首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过理论分析,得到高温下铝合金梁弯扭稳定承载力计算公式形式。采用有限元方法,分析了不同温度下国产6061-T6铝合金受弯构件的非线性稳定性能。对有限元方法计算得到的54条φb-λ曲线进行拟合,得到用于计算高温下国产铝合金梁整体弯扭失稳的φb-λ关系曲线,并将拟合曲线与试验数据、欧洲规范进行比较。结果表明,本文建议的相关公式可以用于计算高温下国产铝合金受弯构件的弯扭失稳。  相似文献   

2.
为研究铝合金偏压构件在高温下的整体弯扭稳定承载性能,完成了12根铝合金H型截面构件偏心受压稳定承载力试验,所有试件均发生弯扭失稳。采用ANSYS对试件进行数值模拟,有限元与试验结果在破坏形态和荷载-位移曲线上吻合良好。基于所建立的数值模型,对不同铝合金牌号、截面类型、截面规格和长细比的国产铝合金偏压构件进行了大规模参数分析,共得到532条相关曲线。根据试验和有限元结果,提出铝合金偏压构件高温下的弯扭稳定承载力计算公式,为铝合金偏压构件的抗火设计提供了依据。  相似文献   

3.
基于弹塑性理论,通过建立钢梁截面的弯矩曲率关系作弯矩作用平面内的弹塑性分析等几个步骤,对火灾高温作用下受弯简支钢梁在弹塑性阶段的弯扭屈曲性能变化进行了分析,给出了钢梁的临界屈曲弯矩的计算表达式。通过算例分析了钢梁弹塑性阶段临界屈曲弯矩随温度的变化,并利用ANSYS有限元软件模拟了钢梁在火灾燃烧不同时刻的竖向变形。结果表明,随着温度的升高,钢梁弹塑性阶段的临界弯矩呈现出逐渐降低的趋势,而其竖向变形则逐渐增大,文中对这2个变量在不同温度条件下的具体变化情况分别进行了详细的分析和描述。  相似文献   

4.
火灾高温下铝合金材料的强度和弹性模量衰减迅速,导致高温下异形截面薄壁铝合金轴压构件的屈曲破坏模式更加复杂。采用有限元恒温加载方法,分析了6082-T6铝合金轴压构件的板件变形和跨中截面应力发展,研究了异形截面铝合金轴压构件常温下和火灾下的局部-畸变屈曲耦合破坏机理和屈曲承载力。高温下铝合金强度和弹性模量的折减系数采用欧洲铝合金结构设计规范EN1999-1-2的规定。对比不同温度下6082-T6异形截面铝合金轴压构件的极限承载力的有限元分析结果与EN1999-1-2计算结果表明,EN1999-1-2的设计方法较为保守。  相似文献   

5.
纤维增强复合筋、不锈钢绞线等高强材料作为混凝土梁的受力筋可以充分发挥强度高、耐腐蚀性能好等优点,在土木工程中得到了广泛应用。为了分析此类高强材料加筋混凝土梁的受弯性能,在平截面假定基础上,对混凝土和受力纵筋分别采用混凝土Hongnestad模型和线弹性模型,通过平衡条件,推导了FRP(钢绞线)加筋混凝土梁受弯承载力的计算公式,并与国内外82根简支梁的试验结果进行了对比。研究结果表明:加筋混凝土梁抗弯强度试验值与理论值之比的平均值为1.07,标准差为0.14。建议公式可以较好地计算FRP(钢绞线)加筋混凝土梁的受弯承载力。实际工程构件抗弯截面设计时,建议安全配筋率取1.4倍平衡配筋率,设计截面弯矩取0.625倍理论受弯承载力,以使构件具有足够安全储备。  相似文献   

6.
位于冷弯薄壁型钢构件腹板的槽孔,可延长构件两边的热量传递路线,减弱冷弯薄壁钢构件作为墙板龙骨引起的冷桥效应。常温下冷弯薄壁构件的屈曲破坏模态已非常复杂,包括整体屈曲、局部屈曲和畸变屈曲等,且不同的屈曲破坏模态可能会相互影响。火灾下冷弯薄壁构件的破坏机理将更为复杂,根据常规的稳定理论难以求解其火灾下的临界荷载。本文利用有限元方法对火灾下腹板开槽冷弯薄壁卷边槽钢的受力性能进行了模拟,研究了单元类型、材料模型、初始几何缺陷以及求解方法等因素对分析结果的影响,为同类构件抗火性能的有限元模拟分析提供了建模依据。  相似文献   

7.
为了研究受弯构件的抗火性能,及对国内外目前的受弯构件抗火设计方法有一个系统的了解,介绍了中国、美国、欧洲、英国和澳大利亚的钢结构抗火设计规范关于受弯构件的计算方法,并对它们的区别和联系进行了分析。设计了一个算例,分别采用不同的规范计算了其临界温度和耐火极限。经对比分析表明:各国规范的计算结果差别较大,相同条件下,澳大利亚规范计算得出的临界温度较低;无防火保护层时,英国规范计算得出的耐火极限较高,而有保护层时,美国规范计算得出的耐火极限较低。  相似文献   

8.
火灾下预应力混凝土结构极限承载力计算方法   总被引:2,自引:0,他引:2  
预应力混凝土结构多用在大跨、重载结构中,因此预应力混凝土结构的抗火性能应该更加引起人们的关注.在合理假定的基础上,采用二台阶模型作为混凝土高温强度的计算模型,分别对单面和三面受火截面构件的等效截面面积计算公式进行了推导,并通过大量有限元计算得到了不同耐火极限的300℃和800℃等温线的位置.最后对梁的受拉区和受压区位于火灾高温区的情形分别建立了火灾下预应力混凝土受弯承载能力极限状态的计算公式,该公式力学意义明确,具有工程准确度,简易实用.  相似文献   

9.
设防地震和罕遇地震作用下,中心支撑结构的支撑斜杆容易受压失稳,为了避免支撑斜杆失稳,提出了板件弯剪屈服耗能支撑。采用有限元软件 ABAQUS分析了板件弯剪屈服耗能支撑的滞回性能,并与板件弯曲屈服耗能支撑的滞回性能进行了比较,考察了不同设计参数下板件弯剪屈服耗能支撑的耗能能力。分析结果表明:板件弯剪屈服耗能支撑可利用剪切板件率先屈服耗能,其滞回曲线饱满,耗能能力优越,初始刚度和屈服承载力较板件弯曲屈服耗能支撑有较大提高。剪切板件的高宽比、高厚比是影响支撑初始刚度、屈服承载力及耗能能力的重要因素。推导了板件弯剪屈服耗能支撑初始刚度及屈服承载力的计算公式,公式计算结果与有限元分析结果吻合较好,可为工程应用提供参考。  相似文献   

10.
基于ANSYS的有限元数值计算,考查了简支波纹腹板钢梁在火灾作用下的侧向弯扭屈曲。通过与平腹板钢梁的临界温度作比较,研究了波纹腹板钢梁分别在纯弯矩和集中载荷作用下的抗火性能,并分析了栽荷比、初始缺陷等因素对波纹腹板钢梁抗火性能的影响。分析表明,波纹腹板钢梁与平腹板钢梁在火灾作用下有相同的侧向弯扭屈曲性能。  相似文献   

11.
受火构件内部温度场随时间和空间的变化规律对结构和构件的高温响应和抗火性能是至关重要的。应用通用有限元分析程序ABAQUS,对火灾下钢筋混凝土柱的二维温度场和三维温度场进行了有限元分析计算。所得计算结果与相关试验数据吻合,证明了通过通用有限元软件对钢筋混凝土结构进行三维温度场分析的可行性,也为混凝土结构在高温下以及高温后的三维响应分析提供了理论依据。  相似文献   

12.
为了研究爆炸冲击波对结构的影响,基于一维爆炸波轴向传播方程,结合流固耦合的方法,借助 ANSYS/ LS?DYNA 有限元软件建立三维单层单跨框架模型。考虑高温软化效应和应变率对屈服强度的影响,分析连接方式为固定端时爆炸波的传播,研究爆炸与火灾联合作用下爆炸波在钢结构构件中的传播规律及其破坏原因。研究结果表明:垂直爆炸波方向的竖向构件内力的分布具有弱传递性,沿爆炸波方向的杆件动力响应显著;700 ℃爆炸冲击波在杆端往复传播导致在钢结构杆件中传播速度明显比常温下慢,但截面轴向速度的峰值变大,约为 200 ℃的 3 倍,并且沿爆炸波方向杆件的轴向速度比垂直方向杆件的轴向速度大得多;常温下,垂直爆炸波的梁因受剪单元提前发生失效;高温下,构件损伤严重,垂直爆炸波方向的梁最先发生弯剪破坏,其次为柱剪切破坏,最后沿爆炸波方向的梁产生受压破坏。  相似文献   

13.
根据统计资料对不同类型建筑在不同防火措施下发生火灾的概率研究,得出了各类建筑达到轰燃的概率.基于蒙特卡罗随机有限元方法,引入材料高温本构关系、截面尺寸和计算模型系数等的变异性,按照ISO标准升温曲线升温,给出了单构件轰燃下的失效概率计算方法.最后,将设计基准期内建筑物达到轰燃的概率与单构件轰燃下的失效概率组合,给出了设计基准期内建筑构件在火灾下的失效概率公式.  相似文献   

14.
混凝土梁良好的抗弯性能是影响建筑结构安全性的重要因素。为研究加入钢纤维的全再生粗骨料钢筋混凝土梁抗弯力学性能,设计了 4 根全再生粗骨料混凝土梁和 1 根天然粗骨料混凝土梁,主要设计参数为全再生粗骨料取代率,钢纤维体积分数,预损程度以及碳纤维布(CFRP)加固。通过单调加载试验对 5 根梁的破坏形态、荷载- 跨中挠度曲线、钢筋应变变化特征等抗弯性能进行了研究,采用 ABAQUS 有限元软件对各试件的加载过程进行了建模分析,基于现有规范和试验数据对各试件的峰值承载力计算方法进行了研究。研究结果表明,各试件梁均发生典型受弯破坏,掺加纤维后梁的受压区混凝土破碎脱落范围减小;全再生粗骨料混凝土梁的抗弯承载能力较普通混凝土梁降低约 6%,掺加钢纤维后梁的抗弯承载力较未掺加钢纤维的全再生粗骨料混凝土梁提高约 5%,钢纤维的掺入亦可改善混凝土梁的变形能力;采用碳纤维布直接加固后的梁承载力提高约 20%,先预损后进行碳纤维布加固后的梁承载力可提高约 14%,碳纤维布还可显著提高试验梁的整体刚度;ABAQUS 有限元软件分析结果与试验结果吻合较好,可较为准确地模拟梁的破坏形态和抗弯性能;现有规范公式及文中修正方法得到的抗弯承载力计算值与试验值相比误差较小,二者均可用于钢纤维全再生粗骨料混凝土梁的设计。  相似文献   

15.
基于强度折减有限元法的边坡失稳判据研究   总被引:2,自引:0,他引:2  
强度折减有限元稳定分析方法是目前应用及研究较多的一种分析方法。如何根据有限元计算结果来判别边坡稳定性,是强度折减有限元稳定分析方法的一个关键性问题。强度折减有限元法的失稳判据主要有3种:第一种以有限元解的收敛性判定失稳状态;第二种根据计算域内最大节点位移与折减系数之间关系曲线变化特征判定失稳状态;第3种通过计算域内塑性区是否贯通判定失稳状态。利用ADINA有限元通用软件,对二个不同的边坡算例进行强度折减计算,分别采用3种失稳判据进行稳定性分析,对3种失稳判据的适用性、3者之间的一致性、各自的适用范围进行了研究。研究表明,对于均质边坡,3种失稳判据存在较好的一致性,但是对于非均质边坡,塑性区贯通判据在应用范围上存在局限性。  相似文献   

16.
铝合金材料在高温下的力学性能较差,考虑到铝合金结构常用于重要大型空间结构,其抗火性能与人员生命财产安全密切相关,对国内外近年来关于铝合金空间结构抗火性能的研究进行了系统综述与分析。首先,总结了有关铝合金结构高温性能的研究,包括材料的高温性能、构件和节点的高温性能和空间结构的整体抗火性能等。随后,指出了大空间火灾与一般室内火灾的不同,并对比了各种大空间火灾温度场确定方法的优缺点;总结了有关钢结构构件在火灾下温升的确定方法,并强调了火焰辐射在大空间火灾下的重要影响;阐述了有关大空间结构整体抗火性能的研究;介绍了性能化抗火设计思想及其优越性。最后,总结了有待解决的关键问题和需进一步开展的工作。  相似文献   

17.
为了实现大件运输车辆作用下独柱墩弯桥倾覆风险的快速预测,首先对基于刚体转动理论的简化计算方法进行改进,引入车辆转弯模型考虑车轮轨迹,实现车辆荷载的准确和快速加载,定义了稳定因子η 并提出质心加载法用于确定倾覆轴线;结合变形体理论,提出采用端点偏移的方法对倾覆轴位置进行修正;采用阈值法快速评价桥梁的倾覆风险性,并通过建立ABAQUS 实体模型分析了大量桥梁的倾覆过程,确定阈值[kc]的取值;在此基础上建立了独柱墩弯桥倾覆风险快速预测流程。研究结果表明:大件车以稳定状态通过弯桥时其质心轨迹为一圆弧;对倾覆轴线位置进行修正可以考虑主梁变形能力对稳定效应的削减,相比于原简化方法,由改进方法计算的抗倾覆稳定能力kc 对桥梁的倾覆风险具有更强的表征能力;抗倾覆稳定能力阈值取值为1.10;基于MATLAB 程序语言,编制了弯桥倾覆风险快速预测程序,通过批量输入大件车待通行线路上的独柱墩弯桥信息即可计算出各个桥梁的抗倾覆稳定能力kc,将kc与抗倾覆能力阈值进行比较从而预测出有倾覆风险的桥梁,实现大件车作用下独柱墩弯倾覆风险快速预测。  相似文献   

18.
本文以攀枝花机场13#滑坡治理工程为依托,通过原位测试与数值模拟,分析抗滑桩的受力以及变形,得到如下结论:(1)锚索抗滑桩所受弯矩随桩深变化近似呈抛物线状,弯矩计算最大值出现在滑带区域。锚索抗滑桩在滑带以上区域弯矩变化表现有不同程度突变,在滑带以下区域弯矩变化较平缓。(2)利用矩形截面受弯构件计算的抗滑桩弯矩曲线与数值模拟分析计算的弯矩曲线表现规律大体一致,且弯矩最大值相差不大,表明了利用双截面受弯构件理论计算抗滑桩内力的适用性。(3)根据原位测试监测数据结果以及数值模拟结果中锚索抗滑桩桩顶位移变化,表明了锚索抗滑桩在治理滑坡工程中发挥了抗滑支挡的独特功能,对保持坡体稳定性发挥了重要作用。  相似文献   

19.
钢筋混凝土楼板是火灾中最容易破坏的结构构件,需要对其火灾后的承载能力进行评估并加固。考虑升温阶段、降温阶段及火灾后阶段材料本构关系的不同,考虑高温下混凝土保护层的爆裂对温度场及力学性能的影响,提出了火灾后钢筋混凝土楼板力学性能分析的有限元计算模型。同时,针对典型的钢筋混凝土板加固方法,在前述有限元模型的基础上建立了火灾后加固的钢筋混凝土板有限元计算模型,利用该模型对典型的火灾后加固钢筋混凝土板的承载能力进行了计算分析。模型中采用单元生死技术实现了混凝土高温下的爆裂及火灾后加固的数值模拟,模型可用于火灾后及加固后钢筋混凝土板力学性能的评估。分析表明,经历火灾后,钢筋混凝土板的承载能力降低幅度较大,板存在明显残余挠度。加固后,钢筋混凝土板的承载能力得到较大程度的恢复。  相似文献   

20.
腐蚀和疲劳作用影响钢筋混凝土梁的服役性能,降低结构的剩余使用寿命。为研究疲劳后锈蚀钢筋混凝土梁的刚度退化规律,采用电化学快速锈蚀试验得到了6根不同锈胀程度的钢筋混凝土梁,研究了不同疲劳荷载次数后梁在分级荷载下的荷载—挠度关系、混凝土裂缝发展规律、失效模式,分析了锈蚀水平对钢筋混凝土梁疲劳寿命的影响。试验结果表明,钢筋混凝土梁的挠度发展分快速上升—稳定—失稳三个阶段,混凝土锈胀对梁疲劳寿命的影响较大。引入刚度修正系数,发展了疲劳荷载后锈胀钢筋混凝土梁抗弯刚度计算方法,该方法可考虑疲劳作用、锈胀、混凝土弹性模量退化等因素的影响,并通过本文试验及现有文献中的试验结果进行了验证,可用于日后老化钢筋混凝土桥梁在疲劳荷载作用下的挠度计算和寿命评估。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号