首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Minimization of the formation of disinfection by-products   总被引:1,自引:0,他引:1  
The drinking water industry is required to minimize DBPs levels while ensuring adequate disinfection. In this study, efficient and appropriate treatment scheme for the reduction of disinfection by-product (DBPs) formation in drinking water containing natural organic matter has been established. This was carried out by the investigation of different treatment schemes consisting of enhanced coagulation, sedimentation, disinfection by using chlorine dioxide/ozone, filtration by sand filter, or granular activated carbon (GAC). Bench scale treatment schemes were applied on actual samples from different selected sites to identify the best conditions for the treatment of water. Samples were collected from effluent of each step in the treatment train in order to analyze pH, UV absorbance at 254 nm (UVA254), specific UV absorbance at 254 nm (SUVA254), dissolved organic carbon (DOC), haloacetic acids (HAAs) and trihalomethanes (THMs). The obtained results indicated that using pre-ozonation/enhanced coagulation/activated carbon filtration treatment train appears to be the most effective method for reducing DBPs precursors in drinking water treatment.  相似文献   

2.
Kristiana I  Joll C  Heitz A 《Chemosphere》2011,83(5):661-667
The removal of organic precursors of disinfection by-products (DBPs), i.e. natural organic matter (NOM), prior to disinfection and distribution is considered as the most effective approach to minimise the formation of DBPs. This study investigated the impact of the addition of powdered activated carbon (PAC) to an enhanced coagulation treatment process at an existing water treatment plant on the efficiency of NOM removal, the disinfection behaviour of the treated water, and the water quality in the distribution system. This is the first comprehensive assessment of the efficacy of plant-scale application of PAC combined with enhanced coagulation on an Australian source water. As a result of the PAC addition, the removal of NOM improved by 70%, which led to a significant reduction (80-95%) in the formation of DBPs. The water quality in the distribution system also improved, indicated by lower concentrations of DBPs in the distribution system and better maintenance of disinfectant residual at the extremities of the distribution system. The efficacy of the PAC treatment for NOM removal was shown to be a function of the characteristics of the NOM and the quality of the source water, as well as the PAC dose. PAC treatment did not have the capacity to remove bromide ion, resulting in the formation of more brominated DBPs. Since brominated DBPs have been found to be more toxic than their chlorinated analogues, their preferential formation upon PAC addition must be considered, especially in source waters containing high concentrations of bromide.  相似文献   

3.
新型复合预氧化技术控制副产物的试验研究   总被引:1,自引:0,他引:1  
臭氧被广泛应用于饮用水预氧化工艺中,但是成本较高,而且会生成臭氧化副产物,如可同化有机碳(AOC)、溴酸盐和甲醛.因此,提出臭氧/高锰酸钾复合预氧化技术,并对照预臭氧化技术,进行了消毒副产物前质及臭氧化副产物控制的小试试验研究.结果表明,与预臭氧化(1.5 mg/L臭氧)相比,复合预氧化(0.6 mg/L臭氧 0.4 mg/L高锰酸钾)能促进混凝沉淀对消毒副产物前质的去除,总去除率与单独预臭氧化的去除率相当.而且又能降低AOC生成量,并促进混凝沉淀对AOC的去除,合计AOC去除率达43%左右.此外,对溴酸盐和甲醛生成量也有明显去除效果,比单独预臭氧化降低了78.4%和21.2%.  相似文献   

4.
选择有代表性的芳香类有机物,在含有腐殖酸的水溶液中进行氯化试验.测定三卤甲烷和卤乙酸的生成特性.并分析有机物的化学结构对生成消毒副产物的影响.结果表明.各受试物氯化生成消毒副产物的活性和反应速率排序为间苯二酚>对苯二酚>邻苯二酚>苯酚>苯胺>苯甲酸>硝基苯;芳香类有机物苯环上官能团的性质、数量和位置等影响消毒副产物的生成;间苯二酚的氯化反应可分为快速反应阶段和慢速反应阶段.  相似文献   

5.
Formation of disinfection by-products in chlorinated swimming pool water.   总被引:6,自引:0,他引:6  
The formation of five volatile disinfection by-products (DBPs: chloroform, bromodichloromethane, chloral hydrate, dichloroacetonitrile, and 1,1,1-trichloropropanone) by the chlorination of the materials of human origin (MHOs: hair, lotion, saliva, skin, and urine) in a swimming pool model system was examined. Chlorination reactions took place with a sufficient supply of chlorine residuals (0.84 mg Cl2/l < total chlorine < 6.0 mg Cl2/l) in 300 ml glass bottles containing either ground water or surface water as a reaction medium at 30 degrees C and pH 7.0, for either 24 or 72 h. A longer reaction period of 72 h or a higher content of organic materials led to the increased formation of DBPs. Of the DBPs formed by the reaction, chloroform was a major compound found in both ground and surface waters. The formation of chloroform and bromodichloromethane per unit total organic carbon (TOC) concentration was suppressed when all types of MHOs were added to the surface water that already contained DBP precursors such as humic substances. However, the formation of dichloroacetonitrile was promoted, probably due to the increased degradation reactions of nitrogen-containing compounds such as urea and proteins of human origin. In conclusion, the materials of swimmers' origin including hair, lotion, saliva, skin, and urine add to the levels of DBPs in swimming pool water, and any mitigation measures such as periodic change of water are needed to protect swimmers from elevated exposures to these compounds.  相似文献   

6.
Application of chlorination for the disinfection of drinking water results in the formation of a wide range of organic compounds, called disinfection by-products (DBPs), which occur due to the reaction of chlorine with natural organic materials. The occurrence of DBPs was studied in samples from four drinking-water treatment plants (WTPs) and from the distribution network of Athens, Greece. Twenty-four compounds, which belong to different categories of DBPs, were monitored, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), haloketones (HAKs), chloral hydrate (CH) and chloropicrin (CP). Sampling was performed monthly for a period of two years, from three different points at each WTP and from eight points atthe distribution network. Samples were analyzed by GC-ECD methods, which included pretreatment with liquid-liquid extraction for volatile DBPs and acidic methanol esterification for HAAs. The results of the analyses have shown the presence of disinfection by-products belonging to all categories studied in all water samples collected after prechlorination. The major categories of DBPs detected were THMs and HAAs, while the other volatile DBPs occurred at lower concentrations. The concentrations of DBPs did not in any case exceed the maximum contaminant levels (MCL) set by USEPA and WHO. However, monitoring these compounds needs to be continued, because their levels could increase due to changes in the quality of water entering the water treatment plants. Reduction of the concentrations of DBPs could be achieved by optimization of the chlorination conditions, taking into account the effect of time. Moreover, research on alternative disinfection methods (e.g. ozone, chlorine dioxide, chloramines) and their by-products should be conducted to evaluate their applicability in the case of the drinking water of Greece.  相似文献   

7.
8.
Disinfection by-products in Finnish drinking waters   总被引:11,自引:0,他引:11  
Disinfection by-products (DBPs) were measured in plant effluents of 35 Finnish waterworks, which utilized different treatment processes and raw water sources. DBPs were measured also from the distribution systems of three waterworks. Di- and trichloroacetic acids, and chloroform were the major DBPs found in treated water samples. The concentration of six haloacetic acids (HAA6) exceeded the concentrations of trihalomethanes (THMs). Chlorinated drinking waters (DWs) originating from surface waters contained the highest concentration of HAA6 and THMs: 108 and 26 microg/l, respectively. The lowest concentrations of DBPs were measured from ozonated and/or activated carbon filtrated and chloraminated DWs. Higher concentrations of HAA6, THMs, and adsorbable organic halogens were measured in summer compared to winter. The levels of chlorinated acetic acids, chloroform, and bromodichloromethane correlated positively with mutagenicity. Past mutagenicity levels of DWs were examined. A major reduction in the use of prechlorination, increased use of chloramine disinfection, and better removal of organic carbon were the most important reasons for the 69% decrease in mutagenicity from 1985 to 1994.  相似文献   

9.
In the pioneer days, the main driving forces for research of organics in drinking water treatment (DWT) were human health risks and optimisation of technology. The focus was on natural organic matter (NOM) structure, disinfection by-products (DBPs) formation, NOM removal by means of coagulation, adsorption, and oxidation, and development of the most efficient water treatment trains. Surprisingly, after decades of research, rapid development of analytical techniques and progress in risk assessment, the same driving forces are still in the limelight — although the topics have changed slightly. The attention switched from trihalomethanes to a new generation of DBPs. The definition of hydrophilic/hydrophobic NOM depends on the technique used for characterisation. It has become evident that numerous organic compounds can threaten water supply sources. Some of them had been ignored or overlooked in the past, but have recently been detected by advanced analytical tools even in drinking water. Prioritisation becomes priority per se. As far as processes are concerned, mainstream research has been following three lines: fouling mechanisms, application of hybrid processes and interactions between synthetic organic chemicals, other water constituents and materials used in DWT. Significant development has been made in membrane technology. This paper presents a broad overview of the recent organics research. Although the state-of-the-art technologies seem to have an answer to each and every question raised, it is still necessary to deal with specific problems on a case-by-case basis mainly due to the unique nature of NOM and different xenobiotics that may appear in various types of waters. In the end, human health risk, which derives from the presence/absence of organics, is only the tip of the iceberg — underneath lies a whole new universe — the socio-economic aspect of water treatment and quality that deserves much more attention.  相似文献   

10.
Toor R  Mohseni M 《Chemosphere》2007,66(11):2087-2095
The presence of disinfection byproducts (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs) in drinking water is of great concern due to their adverse effects on human health. Emerging regulation limiting the concentration of DBPs in drinking water has increased demands for technologies and processes which reduce the formation of DBPs in drinking water. In this study, UV-H2O2 based advance oxidation process (AOP) was used to treat raw surface water. Experiments were conducted using low pressure mercury vapor UV lamps in collimated beam and flow-through annular photoreactors. The effect of UV fluence (0–3500 mJ cm−2) and hydrogen peroxide concentration (0–23 mg l−1) in reducing the concentration of THMs and HAAs was examined. The UV-H2O2 AOP was then coupled with a downstream biological activated carbon (BAC) treatment to assess the synergetic benefits of combining the two treatments. It was observed that UV-H2O2 AOP was only effective at reducing DBPs at UV fluences of more than 1000 mJ cm−2and initial H2O2 concentrations of about or greater than 23 mg l−1. However, the combined AOP–BAC treatment showed significant reductions of 43%, 52%, and 59% relative to untreated raw water for DBPs, TOC, and UV254, respectively.  相似文献   

11.
Liu JL  Li XY 《Chemosphere》2010,81(9):1075-1083
Laboratory experiments were carried out to investigate wastewater organics as the precursors of disinfection byproducts (DBPs) in drinking water supply. The focus was on the change in wastewater DBP precursors during biological degradation under simulated natural conditions. The wastewater and its treated secondary effluent were characterized for DBP formation potential (DBPFP) and DBP speciation profile, including trihalomethanes, haloacetic acids, chloral hydrate, and nitrogen-containing DBPs. Several model organic compounds, including humic acid, tannic acid, glucose, starch, glycine, and bovine serum albumin (BSA), were used to represent the different types of organic pollutants in wastewater discharge. The results show that the DBPFP of wastewater decreased after biodegradation, but the remaining organic matter had a greater DBPFP yield with chlorine. Different model organics displayed different changes in DBPFP during biodegradation. The DBPFP remained largely unchanged for the glycine solution, decreased greatly for the tannic acid and BSA solutions, and increased nearly 3-fold for the glucose and starch solutions after 10d of biodegradation. Meanwhile, the DBPFP yield increased from 3 for glycine to 51μg DBP mg(-1) C for its degradation residue, and from 1 for glucose and starch to 87 and 38μg DBP mg(-1) C for their organic residues, respectively. Although biodegradation may effectively remove some DBP precursors, biotransformation during the process produces new DBP precursors in the form of soluble microbial products (SMPs). The experimental results reveal that SMPs may be an important source of wastewater-derived DBP precursors in natural waters.  相似文献   

12.
Background, aim and scope  The use of sodium hypochlorite (HYP) in viticulture results in effluents which are contaminated with halogenated substances. These disinfection by-products (DBPs) can be quantified as group parameter ‘adsorbable organic halogens’ (AOX) and have not been determined in effluents of viticulture yet. The substances that are detected as AOX are unknown. The AOX can be composed of harmless substances, but even toxic contaminants. Thus, it is impossible to assess ecological impacts. The aim of this study is to determine the quantification of AOX and DBPs after the use of HYP. This will be helpful to reduce environmental pollution by AOX. Materials and methods  The potential of HYP to generate AOX was determined in laboratory-scale experiments. Different model solutions were treated with HYP according to disinfection processes in viticulture and conditions of AOX formation in effluents were simulated. AOX were quantified using the flask-shaking method and identified DBPs were investigated by gas chromatography–mass spectrometry. Results  Treatment with HYP resulted in the formation of AOX. The percentage conversion of HYP to AOX was up to 11%. Most important identified DBPs in viticulture are chloroform, dichloroacetic acid and trichloroacetaldehyde. In addition, the formation of carbon tetrachloride (CT), 1,1,1-trichloropropanone, 2,4-dichlorobenzoic acid and 2-chloro-/2,4-dichlorophenylacetic acid was investigated. It was demonstrated that reaction temperature, concentration of HYP and type of organic matter have important influence on the formation of chlorinated DBPs. Discussion  The percentage conversion of HYP to AOX was similar to other published studies. Although a correlation of single compounds and AOX is difficult, chloroform was the predominant AOX. Generation of the volatile chloroform should be avoided due to possible adverse effects. The generation of dichloroacetic acid is of minor importance on account of biodegradation. Trichloroacetaldehyde and 1,1,1-trichloropropanone are weak mutagens and their formation should be avoided. Conclusions  The generation of AOX and chlorinated DBPs can be minimised by reducing the concentrations of the organic materials in the effluents. The removal of organic matter before disinfection results in a decreased formation of AOX. HYP is an effective disinfectant; therefore, it should be used at low temperatures and concentrations to reduce the amount of AOX. If possible, disinfection should be accomplished by the use of no chlorine-containing agents. By this means, negative influences of HYP on the quality of wine can also be avoided. Recommendations and perspectives  Our results indicate that HYP has a high potential to form AOX in effluents of viticulture. The predominant by-products are chloroform, dichloroacetic acid and trichloroacetaldehyde. In further research, wastewaters from a winery and the in- and outflows of two sewage treatment plants were sampled during vintage and analysed. These results will be discussed in a following paper.  相似文献   

13.
Chang EE  Chiang PC  Ko YW  Lan WH 《Chemosphere》2001,44(5):1231-1236
The molecular weight distribution and chemical composition of precursors and their relationship with disinfection by-products (DBPs) were investigated. Most of the organic matter responsible for the major DBP precursors in the Pan-Hsin water are small compounds with a molecular weight less than 1 kDa. The hydrophobic acids display the greatest ability to produce DBP. Therefore, effective removal of small molecules or hydrophobic acidic organics prior to disinfection process will significantly reduce the DBP concentration in the finished water. Although the coagulation process is effective in removing large organic precursors and the removal efficiencies of CHCl3 formation potential and organic carbon increase proportionally to the molecular weight of the precursors, the conventional treatment methods have limited efficiency in eliminating small precursors, which have high DBP formation potential.  相似文献   

14.
以长三角某典型河流型水源地源水为研究对象,设计了传统工艺及基于凹凸棒土处理单元的6种强化工艺,对各工艺及其处理单元应用于典型氯化消毒副产物(三卤甲烷和卤乙酸)及其前体物控制的技术和经济可行性进行了系统分析。结果表明,预O3+凹土强化混凝+O3-GAC强化的工艺对上述2种消毒副产物及其前体物的控制效果最佳;在传统工艺中单纯增加O3处理也能在一定程度上提高其对消毒副产物前体物的去除效果;KMnO4控制消毒副产物的效果一般,但KMnO4处理可强化后续单元对消毒副产物前体物的去除效果。各工艺处理出水中三卤甲烷和卤乙酸单项指标均能达标,但传统工艺和经凹土强化混凝+GAC强化的工艺出水三卤甲烷4种化合物的实测浓度与其各自限值的比值之和均大于1.0,不能满足水质要求,必须进行强化处理。凹土强化混凝单元在6种强化工艺条件下对三卤甲烷生成潜能(THMFP)和卤乙酸生成潜能(HAAFP)的去除率较传统混凝单元平均提高15.99%和4.92%;各强化工艺对THMFP和HAAFP的去除率较传统工艺均提高20%以上(除凹土强化混凝+GAC强化的工艺外),消毒副产物产生量降低40%以上,工艺成本降低20%以上。  相似文献   

15.
Nano-silver is increasingly used in consumer products from washing machines and refrigerators to devices marketed for the disinfection of drinking water or recreational water. The nano-silver in these products may be released, ending up in surface water bodies which may be used as drinking water sources. Little information is available about the stability of the nano-silver in sources of drinking water, its fate during drinking water disinfection processes, and its interaction with disinfection agents and disinfection by-products (DBPs). This study aims to investigate the stability of nano-silver in drinking water sources and in the finished drinking water when chlorine and chloramines are used for disinfection and to observe changes in the composition of DBPs formed when nano-silver is present in the source water. A dispersion of nano-silver particles (10 nm; PVP-coated) was used to spike untreated Ottawa River water, treated Ottawa River water, organic-free water, and a groundwater at concentrations of 5 mg/L. The diluted dispersions were kept under stirred and non-stirred conditions for up to 9 months and analyzed weekly using UV absorption to assess the stability of the nano-silver particles. In a separate experiment, Ottawa River water containing nano-silver particles (at 0.1 and 1 mg/L concentration, respectively) was disinfected by adding sodium hypochlorite (a chlorinating agent) in sufficient amounts to maintain a free chlorine residual of approximately 0.4 mg/L after 24 h. The disinfected drinking water was then quenched with ascorbic acid and analyzed for 34 neutral DBPs (trihalomethanes, haloacetonitriles, haloacetaldehydes, 1,1 dichloro-2-propanone, 1,1,1 trichloro-2-propanone, chloropicrin, and cyanogen chloride). The results were compared to the profile of DBPs obtained under the same conditions in the absence of nano-silver and in the presence of an equivalent concentration of Ag+ ions (as AgNO3). The stability of the nano-silver dispersions in untreated Ottawa River water, with a dissolved organic carbon concentration of 6 mg/L, was significantly higher than the stability of the nano-silver dispersions in distilled, organic-free water. Nano-silver particles suspended in the groundwater agglomerated and were quickly and quantitatively removed from the solution. Our data confirm previous observations that natural dissolved organic matter stabilizes nano-silver particles, while the high-ionic strength of groundwater appears to favor their agglomeration and precipitation. As expected, nano-silver was not stable in Ottawa River water through the chlorination process, but survived for many days when added to the Ottawa River water after treatment with chlorine or chloramines. Stirring appeared to have minimal effect on nano-silver stability in untreated and treated Ottawa River water. The profile of DBPs formed in the presence of nAg differed significantly from the profile of DBPs formed in the absence of nAg only at the 1 mg/L nAg concentration. The differences observed consisted mainly in reduced formation of some brominated DBPs and a small increase in the formation of cyanogen chloride. The reduced formation of brominated congeners may be explained by the decrease in available bromide due to the presence of Ag+ ions. It should be noted that a concentration of 1 mg/L is significantly higher than nAg concentrations that would be expected to be present in surface waters, but these results could be significant for the disinfection of some wastewaters with comparably high nano-silver concentrations.  相似文献   

16.
This study presents the seasonal and spatial variations of trihalomethanes (THMs) and haloacetic acids (HAAs) in 30 sampling points within three water distribution systems of Istanbul City, Turkey. The effects of surface water quality, seasonal variation, and species differences were examined. The occurrence of chlorinated THMs and HAAs levels was considerably lower in the system in which raw water is subjected to pre-ozonation versus pre-chlorination. Seasonal analysis of the data indicated that the median concentration of four THMs (THM4) was higher than nine HAAs (HAA9) concentrations in all three distribution systems sampling points. For all distribution systems monitored, the highest median THM4 and HAA9 concentrations were observed in the spring and summer season, while the lowest concentrations of these disinfection byproduct (DBP) compounds were obtained in the fall and winter period. Due to the higher level of bromide in supplying waters of these two systems, moderate levels of brominated DBP species have been observed in the Kagithane and Buyukcekmece distribution systems districts. In fact, Spearman partial correlations (Spearman rank correlation coefficients [rs]) tend to be higher among analogues in terms of number and types of substituent, especially TCAA with TCM (rs 0.91), and DBAA with DBCM (rs 0.90). In contrast, the hydraulic (residence time and flow rate) and chemical mechanisms (hydrolysis, volatilization, and adsorption) affect the fate and transport of DBPs in distribution systems. Seasonal and spatial variations of DBPs presented in this study have important implications on regulatory issues and from an epidemiological point of view.  相似文献   

17.
This paper reports on the photodecomposition of aqueous humic acid (HA) by a TiO2-coated ceramic foam filter (TCF) reactor and on the potential for the formation of disinfection byproducts (DBPs) upon chlorination of the photocatalytically treated solutions. This photocatalytic reactor can also be applied to the removal of natural organic matter (NOM) in swamp waters. The proposed photocatalytic reaction system was operated as per standardized methodologies. First, the ability of the TCF to decompose HA (a representative compound of NOM) was evaluated from the changes in the total organic carbon (TOC) and UV254 with the reaction time. Remarkably, TOC removal and UV254 values ranging from 44% to 61% and from 60% to 83%, respectively, were achieved. The potential for the formation of DBPs (total trihalomethane and total haloacetic acid) by chlorination of the phototreated solution was strongly dependent on the TOC removal and UV254 values in the solution. The degree of photodecomposition of NOMs in the swamp water samples and the DBP formation potential showed similar trends as in the case of the standard solutions containing HA. The method used in this study could be effectively used to evaluate the efficiency of TCF for reducing HA and NOM, while suppressing the formation of DBP products.  相似文献   

18.
Yan M  Wang D  Shi B  Wang M  Yan Y 《Chemosphere》2007,69(11):1695-1702
Although ozone is widely used as a pre-oxidant before coagulation in water treatment, the effect of pre-ozonation on optimized coagulation for removal of particle and natural organic matter (NOM) is still not fully understood. In this paper, pilot-scale investigation was conducted to examine the impact of pre-ozonation on coagulation for particle and NOM removal. Changes in the particle and NOM distributions were characterized by various methods, including laser light granularity system, particle counter, ultrafiltration, and resin absorbent fractionation. A novel composite flocculant–HPAC was compared with the traditional ferric chloride coagulant in terms of coagulation efficiency under the influence of pre-ozonation. Typical micro-polluted North China surface water was used for pilot coagulation tests. The results show that the effect of pre-ozonation on coagulation is associated with the dosage of ozone, coagulant type, and water contamination characteristics. For FeCl3, pre-ozonation acts as a coagulation aid at low dosage (1.0 mg L−1 O3) for turbidity and UV254 removal; while at higher dosage (2.0 mg L−1 O3), pre-ozonation is detrimental to UV254 removal although it is still beneficial for turbidity removal. In the case of composite flocculant–HPAC, pre-ozonation demonstrates negligible influence on both turbidity and UV254 removal. Ozone can simultaneously aggregate fine particles and break down large ones, making them more mineralized and easier to remove. NOM with intermediate molecular weight and hydrophobic neutral property increases at lower ozone dosage, favoring removal by coagulation. At higher ozone dosages, NOM becomes more hydrophilic and its molecular weight becomes smaller, decreasing NOM removal.  相似文献   

19.
《Chemosphere》2008,70(11):1695-1702
Although ozone is widely used as a pre-oxidant before coagulation in water treatment, the effect of pre-ozonation on optimized coagulation for removal of particle and natural organic matter (NOM) is still not fully understood. In this paper, pilot-scale investigation was conducted to examine the impact of pre-ozonation on coagulation for particle and NOM removal. Changes in the particle and NOM distributions were characterized by various methods, including laser light granularity system, particle counter, ultrafiltration, and resin absorbent fractionation. A novel composite flocculant–HPAC was compared with the traditional ferric chloride coagulant in terms of coagulation efficiency under the influence of pre-ozonation. Typical micro-polluted North China surface water was used for pilot coagulation tests. The results show that the effect of pre-ozonation on coagulation is associated with the dosage of ozone, coagulant type, and water contamination characteristics. For FeCl3, pre-ozonation acts as a coagulation aid at low dosage (1.0 mg L−1 O3) for turbidity and UV254 removal; while at higher dosage (2.0 mg L−1 O3), pre-ozonation is detrimental to UV254 removal although it is still beneficial for turbidity removal. In the case of composite flocculant–HPAC, pre-ozonation demonstrates negligible influence on both turbidity and UV254 removal. Ozone can simultaneously aggregate fine particles and break down large ones, making them more mineralized and easier to remove. NOM with intermediate molecular weight and hydrophobic neutral property increases at lower ozone dosage, favoring removal by coagulation. At higher ozone dosages, NOM becomes more hydrophilic and its molecular weight becomes smaller, decreasing NOM removal.  相似文献   

20.
Formation of nitrogenous disinfection by-products from pre-chloramination   总被引:5,自引:0,他引:5  
Chu WH  Gao NY  Deng Y  Templeton MR  Yin DQ 《Chemosphere》2011,85(7):1187-1191
A sampling survey investigated the formation of nitrogenous disinfection by-products (N-DBPs) and carbonaceous DBPs (C-DBPs) from pre-chloramination, an increasingly common treatment strategy in China for regulated C-DBP control, followed by subsequent conventional water treatment processes, i.e., coagulation, sedimentation, and filtration. Dihalogenated N-DBPs typically peaked in the summer and early autumn with a relatively higher temperature, with the maximum levels of dichloroacetamide (DCAcAm), dichloroacetonitrile (DCAN), bromochloroacetonitrile, dibromoacetonitrile and dichloroacetone at 1.8, 6.3, 6.0, 2.6 and 1.8 μg L−1 in the finished water, respectively. Also, the levels of all the dichlorinated N-DBPs were correlated with the ratio of dissolved organic nitrogen (DON) to dissolved organic carbon, implying autochthonous DON played an essential role in the formation of these DBPs. In contrast, the yields of trihalogenated DBPs [chloroform (CF), trichloronitromethane (TCNM) and trichloroacetone (TCAce)] appeared not to be significantly affected by seasons. CF and DCAN were the dominant species in trihalomethanes (THMs) and dihaloacetonitriles (DHANs), respectively. Bromine was more readily incorporated into DHANs to form brominated DBPs than THMs during pre-chloramination. Although pre-chloramination can ensure the finished water to meet with the current Chinese THM regulatory limits, the increased levels of TCNM and TCAce may be a new water quality concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号