首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
Few researchers have developed large-scale habitat models for sympatric carnivore species. We created habitat models for red foxes (Vulpes vulpes), coyotes (Canis latrans) and bobcats (Lynx rufus) in southern Illinois, USA, using the Penrose distance statistic, remotely sensed landscape data, and sighting location data within a GIS. Our objectives were to quantify and spatially model potential habitat differences among species. Habitat variables were quantified for 1-km2 buffered areas around mesocarnivore sighting locations. Following variable reduction procedures, five habitat variables (percentage of grassland patches, interspersion–juxtaposition of forest patches, mean fractal dimension of wetland patches and the landscape, and road density) were used for analysis. Only one variable differed (P < 0.05) between red fox and coyote sighting areas (road density) and bobcat and coyote sighting areas (mean fractal dimension of the landscape). However, all five variables differed between red fox and bobcat sighting areas, indicating considerable differences in habitat affiliation between this pair-group. Compared to bobcats, red fox sightings were affiliated with more grassland cover and larger grassland patches, higher road densities, lower interspersion and juxtaposition of forest patches, and lower mean fractal dimension of wetland patches. These differences can be explained by different life history requirements relative to specific cover types. We then used the Penrose distance statistic to create habitat models for red foxes and bobcats, respectively, based on the five-variable dataset. An independent set of sighting locations were used to validate these models; model fit was good with 65% of mesocarnivore locations within the top 50% of Penrose distance values. In general, red foxes were affiliated with mixtures of agricultural and grassland cover, whereas bobcats were associated with a combination of grassland, wetland, and forest cover. The greatest habitat overlap between red foxes and bobcats was found at the interface between forested areas and more open cover types. Our study provides insight into habitat overlap among sympatric mesocarnivores, and the distance-based modelling approach we used has numerous applications for modelling wildlife–habitat relationships over large scales.  相似文献   

3.
Predicting species distribution and habitat suitability (HS) modelling, across broad spatial scales, is now a major challenge in marine ecology. The resulting knowledge is of considerable use in supporting the implementation of environmental legislation, integrated coastal zone management and ecosystem-based fisheries management. This contribution considers the identification of seafloor morphological characteristics, together with wave energy conditions, that determine the presence of European lobster (Homarus gammarus); and it predicts suitable habitats over the Basque continental shelf (Bay of Biscay), in summer. The results obtained, by applying Ecological-Niche Factor Analysis (ENFA), indicate that lobster habitat differs considerably from the mean environmental condition over the study area; likewise, that it is restrictive in terms of the range of conditions in which they dwell. The best of the environmental predictors found to be: distance to the rock substrate; Benthic Position Index; wave flux over the seafloor; and the underlying bathymetry. A habitat suitability map was produced, with a high model quality (Boyce index: 0.98 ± 0.06). The most suitable habitat for European lobster are locations at the boundary between sedimentary- and rocky-bottoms, coincident with seafloor depressions with a steep slope, with medium to high wave energy conditions, and located within a range of water depths of 35–40 m. This approach demonstrates the applicability of the method in case studies where only presence data are available, together with the inclusion of environmental variables obtained from different sources.  相似文献   

4.
Cornell HV  Karlson RH  Hughes TP 《Ecology》2007,88(7):1707-1715
Community similarity is the proportion of species richness in a region that is shared on average among communities within that region. The slope of local richness (alpha diversity) regressed on regional richness (gamma diversity) can serve as an index of community similarity across regions with different regional richness. We examined community similarity in corals at three spatial scales (among transects at a site, sites on an island, and islands within an island group) across a 10 000-km longitudinal diversity gradient in the west-central Pacific Ocean. When alpha diversity was regressed on gamma diversity, the slopes, and thus community similarity, increased with scale (0.085, 0.261, and 0.407, respectively) because a greater proportion of gamma diversity was subsumed within alpha diversity as scale increased. Using standard randomization methods, we also examined how community similarity differed between observed and randomized assemblages and how this difference was affected by spatial separation of species within habitat types and specialization of species to three habitat types (reef flats, crests, and slopes). If spatial separation within habitat types and/or habitat specialization (i.e., underdispersion) occurs, fewer species are shared among assemblages than the random expectation. When the locations of individual coral colonies were randomized within and among habitat types, community similarity was 46-47% higher than that for observed assemblages at all three scales. We predicted that spatial separation of coral species within habitat types should increase with scale due to dispersal/extinction dynamics in this insular system, but that specialization of species to different habitat types should not change because habitat differences do not change with scale. However, neither habitat specialization nor spatial separation within habitat types differed among scales. At the two larger scales, each accounted for 22-24% of the difference in community similarity between observed and randomized assemblages. At the smallest scale (transect-site), neither spatial separation within habitat types nor habitat specialization had significant effects on community similarity, probably due to the small size of transect samples. The results suggest that coral species can disperse among islands in an island group as easily as they can among sites on an island over time scales that are relevant to their establishment and persistence on reefs.  相似文献   

5.
Acoustic signals which are used in animal communication must carry a variety of information and are therefore highly flexible. Echolocation has probably such functions and could prove as flexible. Measurable variabitlity can indicate flexibility in a behaviour. To quantify variability in bat sonar and relate to behavioural and environmental factors, I recorded echolocation calls of Euderma maculatum, Eptesicus fuscus, Lasiurus borealis and L. cinereus while the bats hunted in their natural habitat. I analysed 3390 search phase calls emitted by 16 known and 16 unknown individuals foraging in different environmental and behvioural situations. All four species used mainly multiharmonic signals that showed considerable intra- and inter-individual variability in the five signal variables I analysed (call duration, call interval, highest and lowest frequency and frequency with maximum energy) and also in the shape of the sonagram. A nested multivariate analysis of variance identified the influences of individual, hunting site, close conspecifics and of each observation on the frequency with maximum energy in the calls, and on other variables measured. Individual bats differed in multiple comparisons, most often in the main call frequency and least often in call interval. In a discriminant function analysis with resubstitution, 56–76% of a species' calls were assigned to the correct individual. Distinct individual call patterns were recorded in special situations in all species and the size of foraging areas in forested areas influenced temporal and spectral call structure. Echolocation behaviour was influenced by the presence of conspecifics. When bats were hunting together, call duration decreased and call interval increased in all species, but spectral effects were less pronounced. The role of morphometric differences as the source of individually distinct vocalizations is discussed. I also examined signal adaptations to long range echolocation and the influence of obstacle distance on echolocation call design. My results allow to discuss the problems of echo recognition and jamming avoidance in vespertilionid bats.  相似文献   

6.
Habitat maps are frequently invoked as surrogates of biodiversity to aid the design of networks of marine reserves. Maps are used to maximize habitat heterogeneity in reserves because this is likely to maximize the number of species protected. However, the technique's efficacy is limited by intra-habitat variability in the species present and their abundances. Although communities are expected to vary among patches of the same habitat, this variability is poorly documented and rarely incorporated into reserve planning. To examine intra-habitat variability in coral-reef fishes, we generated a data set from eight tropical coastal habitats and six islands in the Bahamian archipelago using underwater visual censuses. Firstly, we provide further support for habitat heterogeneity as a surrogate of biodiversity as each predefined habitat type supported a distinct assemblage of fishes. Intra-habitat variability in fish community structure at scales of hundreds of kilometers (among islands) was significant in at least 75% of the habitats studied, depending on whether presence/absence, density, or biomass data were used. Intra-habitat variability was positively correlated with the mean number of species in that habitat when density and biomass data were used. Such relationships provide a proxy for the assessment of intra-habitat variability when detailed quantitative data are scarce. Intra-habitat variability was examined in more detail for one habitat (forereefs visually dominated by Montastraea corals). Variability in community structure among islands was driven by small, demersal families (e.g., territorial pomacentrid and labrid fishes). Finally, we examined the ecological and economic significance of intra-habitat variability in fish assemblages on Montastraea reefs by identifying how this variability affects the composition and abundances of fishes in different functional groups, the key ecosystem process of parrotfish grazing, and the ecosystem service of value of commercially important finfish. There were significant differences in a range of functional groups and grazing, but not fisheries value. Variability at the scale of tens of kilometers (among reefs around an island) was less than that among islands. Caribbean marine reserves should be replicated at scales of hundreds of kilometers, particularly for species-rich habitats, to capture important intra-habitat variability in community structure, function, and an ecosystem process.  相似文献   

7.
Fragments as Islands: a Synthesis of Faunal Responses to Habitat Patchiness   总被引:7,自引:0,他引:7  
Abstract:  Scientific interest in the impact of habitat fragmentation on biodiversity is increasing, but our understanding of fragmentation is clouded by a lack of appreciation for fundamental similarities and differences across studies representing a wide range of taxa and landscape types. In an effort to synthesize data describing ecological responses of animals to fragmentation across two classes of independent variables (taxonomic group and landscape), we sampled 148 studies of five major faunal groups from the primary literature and analyzed data on 13 variables extracted from those studies. We focused our analyses on three classes of dependent variables (effects of area and isolation on species richness, z values, and nestedness and species composition). Area ranged over more orders of magnitude than isolation and tended to explain more variation in species richness than isolation. There were few matrix or taxon effects on the patterns we investigated, although we did find that sky islands tended to manifest isolation effects on both species richness and nestedness more frequently than other patch types. Sky islands may offer insight into the future of habitat patches fragmented by contemporary habitat loss, and because they show a stronger effect of isolation than other patch types, we suggest that isolation will play an increasing role in the biology of habitat fragments. We use multiple lines of evidence to suggest that our understanding of the role of isolation on community assembly in fragmented landscapes is inadequate. Finally, our observation that consistent taxonomic differences in community patterns were minimal suggests that conservation actions intended to mitigate the negative effects of extinction may have far-reaching effects across taxonomic groups.  相似文献   

8.
Although distinct otolith elemental signatures are often observed in fish collected from different estuaries, significant differences are also observed among sites within estuaries. Variation at these smaller spatial scales is not well quantified and has the potential to lead to inappropriate interpretations of otolith elemental data. To quantify variation at multiple scales, the otolith elemental composition (Mg:Ca, Mn:Ca, Sr:Ca, Ba:Ca, and Pb:Ca) of juvenile staghorn sculpin (Leptocottus armatus Girard, 1854) collected from five sites within three estuaries, the Columbia River (two sites) and Coos Bay (one site), Oregon, and Humboldt Bay, California (two sites), was examined. Using laser ablation-inductively coupled plasma mass spectrometry, each otolith was sampled at three zones: (1) within the primordium, which represents the egg and early larval periods; (2) at the outer edge, which represents the juvenile period just prior to collection; and (3) midway between the primordial and edge samples, which represents the late larval and early juvenile period. There were significant differences in otolith metal-to-calcium ratios at all scales examined. Using multi-element otolith signatures, fish were classified to estuary and site within estuary with relatively high levels of accuracy (av = 70–90%). The largest differences in metal-to-calcium ratios were observed between sites within estuaries (<5 km apart) and the smallest differences were observed among otolith zones. Variation in otolith chemistry may be used to provide information on probable habitat use by estuarine fish but studies must be carefully designed. Electronic supplementary material  Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

9.
We have used a polychromator consisting of six photomultiplier tubes, each filtered to a different wavelength with narrow band-pass interference-filters, to study bioluminescence. Spectral and kinetic data collected from ten marine species in the laboratory describe their luminous flashes. These data suggest that the concept of luminous signatures, within the limits of our studies, is a valid one, with potential uses for future biological studies both in the laboratory and in situ. The kinetic parameters considered were rise time (RT), decay time (DT) and total time (TT), while the spectral parameters consisted of ratios of light intensities at 480 and 520 nm to the intensity at 500nm. Oneway analysis of variance (ANOVA) demonstrated significant heterogeneity among species for all variables. A posteriori analysis performed with the ANOVA for TT indicated that mean TT for most species is significantly different from all other species. Canonical discriminant analysis was performed to estimate the value of kinetic and spectral parameters for species' identification. Kinetic data were somewhat more valuable in species' classification than spectral data. Discriminant analysis with RT and DT alone gave 83.1% correct species-classifications. Classification success based only on relative intensities at 480 and 520 nm was 77.5%. When all four variables were included, classification success was 100%.  相似文献   

10.
Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can bb used. Traditional techniques generate pseudo-absence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, threshold-independent receiver operating characteristic (ROC) plots, adjusted deviance (D(adj)2), and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant, suggesting that incorporating biological knowledge into pseudo-absence point generation is a powerful tool for species habitat assessments. Furthermore, given some a priori knowledge of the species-habitat relationship, ecologically based pseudo-absence points can be applied to any species, ecosystem, data resolution, and spatial extent.  相似文献   

11.
The International Union for Conservation of Nature's Red List of Threatened Species (RLS) is the key global tool for objective, repeatable assessment of species’ extinction risk status, and plays an essential role in tracking biodiversity loss and guiding conservation action. Satellite remote sensing (SRS) data sets on global ecosystem distributions and functioning show exciting potential for informing range-based RLS assessment, but their incorporation has been restricted by low temporal resolution and coverage of data sets, lack of incorporation of degradation-driven habitat loss, and noninclusion of assumptions related to identification of changing habitat distributions for taxa with varying habitat dependency and ecologies. For poorly known mangrove-associated Cuban hutias (Mesocapromys spp.), we tested the impact of possible assumptions regarding these issues on range-based RLS assessment outcomes. Specifically, we used annual (1985–2018) Landsat data and land-cover classification and habitat degradation analyses across different internal time series slices to simulate range-based RLS assessments for our case study taxa to explore potential assessment uncertainty arising from temporal SRS data set coverage, incorporating proxies of (change in) habitat quality, and assumptions on spatial scaling of habitat extent for RLS parameter generation. We found extensive variation in simulated species-specific range-based RLS assessments, and this variation was mostly associated with the time series over which parameters were estimated. However, results of some species-specific assessments differed by up to 3 categories (near threatened to critically endangered) within the same time series, due to the effects of incorporating habitat quality and the spatial scaling used in RLS parameter estimation. Our results showed that a one-size-fits-all approach to incorporating SRS information in RLS assessment is inappropriate, and we urge caution in conducting range-based assessments with SRS for species for which habitat dependence on specific ecosystem types is incompletely understood. We propose novel revisions to parameter spatial scaling guidelines to improve integration of existing time series data on ecosystem change into the RLS assessment process.  相似文献   

12.
Calengei C  Dufour AB 《Ecology》2006,87(9):2349-2355
The development of methods to analyze habitat selection when resources are defined by several categories (e.g., vegetation types) is a topical issue in radio-tracking studies. The White and Garrott statistic, an extension of the widely used test of Neu et al., can be used to determine whether habitat selection is significant. As well, Manly's selection ratio, a particularly useful measure of resource selectivity by resource users, allows detection of the most strongly selected habitat types. However, when both the number of animals and types of habitat are large, the biologist often has to deal with an excessively large number of measures. In this paper we present a new method, the eigenanalysis of selection ratios, that generalizes these two common methods within the framework of eigenanalyses. This method undertakes an additive linear partitioning of the White and Garrott statistic, so that the difference between habitat use and availability is maximized on the first factorial axes. The eigenanalysis of selection ratios is therefore optimal in habitat selection studies. Although we primarily consider the case where the habitat availability is the same for all animals (design II), we also extend this analysis to the case where the habitat availability varies from one animal to another (design III). An application of this method is provided using radio-tracking data collected on 17 squirrels in five habitat types. The results indicate variability in habitat selection, with two groups of animals displaying two patterns of preference. This difference between the two groups is explained by the patch structure of the study area. Because this method is mainly exploratory, and therefore does not rely on any distributional assumption, we recommend its use in studies of habitat selection.  相似文献   

13.
Market-based conservation mechanisms are designed to facilitate the mitigation of harm to and conservation of habitats and biodiversity. Their potential is partly hindered, however, by the quantification tools used to assess habitat quality and functionality. Of specific concern are the lack of transparency and standardization in tool development and gaps in tool availability. To address these issues, we collected information via internet and literature searchers and through conversations with tool developers and users on tools used in U.S. conservation mechanisms, such as payments for ecosystem services (PES) and ecolabel programs, conservation banking, and habitat exchanges. We summarized information about tools and explored trends among and within mechanisms based on criteria detailing geographic, ecological, and technical features of tools. We identified 69 tools that assessed at least 34 species and 39 habitat types. Where tools reported pricing, 98% were freely available. More tools were applied to states along the U.S. West Coast than elsewhere, and the level of tool transferability varied markedly among mechanisms. Tools most often incorporated conditions at numerous spatial scales, frequently addressed multiple risks to site viability, and required 1–83 data inputs. Most tools required a moderate or greater level of user skill. Average tool-complexity estimates were similar among all mechanisms except PES programs. Our results illustrate the diversity among tools in their ecological features, data needs, and geographic application, supporting concerns about a lack of standardization. However, consistency among tools in user skill requirements, incorporation of multiple spatial scales, and complexity highlight important commonalities that could serve as a starting point for establishing more standardized tool development and feature-incorporation processes. Greater standardization in tool design may expand market participation and facilitate a needed assessment of the effectiveness of market-based conservation.  相似文献   

14.
The assessment of relevant spatial scales at which ecological processes occur is of special importance for a thorough understanding of ecosystem functioning. In coastal ecosystems, the variability of trophic interactions has been studied at different spatial scales, but never at scales from centimetres to metres. In the present study, we investigated the link between habitat structure and small-scale variability of food web functioning on intertidal boulder field ecosystems. Two microhabitats, boulder-top and boulder-bottom, were considered, and the trophic ecology of invertebrate consumers was studied using stable isotope tracers. We found for two of the main suspension feeders of northern Atlantic rocky shores (the sponges Halichondria panicea and Hymeniacidon sanguinea) consistent 15N enrichment for individuals sampled under boulders, suggesting that these consumers relied on different trophic resource according to the microhabitat inhabited, at a centimetre scale. The high δ15N signatures found underneath boulders suggested higher use of highly decomposed organic matter in this microhabitat. The isotopic difference between the two microhabitats decreased in higher trophic level consumers, which likely foraged at a spatial scale including both microhabitats. Finally, our results reveal that in highly heterogeneous habitats such as boulder fields, trophic interactions are likely to vary strongly in space, which should be considered in future researches. The link between habitat physical structure and food web variability might also contribute to the high biological diversity characterizing heterogeneous ecosystems.  相似文献   

15.
Multi-scale resource selection modeling is used to identify factors that limit species distributions across scales of space and time. This multi-scale nature of habitat suitability complicates the translation of inferences to single, spatial depictions of habitat required for conservation of species. We estimated resource selection functions (RSFs) across three scales for a threatened ungulate, woodland caribou (Rangifer tarandus caribou), with two objectives: (1) to infer the relative effects of two forms of anthropogenic disturbance (forestry and linear features) on woodland caribou distributions at multiple scales and (2) to estimate scale-integrated resource selection functions (SRSFs) that synthesize results across scales for management-oriented habitat suitability mapping. We found a previously undocumented scale-specific switch in woodland caribou response to two forms of anthropogenic disturbance. Caribou avoided forestry cut-blocks at broad scales according to first- and second-order RSFs and avoided linear features at fine scales according to third-order RSFs, corroborating predictions developed according to predator-mediated effects of each disturbance type. Additionally, a single SRSF validated as well as each of three single-scale RSFs when estimating habitat suitability across three different spatial scales of prediction. We demonstrate that a single SRSF can be applied to predict relative habitat suitability at both local and landscape scales in support of critical habitat identification and species recovery.  相似文献   

16.
Functional response diversity is defined as the diversity of responses to environmental change among species that contribute to the same ecosystem function. Because different ecological processes dominate on different spatial and temporal scales, response diversity is likely to be scale dependent. Using three extensive data sets on seabirds, pelagic fish, and zooplankton, we investigate the strength and diversity in the response of seabirds to prey in the North Sea over three scales of ecological organization. Two-stage analyses were used to partition the variance in the abundance of predators and prey among the different scales of investigation: variation from year to year, variation among habitats, and variation on the local patch scale. On the year-to-year scale, we found a strong and synchronous response of seabirds to the abundance of prey, resulting in low response diversity. Conversely, as different seabird species were found in habitats dominated by different prey species, we found a high diversity in the response of seabirds to prey on the habitat scale. Finally, on the local patch scale, seabirds were organized in multispecies patches. These patches were weakly associated with patches of prey, resulting in a weak response strength and a low response diversity. We suggest that ecological similarities among seabird species resulted in low response diversity on the year-to-year scale. On the habitat scale, we suggest that high response diversity was due to interspecific competition and niche segregation among seabird species. On the local patch scale, we suggest that facilitation with respect to the detection and accessibility of prey patches resulted in overlapping distribution of seabirds but weak associations with prey. The observed scale dependencies in response strength and diversity have implications for how the seabird community will respond to different environmental disturbances.  相似文献   

17.
Marine fisheries in coastal ecosystems in many areas of the world have historically removed large-bodied individuals, potentially impairing ecosystem functioning and the long-term sustainability of fish populations. Reporting on size-based indicators that link to food-web structure can contribute to ecosystem-based management, but the application of these indicators over large (cross-ecosystem) geographical scales has been limited to either fisheries-dependent catch data or diver-based methods restricted to shallow waters (<20 m) that can misrepresent the abundance of large-bodied fished species. We obtained data on the body-size structure of 82 recreationally or commercially targeted marine demersal teleosts from 2904 deployments of baited remote underwater stereo-video (stereo-BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e., a proxy of human impacts) were the strongest predictors of the probability of occurrence of large fishes and the abundance of fishes above the minimum legal size of capture. No-take marine reserves had a positive effect on the abundance of fishes above legal size, although the effect varied across species groups. In contrast, sublegal fishes were best predicted by gradients in sea surface temperature (mean and variance). In areas of low human impact, large fishes were about three times more likely to be encountered and fishes of legal size were approximately five times more abundant. For conspicuous species groups with contrasting habitat, environmental, and biogeographic affinities, abundance of legal-size fishes typically declined as human impact increased. Our large-scale quantitative analyses highlight the combined importance of seascape complexity, regions with low human footprint, and no-take marine reserves in protecting large-bodied fishes across a broad range of species and ecosystem configurations.  相似文献   

18.
Habitat loss and degradation are thought to be the primary drivers of species extirpations, but for many species we have little information regarding specific habitats that influence occupancy. Snakes are of conservation concern throughout North America, but effective management and conservation are hindered by a lack of basic natural history information and the small number of large-scale studies designed to assess general population trends. To address this information gap, we compiled detection/nondetection data for 13 large terrestrial species from 449 traps located across the southeastern United States, and we characterized the land cover surrounding each trap at multiple spatial scales (250-, 500-, and 1000-m buffers). We used occupancy modeling, while accounting for heterogeneity in detection probability, to identify habitat variables that were influential in determining the presence of a particular species. We evaluated 12 competing models for each species, representing various hypotheses pertaining to important habitat features for terrestrial snakes. Overall, considerable interspecific variation existed in important habitat variables and relevant spatial scales. For example, kingsnakes (Lampropeltis getula) were negatively associated with evergreen forests, whereas Louisiana pinesnake (Pituophis ruthveni) occupancy increased with increasing coverage of this forest type. Some species were positively associated with grassland and scrub/shrub (e.g., Slowinski's cornsnake, Elaphe slowinskii) whereas others, (e.g., copperhead, Agkistrodon contortrix, and eastern diamond-backed rattlesnake, Crotalus adamanteus) were positively associated with forested habitats. Although the species that we studied may persist in varied landscapes other than those we identified as important, our data were collected in relatively undeveloped areas. Thus, our findings may be relevant when generating conservation plans or restoration goals. Maintaining or restoring landscapes that are most consistent with the ancestral habitat preferences of terrestrial snake assemblages will require a diverse habitat matrix over large spatial scales.  相似文献   

19.
Testing the Generality of Bird-Habitat Models   总被引:18,自引:0,他引:18  
Bird-habitat models are frequently used as predictive modeling tools—for example, to predict how a species will respond to habitat modifications. We investigated the generality of the predictions from this type of model. Multivariate models were developed for Golden Eagle (Aquila chrysaetos), Raven (Corvus corax), and Buzzard (Buteo buteo) living in northwest Scotland. Data were obtained for all habitat and nest locations within an area of 2349 km2. This assemblage of species is relatively static with respect to both occupancy and spatial positioning. The area was split into five geographic subregions: two on the mainland and three on the adjacent Island of Mull, which has one of United Kingdom's richest raptor fauna assemblages. Because data were collected for all nest locations and habitats, it was possible to build models that did not incorporate sampling error. A range of predictive models was developed using discriminant analysis and logistic regression. The models differed with respect to the geographical origin of the data used for model development. The predictive success of these models was then assessed by applying them to validation data. The models showed a wide range of predictive success, ranging from only 6% of nest sites correctly predicted to 100% correctly predicted. Model validation techniques were used to ensure that the models' predictions were not statistical artefacts. The variability in prediction success seemed to result from methodological and ecological processes, including the data recording scheme and interregional differences in nesting habitat. The results from this study suggest that conservation biologists must be very careful about making predictions from such studies because we may be working with systems that are inherently unpredictable.  相似文献   

20.
Larval dispersal connectivity is typically integrated into spatial conservation decisions at regional or national scales, but implementing agencies struggle with translating these methods to local scales. We used larval dispersal connectivity at regional (hundreds of kilometers) and local (tens of kilometers) scales to aid in design of networks of no-take reserves in Southeast Sulawesi, Indonesia. We used Marxan with Connectivity informed by biophysical larval dispersal models and remotely sensed coral reef habitat data to design marine reserve networks for 4 commercially important reef species across the region. We complemented regional spatial prioritization with decision trees that combined network-based connectivity metrics and habitat quality to design reserve boundaries locally. Decision trees were used in consensus-based workshops with stakeholders to qualitatively assess site desirability, and Marxan was used to identify areas for subsequent network expansion. Priority areas for protection and expected benefits differed among species, with little overlap in reserve network solutions. Because reef quality varied considerably across reefs, we suggest reef degradation must inform the interpretation of larval dispersal patterns and the conservation benefits achievable from protecting reefs. Our methods can be readily applied by conservation practitioners, in this region and elsewhere, to integrate connectivity data across multiple spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号