首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the degradation of anionic and non-ionic surfactants in agricultural soil amended with sewage sludge is reported. The compounds analysed were: linear alkylbenzene sulphonates (LAS) with a 10-13 carbon alkylic chain, and nonylphenolic compounds (NPE), including nonylphenol (NP) and nonylphenol ethoxylates with one and two ethoxy groups (NP1EO and NP2EO). The degradation studies were carried out under winter (12.7°C) and summer (22.4°C) conditions in Andalusia region. The concentration of LAS was reduced to 2% of the initial concentration 100 day after sludge-application to the soil. The half-life time measured for LAS homologues were ranged between 4 and 14days at 12.7°C and between 4 and 7 days at 22.4°C. With regard to NPE compounds, after 8 and 4days from the beginning of the experiment at 12.7 and 22.4°C, respectively, their concentration levels were increased to 6.5 and 13.5mg/kgdm (dry matter) as consequence of the degradation of nonylphenol polyethoxylates. These concentration levels were reduced to 5% after 63 and 70 days for 12.7°C and 22.4°C, respectively. The half-life times measured for NPEs were from 8 to 16 days at 12.7°C and from 8 to 18 days at 22.4°C. Environmental risk assessment revealed that for LAS homologues no environment risk could be expected after 7 and 8 days of sludge application to the soil for 22.4 and 12.7°C, respectively; however, potential toxic effects could be observed for the nonylphenolic compounds during the first 56 days after sludge application to the soil.  相似文献   

2.
In 2000, the EU published the third draft of a future sludge directive entitled “Working document on sludge” where limit values for some organic compounds, including di-(2-ethyhexyl)phthalate (DEHP), sum of nonylphenol (NP), nonyphenol mono-(NP1EO) and diethoxylates (NP2EO), seven polychlorinated biphenyl congeners (PCB), polycyclic aromatic hydrocarbons (PAH) and linear alkylbenzene sulphonates (LAS), are fixed. In the present work, the monitoring of these organic compounds in sludge samples from four wastewater treatment plants (WWTPs) is reported. All WWTPs use anaerobic biological stabilization of sludge. The highest concentration levels were found for LAS, NPE and DEHP, in this order, with, in general, anaerobically-digested dehydrated sludge and compost samples being the most contaminated samples. DEHP, NPE, LAS and PAH were found at concentration levels above the limit values fixed in the third draft of the future EU sludge directive in the 44%, 88%, 13% and 6% of the analyzed anaerobically-digested dehydrated sludge and compost samples.  相似文献   

3.
The potential impact on a variety of bioassay organisms when pulp-mill biosolids from a thermomechanical pulp mill (western Canada) were applied to a reference soil has been investigated in a laboratory setup. The current research assessed acute, chronic, and reproductive impacts using a battery of terrestrial and aquatic organisms. Terrestrial organisms were exposed to soil amended with different concentrations of biosolids, while aquatic organisms were used to assess the impact of biosolids' runoff into receiving waters. The former bioassays showed that an application rate of 20 tonneshectare(-1) (tha(-1)) "bone-dry" biosolids applied to reference soil produced no observable adverse impact on the terrestrial organisms. In the latter assays, undiluted (100%) and 50% diluted biosolids' runoff into receiving water had a detrimental impact on the aquatic organisms. However, concentrations not exceeding 25% (environmentally relevant concentrations) had neither an acute nor chronic impact compared to reference populations. The organisms' abilities to reproduce were also unaltered. While this study only examined the biosolids from one mill, there is the potential that land-application of characteristically well-defined pulp mill biosolids may constitute an acceptable way of disposing of pulp and paper mill biosolid residues. However, the biosolids coming from different mills, with differing processes, must be dealt with on a case-by-case situation. Each series of biosolids must be rigorously tested for toxicological impact in the laboratory under tightly controlled conditions. Subsequently, field experimentation must be conducted before definitive conclusions can be made.  相似文献   

4.
In the first part of this work, the effect of municipal organic waste (MOW) composts on plant growth was evaluated in a greenhouse trial. The treatments included soil amended with 14 different composts (prepared by shredding, adding wood shavings, cocomposting with biosolids or vermicomposting), an inorganically fertilized soil, and a control soil. All of the treatments significantly increased plant growth compared to the control, and yields of three of the amended treatments were as high as that of the inorganic fertilizer treatment. When comparing differently prepared composts to the conventional compost, it was found that cocomposting MOW with biosolids was the method which most positively influenced yields (26-41% yield increases). In the second part of this work, we evaluated the effects of the different preparation methods on compost quality, using a multivariate approach. Three main quality aspects were considered collectively in a principal component analysis: organic matter and nutrient concentrations, degradability and capacity to mineralize these nutrients, and plant growth. The model was restricted to the first and second components (PC1 and PC1) which accounted for 94% of data variance. On the resulting factorial plane, four groups were distinguished. Each of the groups was compared to the reference compost to determine quality increases or decreases. Based on this analysis, it was found that cocomposting MOW with biosolids produced the highest quality products (higher total nutrient and OM concentration, nutrient mineralization potential, and plant growth). Addition of wood shavings increased OM concentration, but reduced quality in terms of the other aspects studied. Shredding was only effective to increase product quality when it was not combined with other methods, whereas vermicomposting only increased quality when MOW was not mixed with biosolids.  相似文献   

5.
Biodegradation Study of Starch-graft-Acrylonitrile Copolymer   总被引:1,自引:0,他引:1  
In this study the biodegradability of starch-graft-acrylonitrile (St-g-AN) copolymer has been investigated using some microorganisms including Aspergillus niger. The fungus A. niger was isolated from the soil and from the wastewater of an acrylic fiber company. The effects of four factors including environment temperature, primary inoculum concentration, pH and weight of copolymer film, on the biomass generation as a measure of biodegradation rate of copolymer, were studied using Taguchi experimental design. The statistical analysis of the results showed that the primary inoculum concentration and temperature were the most important factors affecting the biodegradation of St-g-AN copolymer. The optimum levels of temperature, pH, inoculum concentration, and weight of films to attain the maximum biodegradation (as much as 8.59 % by weight percentage during 28 days) were obtained as 30 °C, 4.75, 108 spore/mL, and 1.1 g, respectively. The changes in the structure and morphological properties of the copolymer before and after degradation were determined using transform infrared spectroscopy and scanning electron microscopy.  相似文献   

6.
In this study, the biodegradation of PLA films using microorganisms from Lake Bogoria (Kenya) were investigated. The biodegradation tests done using certain strains of thermophilic bacteria showed faster biodegradation rates and demonstrated temperature dependency. The biodegradation of the PLA films was studied using Gel Permeation Chromatography (GPC) and light microscopy. The biodegradation of PLA was demonstrated by decrease in molecular weight. The preparation and characterization of PLA/Gum Arabic blends were also investigated using DSC, TGA, TMA and NMR. In summary, the results obtained in this research show that PLA films undergo fast biodegradation using thermophiles isolated from Lake Bogoria. The PLA/GA blends studies show it is possible to prepare films of varying hydrophobic–hydrophilic properties for various applications.  相似文献   

7.
Over three million dry metric tons of biosolids produced in the United States are land applied as Class B. Lime stabilization is employed for biosolids treatment at approximately 20% of the wastewater treatment plants because it is a simple and inexpensive process. During lime stabilization, the pH of sewage sludge is raised above 12 for pathogen inactivation and odor reduction. Lime dose and mixing have been found to greatly reduce odor generation from lime stabilized biosolids. A better quality biosolids product is less likely to create public opposition to land application programs. In this study, land application tests using Class B biosolids were conducted in order to determine whether better mixing can reduce odor generation during the land application of lime stabilized biosolids. The mixing quality of a treatment plant’s lime stabilized biosolids was improved by relocating the lime addition point, which prolonged the mixing time and produced a better mixed biosolids product. Based on field observations of land application, the poorly mixed biosolids were more odorous and offensive prior to incorporation. However, once incorporated into the soil, there was no appreciable odor difference between the biosolids. Another land application study was conducted to assess the odor of unincorporated Class A biosolids and compare it with incorporated Class A biosolids with the soil.  相似文献   

8.
In landfill, high temperature levels come from aerobic reactions inside the waste surface layer. They are known to make anaerobic processes more reliable, by partial removal of easily biodegradable substrates. Aerobic biodegradation of the main components of biodegradable matter (paper and cardboard waste, food and yard waste) is considered. In this paper, two models which take into account the effect of moisture on aerobic biodegradation kinetics are discussed. The first one (Model A) is a simple, first order, substrate-related model, which assumes that substrate hydrolysis is the limiting step of the process. The second one (Model B) is a biomass-dependant model, considering biological growth processes. Respirometric experiments were performed in order to evaluate the efficiency of each model. The biological oxygen demands of shredded paper and cardboard samples and of food and yard waste samples prepared at various initial water contents were measured. These experimental data were used to identify model parameters. Model A, which includes moisture dependency on the maximum amount of biodegraded matter, is relevant for paper and cardboard biodegradation. On the other hand, Model B, including moisture effect on the growth rate of biomass is suitable to describe food and yard waste biodegradation.  相似文献   

9.
Anaerobic fermentation of food waste for hydrogen production was performed in serum bottles with various linear alkylbenzene sulfonate (LAS) dosages (7.1–21.4 g/l) and sodium concentrations (5.03–28.7 g/l). LAS can effectively inhibit the activity of hydrogen-consuming bacteria, and the maximum hydrogen yield of 109.2 ml/g volatile solid (VS) was obtained at an LAS dosage of 14.3 g/l without added sodium. The feasible pH for hydrogen production is 5.0–6.0, and the process will slow down or stop when the pH is below 5.0.The hydrogen production potential increased when the sodium concentration increased in the range 5.03–14.41 g/l. The maximum hydrogen yield was 154.8 ml/g VS, and then the hydrogen production began to decrease when the sodium concentration increased further. A sodium chloride concentration of 20 g/l and higher will enhance the osmotic pressure and make bacteria inert. In the effluent, acetic acid is the major by-product. The results indicated that the hydrogen production from the anaerobic fermentation of food waste could clearly be increased with the additives and a sodium concentration less than 20 g/l.  相似文献   

10.
The select chemical and engineering characteristics of biosolids produced at a wastewater treatment plant in Eastern Australia were investigated to assess its suitability as structural fill material in road embankments. Results of comprehensive set of geotechnical experimentation including compaction, consolidation, creep, hydraulic conductivity and shear strength tests implied that biosolids demonstrate behavior similar to highly organic clays with a higher potential for consolidation and settlement. Results of chemical study including heavy metals, dichloro diphenyl trichloroethane (and derivatives) and organochlorine pesticides, indicate that biosolids samples are within the acceptable limits which allows their usage under certain guidelines. Results of tests on pathogens (bacteria, viruses or parasites) also indicated that biosolids were within the safe acceptable limits. Technical and management suggestions have been provided to minimize the possible environmental risks of using biosolids in road embankment fills.  相似文献   

11.
The mathematical formulations in a one-dimensional compartment model of the biodegradation of organic landfill components are described. The model is designed to switch between anaerobic and aerobic conditions, depending on the local oxygen concentration. The model also includes the effect of environmental factors, such as moisture content, pH, and temperature, on reaction rates. The model includes not only biodegradation processes for carbon compounds (acetate, CO2, CH4), but also for nitrogen compounds involved in nitrification and denitrification due to their significance in landfills. Two example runs to simulate anaerobic and aerobic waste were conducted for a single landfill unit cell by changing the organic content and diffusion coefficient.  相似文献   

12.
Biodegradation process modeling of municipal solid waste (MSW) bioreactor landfills requires the knowledge of various process reactions and corresponding kinetic parameters. Mechanistic models available to date are able to simulate biodegradation processes with the help of pre-defined species and reactions. Some of these models consider the effect of critical parameters such as moisture content, pH, and temperature. Biomass concentration is a vital parameter for any biomass growth model and often not compared with field and laboratory results. A more complex biodegradation model includes a large number of chemical and microbiological species. Increasing the number of species and user defined process reactions in the simulation requires a robust numerical tool. A generalized microbiological and chemical model, BIOKEMOD-3P, was developed to simulate biodegradation processes in three-phases (Gawande et al. 2009). This paper presents the application of this model to simulate laboratory-scale MSW bioreactors under anaerobic conditions. BIOKEMOD-3P was able to closely simulate the experimental data. The results from this study may help in application of this model to full-scale landfill operation.  相似文献   

13.
The concentrations of four anionic surfactants [i.e. linear alkylbenzene sulphonate (LAS), alcohol sulphate (AS), alcohol ether sulphate (AES), and secondary alkane sulphonate (SAS)], which are important from a commercial viewpoint were determined in influents and effluent of the Ratingen waste water treatment plant which is located in the vicinity of Düsseldorf, Germany. Elimination rates, which were calculated on the basis of influent and effluent concentrations, are in the range between 99.7 (LAS) and 99.99% (AES). Comparison of effluent concentrations (LAS 7–16 μg/l, AS and AES ≤ 1 μg/l) revealed that AS and AES were slightly better removed than LAS. Comparison of these data with results from a monitoring study carried out in 1995 at a time when the Ratingen works were working at the limit of their capacity revealed that LAS and dissolved organic carbon were effectively removed even under these conditions. ©  相似文献   

14.
Polylactic acid (PLA) is one of the important biodegradable polymers. It is widely used in many industrial applications such as films and fibers. Its biodegradability is based on data derived mostly from composting processes. For a broad application of the PLA material in personal care products, an understanding of anaerobic biodegradability is essential because soiled personal care products are usually disposed of in sanitary landfills, where biodegradability mechanisms are predominately in anaerobic conditions. Extensive laboratory results are acquired to elucidate the effects of the temperature on the PLA anaerobic sludge biodegradation. When the temperature is higher than PLA glass transition temperature (Tg), anaerobic degradation is accelerated. A plausible mechanism to explain this observation is that amorphous part of the polymer is easily accessible by microorganisms. When the degrading temperature is below PLA glass transition temperature, sample mineralization under anaerobic conditions is apparently slowed. The mechanisms elucidated by Tg modification can be utilized to control the rate of PLA biodegradation for sustainable waste management.  相似文献   

15.
Environmental Resources Management (ERM) performed an evaluation of a biosolids chemical stabilization process known as BIO*FIX®, marketed by Bio Gro Systems, Inc., of Annapolis, Maryland. The purpose of the evaluation was (1) to assess major characteristics of the process and its final product, (2) to determine the quantity and final disposition of all components in the incoming biosolids, and (3) to determine if the process conforms to new regulations promulgated and administered by the U.S. Environmental Protection Agency (EPA) titled “Standards for the Use or Disposal of Sewage Sludges” (40 CFR Part 503). The BIO*FIX® chemical stabilization process involves the addition of calcium oxide (CaO) to dewatered biosolids at rates that achieve the pathogen reduction and vector attraction reduction requirements of the 503 program while creating a marketable end product used as an agricultural amendment. ERM's project involved the testing of four process streams in order to create a mass balance on the process. Laboratory analyses were performed on samples of the dewatered biosolids, the chemically-stabilized end product, and the scrubber water effluent. The primary components of concern tested in the above process streams were ammonia, metals, odorous compounds, particulate matter, and organic matter. Through the tests described in the article, ERM drew the following conclusions: (1) The major gaseous pollutant resulting from the BIO*FIX® process is gaseous ammonia. The total gaseous ammonia released from the product depends on the ammonia nitrogen content of the biosolids, and pH and temperature levels reached in the process. Additional ammonia is emitted when the end product is loaded in trucks and stored. Any gaseous ammonia remaining in the end product after processing will slowly dissipate over time. (2) Other potential odor pollutants such as hydrogen sulfide (H2S) and mercaptans were found to be below detectable levels in the uncontrolled exhaust gas. (3) Metals were not found in the exhaust gas in any detectable quantities. They would not be expected to volatilize during the process. Particulate matter emissions were found to be very low. (4) The pathogen reduction and vector attraction reduction requirements of the 40 CFR 503 regulations were met or exceeded. (5) Finally, through observations and tests, ERM found that the BIO*FIX® chemical stabilization process provides for a simple, viable, and effective conversion of biosolids into a beneficial use product in compliance with all pertinent regulations.  相似文献   

16.
During the last few years, biodegradable polymers have been developed to replace petrochemical polymers. Until now, research devoted to these polymers essentially focused on their biodegradability. There is now a need to bear out their nontoxicity. To verify this, the biodegradation must be carried out in accelerated laboratory tests which allow the metabolites and residues to be recovered. To reproduce the natural conditions (compost, field) as closely as possible, degradation experiments must be run on solid-state substrates. We review studies of aerobic degradation in solid-state substrates. This article focuses in particular on the environmental, physical, and chemical parameters (such as substrate nature, moisture, temperature, C/N ratio, and pH) that influence biodegradation kinetics. This study also aims at finding the solid substrate most adapted to residues and metabolite recovery. The most significant parameters would appear to be the substrate type, moisture content, and temperature. Inert substrates such as vermiculite are well suited to residue extraction. This review also opens the field to new research aimed at optimizing conditions for aerobic solid-state biodegradation and at recovering the metabolites and residues of this degradation process.  相似文献   

17.
In order to verify the response of the controlled composting test method (i.e., the ISO/DIS 14855:1997, the ASTM D 5338-92, or the CEN counterpart) to starch at different concentrations, the maximum amount prescribed by the test method (100 g) and lower amounts (60 and 30 g), as if starch were a coingredient in a blend, were tested. After 44 days of incubation (at a constant temperature of 58°C) the biodegradation curves were in a plateau phase, displaying the following final values (referred to a nominal starch initial amount of 100 g): starch 100 g, 97.5%; starch 60 g, 63.7%; and starch 30 g, 32.5%. The data show a CO2 evolution roughly equal, in each case, to the theoretical maximum, indicating a complete starch mineralization. We cannot discern whether the deviations found at lower concentrations are caused by a priming effect. In any case, the extent of the deviations is not high and is acceptable in biodegradation studies. The average biodegradation of cellulose, obtained gathering four independent experiments with 11 biodegradation curves, turned out to be 96.8 ± 6.7% (SD) after 47 ± 1 days. The data indicate that the controlled composting is a reliable test method also for starch and cellulose and, consequently, for starch-based and cellulose-based materials.  相似文献   

18.
Anaerobic digestion is the principal method of stabilising biosolids from urban wastewater treatment in the UK, and it also has application for the treatment of other types of biowaste. Increasing awareness of the potential risks to human and animal health from environmental sources of pathogens has focused attention on the efficacy of waste treatment processes at destroying pathogenic microorganisms in biowastes recycled to agricultural land. The degree of disinfection achieved by a particular anaerobic digester is influenced by a variety of interacting operational variables and conditions, which can often deviate from the ideal. Experimental investigations demonstrate that Escherichia coli and Salmonella spp. are not damaged by mesophilic temperatures, whereas rapid inactivation occurs by thermophilic digestion. A hydraulic, biokinetic and thermodynamic model of pathogen inactivation during anaerobic digestion showed that a 2 log10 reduction in E. coli (the minimum removal required for agricultural use of conventionally treated biosolids) is likely to challenge most conventional mesophilic digesters, unless strict maintenance and management practices are adopted to minimise dead zones and by-pass flow. Efficient mixing and organic matter stabilisation are the main factors controlling the rate of inactivation under mesophilic conditions and not a direct effect of temperature per se on pathogenic organisms.  相似文献   

19.
Volatilization and Biodegradation of VOCs in Membrane Bioreactors (MBR)   总被引:1,自引:0,他引:1  
Volatilization and biodegradation are major competitive volatile organic compound (VOC) removal mechanisms in biological wastewater treatment process, which depend on compound specific properties and system design/operational parameters. In this study, a mathematical model was used to determine major removal pathways at various organic loading rates (OLR), solids residence time (SRT) and dissolved oxygen (DO) concentrations in a biological process for vinyl acetate. Model results showed that biological treatment process should be designed with long SRT, high OLR and low DO concentrations to maximize biodegradation and minimize volatilization of VOCs. Unless a VOC is toxic to microorganisms under the given conditions, low VOC emission rates are an inherent advantage of MBRs, which operate at higher OLR and longer SRT compared to conventional activated sludge process. A lab scale membrane bioreactor (MBR) was operated at varying OLR to investigate the relative volatilization and biodegradation rates for acetaldehyde, butyraldehyde and vinyl acetate. Synthetic wastewater containing three VOCs was introduced to the MBR. The DO concentration and SRT was maintained at 2.0 mg L− 1 and 100 days, respectively. The overall VOC removal rate was more than 99.7% for three VOCs at all the OLR. For vinyl acetate, the biodegradation rate increased from 93.87 to 99.40% and the volatilization removal rate decreased from 6.09 to 0.59% as OLR was increased from 1.1 to 2.0 kg COD m− 3 d− 1. It was confirmed that a MBR can be a promising solution to reduce VOC emissions from wastewater.  相似文献   

20.
Degradation of Polyethylene Designed for Agricultural Purposes   总被引:1,自引:0,他引:1  
For many years now, scientific articles have been published on the potential biodegradability of polyethylene. Polyethylene (PE) with peroxidant additives, in the form of agricultural films, is sold by various suppliers as biodegradable mulch. Even though, the photo-chemical and thermal degradation of these products under artificial laboratory conditions is highlighted, several extrapolation on the biodegradation and, moreover, on the neutral environmental impact of PE are made. In this study, three different commercial mulch films have been submitted to standardised biodegradation tests and the results are discussed. The first conclusions are that a very low degree of biodegradation of the commercial PE films is achieved from these tests and that crosslinked PE micro-fragments are found in soil after a very long period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号