acid. With catechol the main extractable component was TNT, while with humic acid it was mostly the metabolite 4-aminodinitrotoluene. For both co-substrates, the spectra of immobilized metabolites obtained by solid-state 15N-cross polarization magic angle spinning (CPMAS) NMR spectroscopy showed signals in the chemical shift region for protonated aromatic amino compounds. However, in the presence of catechol, an additional signal from nonextractable nitro groups was found, which could represent sequestered TNT. The partially reduced metabolites of TNT that formed nonextractable residues in humic acid are not likely to be remobilized easily and are thus regarded as detoxified.  相似文献   

5.
Recent molecular modeling and spectroscopic studies have suggested that relatively strong interactions can occur between aromatic pi donors and metal cations in aqueous solutions. The objective of this study was to characterize potential cation-pi interactions between pi donors and exchangeable cations accumulated at mineral surfaces via both spectroscopic and batch sorption methods. Quadrupolar splitting in deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy for d(2)-dichloromethane, d(6)-benzene, and d(8)-toluene (C(6)D(5)- moiety) in aqueous suspensions of a Na-saturated reference montmorillonite unambiguously indicated the ordering of solute molecules with respect to the clay surface. The half line broadening (Delta nu(1/2)) of (2)H NMR of d(6)-benzene in montmorillonite suspensions showed that soft exchangeable cations generally resulted in more benzene sorption compared with harder cations (e.g., Ag(+) > Cs(+) > Na(+) > Mg(2+), Ba(2+)). In batch sorption experiments, saturating minerals (e.g., porous silica gels, kaolinite, vermiculite, montmorillonite) with a soft transition metal or softer base cations generally increased the polycyclic aromatic hydrocarbon (PAH) sorption relative to harder cations (e.g., Ag(+) > Cs(+) > K(+) > Na(+); Ba(2+) > Mg(2+)). Sorption of phenanthrene to Ag(+)-saturated montmorillonite was much stronger compared with 1,2,4,5-tetrachlorobenzene, a coplanar non-pi donor having slightly higher hydrophobicity. In addition, a strong positive correlation was found between the cation-dependent sorption and surface charge density of the minerals (e.g., vermiculite, montmorillonite > silica gels, kaolinite). These results, coupled with the observations in (2)H NMR experiments with montmorillonite, strongly suggest that cation-pi bonding forms between PAHs and exchangeable cations at mineral surfaces and affects PAH sorption to hydrated mineral surfaces.  相似文献   

6.
Clay minerals and humic substance (HS)-clay complexes are widely distributed in soil environments. Improved predictions on the uptake of organic pollutants by soil require a better understanding of fundamental mechanisms that control the relative contribution from organic and inorganic constituents. Five selected aromatic compounds varying in electronic structure, including nonpolar phenanthrene (PHEN), 1,2,4,5-tetrachlorobenzene (TeCB), polar 1,3-dinitrobenzene (DNB), 2,6-dichlorobenzonitrile (dichlobenil [DNL]), and 1-naphthalenyl methylcarbamate (carbaryl [CBL]), were sorbed separately from aqueous solution to Na(+)-, K(+)-, Cs(+)-, and Ca(2+)-saturated montmorillonites with and without the presence of dissolved HS at pH about 6. Upon normalizing for hydrophobic effects by solute aqueous solubility, the overall trend of sorptive affinity to HS-free K(+)-clay is DNB > DNL, CBL > PHEN, TeCB, indicating preferential adsorption of the polar solutes. With the presence of HS, sorption of PHEN, TeCB, and CBL increases by several times compared with the pure clay, attributed to HS-facilitated hydrophobic partition (PHEN and TeCB) or H-bonding (CBL). The enhanced sorption of PHEN by HS is cation dependent, where Cs(+) shows the strongest facilitative effect. Coadsorption of HS does not affect sorption of DNB and DNL to clays except that of DNB to Ca(2+)-clay because cation-dipole interactions between the polar group (NO(2) or CN) of solute and weakly hydrated exchangeable cations dominate the overall sorption.  相似文献   

7.
The agricultural practice of amending soils with composted municipal solid waste (MSW) adds significant amounts of organic matter and trace metals, including Cd. Under these conditions, soluble organic complexes of Cd formed in the compost may be more significant than previously thought, due to Cd bioavailability and mobility in the soil environment. To study the relative importance of different types of organic ligands in MSW compost for the binding of Cd, six fractions of the dissolved organic matter (DOM) in addition to humic acid (HA) and fulvic acid (FA) were extracted and their complexation of Cd quantified at pH 7 using an ion-selective electrode (ISE). The highest complexing capacities (CC) for Cd were found for the most humified ligands: HA (2386 micromol Cd g(-1) C of ligand), predialyzed FA (2468 micromol Cd g(-1) C), and HoA, a fulvic-type, easily soluble fraction (1042 micromol Cd g(-1) C). The differences in CC for Cd of the various organic ligands were not directly related to total acid-titratable or carboxylic groups, indicating the importance of sterical issues and other functional groups. The strength of association between Cd and the organic ligands was characterized by calculating stability constants for binding at the strongest sites (pK(int)) and modeling the distribution of binding site strengths. The pK(int) values of the DOM fractions ranged between 6.93 (HiN: polysaccharides) and 8.11 (HiB: proteins and aminosugars), compared with 10.05 for HA and 7.98 for FA. Hence, the highly complex and only partially soluble organic molecules from compost such as HA and FA demonstrated the highest capacity to sequester Cd. However, strong Cd binding of organic ligands containing N-functional groups (HiB) in addition to a high CC of soluble, humified ligands like HoA indicated the relevance of these fractions for the organic complexation of Cd in solution.  相似文献   

8.
This study investigated the effects of organic and inorganic nutrients on the microbial degradation of the common soil contaminant pyrene. The material used in this investigation was collected from potted trees that had been growing for over a year in a soil artificially contaminated with polycyclic aromatic hydrocarbons. Soil was removed from the nonroot (bulk) and root (rhizosphere) zones of these pots and used in mineralization studies that tracked microbial degradation of 14C-pyrene. The factors influencing degradation in these zones were then tested by amendment with essential inorganic nutrients or with root-derived materials. As expected, pyrene mineralization was greater in soil removed from the rhizosphere than in bulk soil. The rate of mineralization in rhizosphere soil was inhibited by inorganic nutrient amendment, whereas nutrients stimulated mineralization in the bulk soil. Pyrene mineralization in bulk soil was also increased by the addition of root extracts intended to mimic exudation by living roots. However, amendment with excised fine roots that were allowed to decay over time in soil initially inhibited mineralization. With time, the rate of mineralization increased, eventually exceeding that of unamended bulk soil. Combined, the initial inhibition and subsequent stimulation produced a zero net impact of decaying fine roots on bulk soil mineralization. Our results, in conjunction with known temporal patterns of fine root dynamics in natural systems, support the idea that seasonal variations in nutrient and substrate availability may influence the long-term effect of plants on organic degradation in soil, possibly reducing or negating the beneficial effects of vegetation that are often observed in short-term studies.  相似文献   

9.
In this study, seven organic amendments (biosolid compost, farm yard manure, fish manure, horse manure, spent mushroom, pig manure, and poultry manure) were investigated for their effects on the reduction of hexavalent chromium [chromate, Cr(VI)] in a mineral soil (Manawatu sandy soil) low in organic matter content. Addition of organic amendments enhanced the rate of reduction of Cr(VI) to Cr(III) in the soil. At the same level of total organic carbon addition, there was a significant difference in the extent of Cr(VI) reduction among the soils treated with organic amendments. There was, however, a significant positive linear relationship between the extent of Cr(VI) reduction and the amount of dissolved organic carbon in the soil. The effect of biosolid compost on the uptake of Cr(VI) from the soil, treated with various levels of Cr(VI) (0-1200 mg Cr kg(-1) soil), was examined with mustard (Brassica juncea L.) plants. Increasing addition of Cr(VI) increased Cr concentration in plants, resulting in decreased plant growth (i.e., phytotoxicity). Addition of the biosolid compost was effective in reducing the phytotoxicity of Cr(VI). The redistribution of Cr(VI) in various soil components was evaluated by a sequential fractionation scheme. In the unamended soil, the concentration of Cr was higher in the organic-bound, oxide-bound, and residual fractions than in the soluble and exchangeable fractions. Addition of organic amendments also decreased the concentration of the soluble and exchangeable fractions but especially increased the organic-bound fraction in soil.  相似文献   

10.
The potential impact of short-run disruptions in the minerals market on Israel's small, developed open economy is examined, showing that Israel is potentially capable of a smoother adjustment to external market disturbances. First, the analysis evaluates critical situations within the framework of a normative ‘general equilibrium model’, tracing the impacts of short-run developments in the resources market, and, second, it focuses on specific minerals within a partial equilibrium framework, using economic supply - demand relationships to assess economic damages. The potential damage estimates indicate that significant research and development outlays in the areas of material and process substitution and the capability for a quick build-up of contingent inventories would be justified to prevent the damages which supply disruption might inflict on the economy.  相似文献   

11.
Summary The paper deals with some of the problems associated with toxic substances in the work environment, it illustrates these by reference to case studies. It also looks at the involvement of Trade Unions in health and safety issues. It points out flaws and limitations of the present legislative measures; the need to detect toxic substances before they are introduced into the workplace. There is a strong argument for new procedures and regulations to control and license toxic substances; it sets out criteria advocated by Trade Unions towards achieving this. It shows how a whole new strategy has to be agreed to, a strategy that puts as its priority the health of the population as a whole.General Secretary of the Association of Technical and Managerial Staffs. A major Trade Union for scientist, technologists and technicians etc. in the UK.  相似文献   

12.
Two different humic acids (HA) and a fulvic acid (FA) were chemically immobilized to a high performance liquid chromatography (HPLC) silica column material. The immobilization was performed by binding amino groups in HA/FA to the free aldehyde group in glutardialdehyde attached to the silica gel. The HPLC column materials were compared with a blank column material made by applying the same procedure but without immobilizing HA or FA. Also, a column was made by binding carbonyl groups in HA to amino groups attached to the silica gel. The humic substances were selected to secure appropriate variation of their structural features. The retention factors of 45 polycyclic aromatic compounds (PAC) to the four columns were determined by HPLC. The advantage of the technique is a large number of compounds can easily be studied. The binding procedure does not appear to cause a drastic selection between the HA molecules. The k' values obtained for the two Aldrich HA columns agree in general reasonably. The retention or sorption of the compounds increased with the size of the PAC and the number of lipophilic substituents, but decreased when polar substituents were present. The PAC retention was much stronger to the two HA columns than to the FA and blank column, both for hydrophobic polycyclic aromatic hydrocarbons (PAH) and the polar PAC. Other factors impacting the PAC binding may be specific interactions with HA and the ionic strength of the aqueous phase. The technique has been applied to do direct determinations of Koc.  相似文献   

13.
Clay-humic complexes are commonly distributed in natural environments. They play very important roles in regulating the transport and retention of hydrophobic organic contaminants in soils and sediments. This study examined the structural changes of humic acid (HA) after adsorption by clay minerals and determined phenanthrene sorption by clay-humic complexes. Solid- and liquid-state 13C nuclear magnetic resonance (NMR), for the first time, provided direct evidence for HA fractionation during adsorption on mineral surfaces, that is, aliphatic fractions were preferentially adsorbed by clay minerals while aromatic fractions were left in the solution. The ratio of UV absorbance of HA at 465 and 665 nm (E4 to E6 ratio), which is related to aromaticity, corroborated with the NMR results. For both montmorillonite and kaolinite, adsorbed HA fractions had higher sorption linearity (N) and affinity (K(oc)) than the source HA. The K(oc) of adsorbed HA for the clay-humic complexes could be up to several times higher than that of the source HA. This large increase may be contributed by the low polarity of the bound HA. Moreover, for each mineral, the N values of adsorbed HA increased with increasing HA loading. It is believed that HA may develop a more condensed structure on mineral surface at lower HA loading level due to the stronger interactions between HA and mineral surface as a result of close contacts.  相似文献   

14.
To assess environmental risks of wood ash, limnological effects of ash application to the drainage basins of two small, humic lakes and one reference lake in southern Finland were examined in this three-year study. Treated areas corresponded to 12 and 19% of the total catchment and the amount of wood ash added was 6400 kg ha(-1). Immediate effects of wood ash on lake water were investigated in three tank experiments each lasting 1.5 wk. In tank experiments, addition of wood ash increased pH, alkalinity, conductivity, and Ca and P concentrations of humic lake water, while growth of phytoplankton decreased. After wood ash application to the subcatchments, pH, alkalinity, conductivity, and concentrations of K+, SO4(2-), and Cl- slightly increased, both in inflowing waters and in the lakes, but no increased leaching of Ca, N, or P from the treated subcatchments occurred. Phytoplankton biomass increased in both experimental lakes in comparison with the reference lake. In the lake with 19% application rate to the catchment, zooplankton biomass also increased. The results indicate that, over the short term, a small-scale ash treatment to a forested drainage basin will not necessarily cause significant changes in the water quality of boreal humic lakes, but at higher application rates, changes in water chemistry and biology are more evident.  相似文献   

15.
Summary Population exposure to toxic chemicals in the environment has become one of the most important, if not the most important, environmental issue of the 1980's. In response to finding high cancer mortality rates, the State of New Jersey organized an extensive program of research to determine public exposure to toxic substances in the environment. Three parts of that research are described. One focusing on toxic substances in the water has detected very low concentrations of many substances. These substances tend to be found in three distinct chemical groups: pesticides, light chlorinated hydrocarbons, and heavy metals. Gross pesticide contamination tends to occur in agricultural and forest areas; gross light chlorinated hydrocarbon pollution is in urban areas. The second component of the research is toxic substances in the air. Like the water studies, low levels of contamination have been found. Limited sampling to date has found groupings of ubiquitous organic chemicals in urban areas, two groups of specialized organic chemicals near industrial sites, and high lead levels near major highways. The third project is developing a computerized information bank about the use and disposal of 155 chemicals and will look for associations between industrial disposal practices and contamination of the environment.  相似文献   

16.
Contamination of water often results from the heavy use of agricultural chemicals, and the disposal of aqueous pesticide waste is a concern. Anodic Fenton treatment (AFT) has been shown to be a successful remediation method for pesticides in solution, but the effect of soil on the degradation kinetics of pesticides using this method has not been determined. The purpose of this study was to study the effect of humic acid, as a soil surrogate, on the degradation kinetics of alachlor [2-chloro-N-(2,6-diethylphenyl-N-(methoxymethyl) acetamide], a heavily used herbicide that has been studied in pure aqueous solution by AFT. The AFT consists of a controlled constant delivery of Fenton reagents, using an electrochemical half-cell to deliver ferrous iron. Alachlor was quickly degraded by AFT, and the kinetics were found to obey the previously developed AFT model well. Degradation of alachlor by AFT in humic acid slurry showed that when the amount of humic acid was increased, alachlor degradation was significantly slowed down and the degradation kinetics were shifted from the AFT model to a first-order model. Further experimentation indicated that humic acid not only competes with alachlor for hydroxyl radicals, reducing the degradation rate of the target compound, but also buffers the slurry at near neutral pH, blocking regeneration of ferrous ion from ferric ion and subsequently shifting the kinetics to first order. Degradation of several other pesticides in humic acid slurry also followed first-order kinetics. These results imply that higher concentrations of Fenton reagents will be required for soil remediation.  相似文献   

17.
The EU is committed to encourage biological treatments of organic waste as an alternative to landfill and also to enhance organic matter recycling. When these wastes are composted, the composition of the initial raw materials is very important in order to obtain a good quality product. In this article, the mineral composition of the organic fraction obtained from source-sorted collection (SC) and the organic fraction mechanically separated (MS) from mass-collected municipal solid waste was evaluated. Also, the compositions of these 2 raw materials that are used in the current Spanish municipal solid waste biological treatment facilities were compared. The mineral elements analyzed were the total content of the heavy metals Zn, Cu, Ni, Cr, Pb and Cd, and the plant nutrients P, K, Na, Ca, Mg, Fe and Mn. The results obtained were expressed on dry matter basis and on mineral matter basis. Important differences were detected between SC and MS samples, on both dry and mineral matter basis. In general, nutrient contents are higher in SC than in MS, and heavy metal contents are significantly lower in SC. Our results also support the idea that the heavy metal migration from the non-compostable materials to the decomposable matrix takes place from the beginning of the process while both types of materials are in contact.  相似文献   

18.
Changes since 1972 in Canadian federal and provincial tax laws have eliminated many of the prior tax incentives offered to the mining industry. These changes provide an opportunity to study the effect of tax laws on a country's mineral resource development by comparing trends in mineral exploration in various provinces with adjoining regions, and by comparing these results with firm behaviour that would be expected from microeconomic analysis. Mineral producers have sought higher, more stable returns, resulting in shifts of exploration into political regions with more favourable and less changeable tax policies. Future supplies of mineral raw materials from a political region are dependent on current exploration effort, which is in turn influenced by the region's tax laws.  相似文献   

19.
The purpose of this article is to broaden understanding of the factors which exert major influences on prices for industrial metals beyond the widely recognized tendency for prices and inventories to move in opposite directions. Specifically, the relationship between inventory levels and price volatility is examined. In addition, the relationship between prices and production costs is also examined. A few thoughts are expressed on the relationship between prices and industry structure. The paper includes a qualitative discussion about why a link should exist between prices and production costs, a graph illustrating the relationship between prices and inventories, and econometric equations quantifying the relationship between prices, production costs and inventories.  相似文献   

20.
Interactions of hydrophobic organic compounds (HOCs) with soil organic matter (SOM) determine their combination state in soils, and therefore strongly influence their mobility, bioavailability, and chemical reactivity. Contact time (aging) of an HOC in soil also strongly influences its combination state and environmental fate. We studied Fenton oxidation of pyrene in three different soils to reveal the influences of SOM, contact time, and combination state on the efficiency of vigorous chemical reactions. Pyrene degradation efficiency depended strongly on the dose of oxidant (H(2)O(2)) and catalyst (Fe(2+)); the greatest degradation was achieved at an oxidant to catalyst molar ratio of 10:1. Pyrene degradation differed among the three soils, ranging from 65.4% to 88.9%. Pyrene degradation efficiency decreased with increasing SOM content, and the aromatic carbon content in SOM was the key parameter. We hypothesize that pyrene molecules that combine with the compact net structure of aromatic SOM are less accessible to Fenton oxidation. Furthermore, pyrene degradation efficiency decreased considerably after aged for 30 days, but further aging to 60 and 180 days did not significantly change degradation efficiency. The Fenton oxidation efficiency of pyrene in both unaged and aged soils was greater than the corresponding desorption rate during the same period, perhaps because Fenton reaction can make pyrene more accessible to the oxidant through the enhancement of HOCs' desorption by generating reductant species or by destroying SOM through oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号