共查询到20条相似文献,搜索用时 15 毫秒
1.
采用特异性移动床生物膜反应器(SMBBR)结合后置反硝化技术处理高氨氮农药废水,SMBBR选用亲水性更强的SDC-03型填料和特异性DNF409混合菌种,可以实现同步硝化反硝化脱氮。试验考察了DNF409菌种对填料挂膜的影响,不同C/N比对脱氮的影响以及对COD、氨氮、TN的去除率的影响。结果显示,当水力停留时间为8 d,进水COD质量浓度为2 408~7 440 mg/L,氨氮质量浓度为160.21~433.84 mg/L,TN质量浓度为208.27~537.65 mg/L,pH值为7.0~8.5时,AF中外加碳源C/N比值为5时,出水COD质量浓度平均为341.9 mg/L,平均去除率高达92.3%,氨氮质量浓度保持在3.0 mg/L以内,去除率在98%以上,TN质量浓度稳定在40~45 mg/L,去除率在80%以上,达到了《污水综合排放标准》(GB 8978—1996)的三级标准。 相似文献
2.
为了满足GB 31570—2015《石油炼制工业污染物排放标准》的要求,需对污水处理系统进行改造,在现有流程后增设深度处理单元,实现总氮的达标排放。本试验采用了高效生物膜脱氮工艺对炼油污水处理场的出水处理开展实验,以期为后期污水处理系统提标改造工程提供关键设计参数。 相似文献
3.
在新型后置反硝化工艺中验证了石油烃类废水治理的可行性并进一步探究p H的影响。结果表明新型后置反硝化工艺能够有效处理石油含烃类废水,稳定运行期COD,氨氮和烃类物质的去除率分别为85.2%,84.1%和86.3%。p H对COD和含烃类物质去除影响较大,而对氨氮去除影响小,并且p H=8是石油含烃类物质废水治理的最佳p H值。当p H值由6升高至8时,NO-3-N出水含量由1.9 mg/L下降至0.98mg/L,而胞内聚合物聚羟基烷酸酯(PHA)的含量却由4.85 mg/g升高至5.62 mg/g,PHA含量升高利用其在好氧和缺氧期分解产能用于反硝化。而过高p H不利于新型后置反硝化工艺烃类物质去除,脱氮和胞内聚合物的合成和积累。 相似文献
4.
《工业安全与环保》2015,(10)
本试验以生活污水处理厂CASS池活性污泥为接种污泥,通过好氧-高效沉淀组合反应器进行AOB菌的富集驯化,并用驯化后的污泥对高氨氮稀土废水进行批次试验研究。以人工配水作为模拟废水进行的AOB菌筛选与驯化试验共运行32 d,进水总氮负荷从0.29 kg/(m3·d)提升至5.25 kg/(m3·d),亚硝态氮积累率达90%以上。驯化完成后,用广西某稀土冶炼企业所产生的稀土废水作为进水共进行4个批次试验,考察短程硝化对稀土废水的去除效果。结果表明,经过一个月的培养驯化,短程硝化污泥对高氨氮稀土废水具有较高的转化效果,出水亚硝态氮积累率较高,出水亚硝态氮与氨氮比值约为1.32左右,符合厌氧氨氧化反应器进水的要求。 相似文献
5.
6.
7.
采用静态法研究了碳纳米管(CNTs)对废水中氨氮的吸附性能,考察了CNTs投加量、pH值和吸附时间等因素对吸附行为的影响,与此同时还进行了氨氮吸附等温线和吸附动力学实验,并利用XRD进行了表征。结果表明,在pH值为7~9,CNTs用量为7 mg,吸附时间为50 min时,CNTs对50 mg/L的氨氮模拟废水吸附效果达到最好。且吸附数值遵循Freundlich等温吸附模型,吸附过程符合Bangham吸附速率方程。 相似文献
8.
与传统生物处理工艺相比,好氧颗粒污泥(Aerobic Granular Sludge,AGS)具有高生物量、沉降速度快、耐冲击负荷能力强、能够实现同步脱氮除磷等特点,且在去除高氨氮废水中的有机物、氮、磷等具有良好的效果,成为目前污(废)水处理领域的研究热点之一。本文介绍了好氧颗粒污泥在处理垃圾渗滤液、化肥工业污水、畜禽养殖废水等高氨氮有机废水的研究现状,在高氨氮条件下好氧颗粒污泥的形成机理以及主要影响因素,并展望了好氧颗粒污泥技术处理高氨氮废水的工程应用前景。 相似文献
9.
10.
MAP法处理高浓度氨氮废水的试验研究 总被引:15,自引:1,他引:15
以MgCl2和Na2HPO4作沉淀剂,通过单因素试验及正交试验,对MAP法处理高浓度氨氮废水的工艺条件进行优化.试验结果表明:在pH值为10.5,反应摩尔比n(PO34-):n(NH 4):n(Mg2 )为0.8:1:1,反应时间为45 min时,氨氮去除效果最好,其去除率可达97.2%. 相似文献
11.
采用逆流吹脱塔,研究了不同pH、气液比对高浓度氨氮废水吹脱效率的影响.结果表明,吹脱效率随pH值升高而增大;气液比越大,氨吹脱传质推动力越大,吹脱效率也随之增大. 相似文献
12.
13.
喻岚徐冰峰庹婧艺王雪颖郭露遥赵顺宇 《工业安全与环保》2021,47(9):88-92
通过分析天然沸石不同的改性、再生方式,总结了物理单一、化学单一和物化复合等3种改性方式对氨氮废水的吸附效果及物理法、化学法、生物法和电化学法等4种再生方法对沸石的再生效果.研究表明:钠盐和阴离子表面活性剂单一改性对氨氮废水具有较好的吸附效果,钠盐+微波复合改性较单一改性效果更好,微波+化学试剂法是一种高效快速的再生方法... 相似文献
14.
15.
16.
采用预磁化/气动超声装置吹脱处理高浓度氨氮废水,在磁场强度0.27 MT,预磁化时间10 min,起始质量浓度2000mg/L,pH=11,时间60min,温度25℃条件下,氨氮去除率为96.4%,与单独气动超声吹脱90 min效果相当。主要原因是氨氮废水在超声、磁化作用下,团簇现象和团簇尺寸减小,水分子间及水氨分子间的氢键作用减弱,单体分子数增加,液膜阻力减小,有利于氨分子向气泡内扩散,从而提高了氨氮的吹脱效率。 相似文献
17.
热改性膨润土对氨氮废水的处理 总被引:1,自引:0,他引:1
通过分析热改性膨润土的种类、搅拌时间、膨润土用量、废水pH值、废水温度、废水中氨氮质量浓度对处理结果的影响,研究了热改性膨润土对氨氮废水的处理情况.实验结果表明,5 g、300 ℃热改性膨润土,在搅拌时间为40 min时,对100 mL质量浓度为160 mg/L的氨氮废水的吸附效果较好,且达到了国家一级排放标准(15 mg/L).废水pH值越高处理效果越好,废水中氨氮质量浓度越高处理效果越差. 相似文献
18.
针对重金属Cd~(2+)对新型后置反硝化脱氮除磷性能影响不明确的现状,本研究建立序批式反应器并探究了不同剂量的Cd~(2+)对后置反硝化生物脱氮除磷的影响。结果表明,低质量浓度Cd~(2+)(0.1和0.5mg/L)对生物脱氮除磷影响不明显,然而当Cd~(2+)的质量浓度为2 mg/L,生物脱氮除磷效率分别为78.6%和79.5%,显著低于空白组。机理研究表明高质量浓度Cd~(2+)对NH+4-N的氧化影响不明显,然而反硝化过程却受到严重的抑制作用。此外Cd~(2+)的存在对厌氧释磷和好氧吸磷均有不同程度的抑制,当Cd~(2+)的质量浓度为2 mg/L时,厌氧最大释磷量为47 mg/L,聚羟基烷酸酯(PHA)的最大合成量为4.35 mmol/g,显著低于空白组。PHA的厌氧合成受阻从而导致好氧分解产能低,好氧吸磷不充分。 相似文献
19.
氨氮生物硝化分段动力学特性研究 总被引:4,自引:0,他引:4
本文利用富集培养的硝化污泥研究了氨氮生物硝化动力学的基本规律.结果表明,氨氮浓度对硝化速率有显著的影响.主体溶液中氨氮质量浓度小于2.3 mg/L时,硝化符合一级反应动力学.随着溶液中氨氮浓度升高,将会出现半级(本文为0.35级)或零级反应动力学,对应的氨氮质量浓度范围分别为2.3~18.2 mg/L和18.2~100 mg/L.各级反应的速率常数分别为0.16 d-1/(mg/L)、0.23 d-1/(mg/L)0.35和0.61d-1.氨氮质量浓度不同,动力学级数不同,硝化速率不同,达到相同的硝化效率反应时间有很大的差别.由于完全混合式反应器的硝化速率主要取决于出水氨氮浓度;因此氨氮出水浓度要求越低,硝化速率越低,反应时间越长,达到较彻底的硝化程度就越困难. 相似文献