首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
重型柴油车实际道路排放与行驶工况的相关性研究   总被引:4,自引:1,他引:4  
采用SEMTECH-D车载排放测试仪测量了东风柴油卡车在城市实际道路工况以及等速和加速工况下的油耗及污染物排放状况.测试结果显示,测试卡车实际道路综合百公里油耗为17.8 L,NOx、CO和HC排放因子分别为3.96、8.86和2.15g·km-1.其中主干道路况相对较差,油耗与排放因子较高,是所有测试道路平均水平的1.3~1.8倍左右.研究结果表明,重型车油耗及污染物排放与各行驶工况下的速度、加速度均密切相关,车辆在高速加速行驶状态下易产生高排放.车辆在30~50 km·h-1速度区间内等速行驶时,油耗与排放因子最为经济且环境友好.车辆在加速行驶时,油耗与NOx、CO排放因子可达到城市实际道路平均水平的2.0、2.2、1.4倍,急加速时达到2.8、2.1、14倍.应用比功率概念可准确描述车辆在各运行工况下的排放水平,但在重型车上缺乏实验依据,有待进一步研究.  相似文献   

2.
重型柴油车车载排放实测与加载影响研究   总被引:3,自引:2,他引:3  
采用车载排放测试仪,对2辆重型柴油卡车在空载和加载条件下进行实际道路车载排放测试.通过分析获得了油耗与排放速率的速度-加速度及其工况点的分布,发现高油耗与高排放工况点主要集中在高速加速区域,加载时油耗与排放高值随工况点分布更广;车辆在(30±2.5)km·h-1等速及加速行驶时受加载影响最大,此时加载油耗与排放约是空载的1.6~3.2倍左右;由实测结果发现,卡车Ⅰ和卡车Ⅱ加载时油耗及CO、HC、NOx排放因子分别是空载的1.6倍、3.5倍、1.1倍、1.5倍以及1.2倍、1.0倍、0.9倍和1.5倍,加载对油耗与NOx排放影响最为明显,对HC影响最小,CO影响取决于车辆保养水平;卡车Ⅱ较卡车Ⅰ车型更大,发动机功率更高,相同荷载时受加载影响较小,说明重型车在发动机负荷可承受的范围内合理装载,有助于避免油耗与排放恶化,提高燃油经济性和排放水平.  相似文献   

3.
黄成  陈长虹  戴璞  李莉  黄海英  程真  贾记红 《环境科学》2008,29(10):2975-2982
系统介绍了CMEM模型及其计算原理.以轻型柴油车为研究对象,给出了模型的主要输入参数,并计算了车辆在实际道路上的瞬时排放结果,并根据实测数据对模拟结果进行了验证.测试车辆的CO、THC、NOx和CO2排放因子为0.81、0.61、2.09和193 g·km-1,相同线路模拟所得的排放因子分别为0.75、0.47、2.47和212 g·km-1,相关系数分别达到0.69、0.69、0.75和0.72.通过模拟发现,轻型柴油车在实际道路微观区域内的排放水平随交通条件和行驶状态波动明显,采用CMEM模型能够较好地反映该车排放随行驶工况的瞬时变化趋势.应用CMEM模拟发现,改善典型交叉口区域的交通条件后,轻型柴油车在模拟区域内的CO、THC、NOx和CO2排放量分别削减了50%、47%、45%和44%,排放改善效果显著.从研究结果来看,利用微观尺度模型来分析混合车流在一些典型交通区域的瞬时排放变化是必要的,也是可行的,对于评价道路交通规划的环境效果具有一定的指导意义.  相似文献   

4.
重型柴油车污染物排放因子测量的影响因素   总被引:3,自引:0,他引:3  
为了调查我国重型柴油车排放污染物的基本水平,确定CO、HC、NOx和颗粒物等污染物的排放因子,利用满足国Ⅲ排放标准的重型柴油车,分别采用PEMS(portable emission measurement system,车载排放测试系统,由便携式SEMTECH-DS型气态污染物排放测量设备和DMM颗粒物排放测量设备组成)及满足法规排放测量要求的重型车整车底盘测功机方法,研究了不同负载(0%、50%、100%及120%)和2种测试工况对重型车排放因子测量的影响. 结果表明:过载(120%负载)下NOx和颗粒物等排放因子均比零负载下高出近90%;在平均车速较低、怠速时间长的VECC工况下,气态污染物、颗粒物的排放因子比平均车速高、怠速时间短的C-WTVC工况高出30%左右;PEMS系统和重型车底盘测功机系统所测气态污染物排放因子的相关性较好,但DMM颗粒物排放测试设备与重型车整车底盘测功机所测的颗粒物排放因子相差可达50%左右.   相似文献   

5.
采用遥感尾气测试系统实测了柴油车在实际道路工况下的CO、HC和NO排放特征,修正了排放因子的计算方法,并与车载排放测试系统(PEMS)实测结果进行了验证,获得了实测车辆的CO、HC和NO排放因子.测试结果显示,在各种遥感监测的工况下柴油车尾气中均含有较高浓度的氧气,未考虑氧气影响的燃烧方程反演获得的各污染物体积浓度计算值与PEMS实测值的偏差较大,且氧气浓度越大,偏差越大.经过氧气修正的燃烧方程反演计算的尾气浓度与PEMS实测值吻合度大幅提升,适用于实际工况下遥感检测车辆尾气的反演计算.修正算法得到CO、HC和NO的排放因子离散性较小,精确度较高,可以为量化柴油车尾气排放贡献提供科学依据.  相似文献   

6.
重型机动车实际排放特性与影响因素的实测研究   总被引:20,自引:9,他引:20  
利用美国Sensors公司生产的SEMTECHD车载排放测试仪在上海随机选择了7辆重型柴油车开展实际道路的排放测试,该实验累积测试道路长度为186km,共取得29090个逐秒的有效工况点数据,其中城市主干道12979个,次干道12368个,快速干道3743个.给出了车辆在不同道路上的工况点分布,分析了速度、加速度对燃油消耗、尾气排放的影响.测试结果表明,在选定的城市道路上,车流的平均怠速工况比为17%,加速工况比23.6%,等速工况比为31.0%,减速工况比为28.5%.被测车辆的CO、THC、NOx平均排放因子分别为(4.41±2.46)g·km-1、(1.77±1.17)g·km-1和(6.96±1.93)g·km-1,车辆排放状况因车速、加速度等因素而不同.测试结果基本反映了目前上海道路的交通状况和柴油卡车的排放现状,同时也说明过低的车速和频繁加减速是加重机动车污染的重要原因.  相似文献   

7.
重型柴油车PM2.5和碳氢化合物的排放特征   总被引:1,自引:0,他引:1  
采用车载排放试验对国Ⅱ、国Ⅲ、国Ⅳ重型柴油车尾气在实际道路排放的PM2.5和碳氢化合物进行样品采集,采用电感耦合等离子体质谱技术、离子色谱仪和碳质分析仪对PM2.5各组分进行测试分析,采用五气分析仪对HC进行在线分析.结果表明,重型柴油车PM2.5和HC的排放因子分别为(0.22±0.12) g/km和(0.57±0.45) g/km,且排放因子随机动车排放标准的提高呈明显下降趋势.EC和OC是机动车尾气PM2.5的主要组分,分别占总质量百分比的38.87%~42.87%和16.22%~19.96%;水溶性离子中含量较为丰富的组分主要是SO42-、NH4+和NO3-,分别占总PM2.5质量百分比的7.64%~8.85%、2.22%~3.97%、1.91%~2.73%;元素中含量较高的组分为S、Na、Ca、Fe、和Al;PM2.5和HC的排放因子随车速的增加均呈下降趋势.  相似文献   

8.
重型柴油车实际道路油耗与排放模拟及其应用研究   总被引:1,自引:0,他引:1  
基于实际行驶状态下重型车动力需求和传动系统变化规律,建立了重型柴油车整车的瞬态油耗和排放模拟方法,可实现整车发动机工况及油耗与排放的实时模拟.为验证模型的有效性,利用重型车车载排放测试手段,以柴油公交车为研究案例,模拟并验证了车辆在实际运营线路上的油耗与排放水平.公交车综合线路实测百公里油耗为16.38L,NOx、CO和THC排放因子分别为4.44、3.35、1.96g·km-1,模拟结果与实测值基本吻合,其油耗与排放因子与实测值之比均在1.06倍左右.模拟结果显示,实测公交车怠速、NOx控制区及其它区域工况点分别占32.6%、7.1%和60.4%,增加10t负载或提高1.5倍车速可使发动机负荷利用率上升,控制区比例上升至18.4%和18.8%,同时增加负载和提高车速,控制区工况可提高至33.9%.相应地,增加负载或提高车速情景分别使车辆油耗与排放上升至1.5~1.7倍和1.6~1.8倍,同时增加负载和提高车速,油耗与排放可增至2.5倍~3.0倍,控制区油耗与排放比例均有大幅度上升.总体上,该模型方法可以为评价和研究重型柴油车在实际道路上的能耗及其排放状况提供新的模拟方法和分析手段.  相似文献   

9.
应用车载式尾气排放测试设备对北京国Ⅲ、国Ⅳ排放标准的柴油公交车和国Ⅲ排放标准压缩天然气公交车在实际道路上的尾气CO2排放特征进行了实测研究,测试时间为30 787 s,行驶里程达到168.58 km,共获得30 787组有效数据,测试数据能够反映车辆在实际道路上的排放特征。3种类型车辆测试期间在实际道路上的CO2排放因子分别为(1.10±0.24)g/m、(0.99±0.23)g/m和(1.02±0.21)g/m。车辆的排放状况与车辆的行驶工况有密切关系,车速较低,加速度越大,CO2排放速率和排放因子越大,车辆在匀速且车速较快时排放速率和排放因子较低。  相似文献   

10.
国Ⅲ柴油公交车尾气排放实际道路测试研究   总被引:1,自引:0,他引:1  
应用车载式尾气排放测试设备对北京国Ⅲ排放标准的柴油公交车在实际道路上的尾气排放特征进行了实测研究,测试时间为10 552 s,行驶里程达到61.97 km,共获得10 552组有效数据,测试数据能够反映车辆在实际道路上的排放特征。车辆在实际道路上尾气排放NOx、CO、THC和PM的排放因子分别为14.12±2.54g/km、8.04±2.51 g/km、0.158±0.022 g/km和3.16±1.73 g/km。研究结果表明,油耗及污染物排放与各行驶工况下的速度、加速度均密切相关,车辆在高速加速行驶状态下易产生高的排放速率。车速小于10 km/h时排放因子远大于车速较快时的排放因子,车辆在加速时的排放因子最大,减速时最小。车辆在30 km/h~50 km/h速度区间内等速行驶时,油耗与排放因子最为经济且环境友好。测试车辆排放的颗粒形态主要集中在累积模式,属于纳米或超细微粒。  相似文献   

11.
轻型柴油车排放特性与机动车比功率分布的实例研究   总被引:5,自引:8,他引:5  
引入机动车比功率概念研究了驾驶条件(DrivingCondition)对机动车排放的影响及二者间的关系.利用美国Sensors公司生产的SEMTECH-D车载排放测试仪在上海选取2辆轻型柴油客货两用车开展了实际道路排放测试.测试道路包括城市快速道、主干道和次干道,2辆轻型车测试的道路全长分别为31·8和39·7km.通过计算逐秒的比功率值,研究了实际行驶中机动车比功率(VSP)与机动车油耗、空燃比和污染物排放的关系.回归分析结果表明,比功率比加速度能够更好地反映与NOx排放之间的关系,不同道路上机动车的CO、TC、NOx排放速率和油耗的比功率区间(VSPbin)分布具有较好的一致性.实测研究中VSPbin分布于-20~20kW·t-1的范围内,其中超过50%的数据分布在-3~1kW·t-1之间.高排放集中在分布频率较低的高VSP区间.应用污染物排放与VSP分布的关系式和VSPbins的频率分布可以估算机动车污染物排放总量.排放速率计算式具有一定的不确定性,还有待将来进一步修正.  相似文献   

12.
This study investigated the emission characteristics of ultrafine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35) × 108 cm-3. The on-board measurement results illustrated that the ultrafine particles were strongly correlated with changes in real-world driving cycles. The particle number concentration was down to 2.0 × 106 cm-3 and 2.7 × 107 cm-3 under decelerating and idling operations and as high as 5.0 × 108 cm-3 under accelerating operation. It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases. The particle number presented a "U" shaped distribution with changing speed at high engine load conditions, which implies that the particle number will reach its lowest level at medium engine speeds. The particle sizes of both measurements showed single mode distributions. The peak of particle size was located at about 50-80 nm in the accumulation mode particle range. Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.  相似文献   

13.
以某大功率低压缩比柴油机为研究对象,进行了0,1000,2000,3000,3750,4500m 6个海拨高度的起动排放试验,研究了该柴油机不同海拨高度下起动过程中的HC,CO,NOx和颗粒物排放特性.结果表明:海拨升高,柴油机起动过程的HC,CO和颗粒物排放增加,NOx排放降低;与平原(0m海拨)比较,该柴油机高原(4500m海拨)冷起动排放的HC,CO和颗粒物分别增加7.1,2.6和2.1倍,NOx降低53.8%;0~4500m海拨,该柴油机起动过程排放的颗粒物中聚集态颗粒物质量占94%~99%,颗粒物数量呈单峰对数分布,峰值粒径随着海拨的升高向大粒径方向移动,几何平均粒径增大.  相似文献   

14.
提高柴油/甲醇组合燃烧尾气排放质量的研究   总被引:2,自引:3,他引:2  
对原机、柴油/甲醇组合燃烧,以及带氧化催化转化器的柴油/甲醇组合燃烧3种情况下的尾气排放进行了比较和研究.针对柴油/甲醇组合燃烧可以使NOx、烟度大幅度下降,但同时PM、CO和HC的排放浓度与原机相比反而增加的现状,通过加装氧化催化转化器,对废气进行处理后,发现HC、CO和PM排放明显减少.与原机相比,不仅可以实现大幅度降低NOx,而且PM排放也有较大幅度下降.采用透射电子显微镜观察发现,与原机相比,柴油/甲醇组合燃烧的PM排放中干炭烟(DS)减少,但是可溶有机物(SOF)增加.经过氧化催化转化器处理后,尾气的PM中大量SOF和HC化合物被消除,致使PM的质量明显减少.  相似文献   

15.
中国城市轻型车的排放特性   总被引:2,自引:2,他引:2  
采用机动车实际上路排放测试系统对北京、重庆和成都3城市27辆轻型车进行了测试和分析;采用发动机比功率VSP、发动机负荷ES和排放单元BIN分析了轻型车瞬态排故的特征及影响排放的主要因素.结果表明.发动机技术和累计行驶里程对排放的影响很大,而VSP等概念还反映了道路坡度对排放因子的影响;由于城市道路坡度的差异,导致同一测试车辆在重庆和成都2个城市的排放水平相差10%~100%.  相似文献   

16.
针对一台轻型柴油机,采用国Ⅳ柴油,在不使用和使用后处理装置的条件下,进行ESC循环工况(分别记为ESC-0、ESC-DP)和ETC循环工况(分别记为ETC-0、ETC-DP)下的发动机台架测试.每次测试用一对滤膜采集颗粒物,采样前后分别称重以确定颗粒物质量,进而计算排放因子.用气相色谱-质谱联机(GC-MS)分别分析每张滤膜上颗粒物的多环芳烃(PAHs)组分.ESC-0、ESC-DP、ETC-0、ETC-DP的颗粒物排放因子分别为0.12,0.05,0.48,0.16 g/(kW·h);相应的PAHs排放因子分别为69,35,174,76 μg/(kW·h).后处理分别使颗粒物和PAHs减排56%~68%和49%~56%.总PAHs中,三环PAHs占比重最大(64%±9%).PHE在总PAHs中占比重最大(54%±9%).PAHs的分布与其物理化学特性、柴油中的芳烃含量有关.PAHs特征比值FA/(FA+PY)为0.37~0.51.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号