首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang SG  Liu XW  Zhang HY  Gong WX  Sun XF  Gao BY 《Chemosphere》2007,69(5):769-775
Development of aerobic granules for the biological degradation of 2,4-dichlorophenol (2,4-DCP) in a sequencing batch reactor was reported. A key strategy was involving the addition of glucose as a co-substrate and step increase in influent 2,4-DCP concentration. After operation of 39d, stable granules with a diameter range of 1-2mm and a clearly defined shape and appearance were obtained. After granulation, the effluent 2,4-DCP and chemical oxygen demand concentrations were 4.8mgl(-1) and 41mgl(-1), with high removal efficiencies of 94% and 95%, respectively. Specific 2,4-DCP biodegradation rates in the granules followed the Haldane model for substrate inhibition, and peaked at 39.6mg2,4-DCPg(-1)VSS(-1)h(-1) at a 2,4-DCP concentration of 105mgl(-1). Efficient degradation of 2,4-DCP by the aerobic granules suggests their potential application in the treatment of industrial wastewater containing chlorophenols and other inhibitory chemicals.  相似文献   

2.
以污水处理厂厌氧消化池厌氧污泥作为接种物,采用上流式厌氧污泥床反应器(UASB),分别以不同配比的葡萄糖和乙酸钠为进水,考察厌氧颗粒污泥形成的特性。葡萄糖与乙酸钠进水COD浓度始终保持1:1所形成的颗粒污泥其沉降性、产甲烷活性等均明显优于乙酸钠进水浓度始终为500 mg COD/L的颗粒污泥。结果表明,不同碳源配比的进水条件下形成的颗粒污泥性能及对废水处理能力存在显著差异。  相似文献   

3.
The influence of benzene concentration on the specific growth rate (mu), CO(2) and metabolite production, and cellular energetic content (i.e., ATP content), during benzene biodegradation by Pseudomonas putida F1 was investigated. Within the concentration range tested (5-130mg benzene l(-1)) the mu, the specific CO(2) production, and the ATP content remained constant at 0.42-0.48h(-1), 1.86+/-0.21g CO(2) g(-1) biomass, and 5.3+/-0.4x10(-6)mol ATP g(-1) biomass, respectively. Catechol accumulated during process start-up at all tested concentrations. Catechol specific production increased with increasing benzene inlet concentrations. This confirms that the transformation of this intermediate was the limiting step during benzene degradation. It was shown that catechol inhibited both the conversion of benzene to catechol and its further transformation. In addition, catechol concentrations higher than 10mgl(-1) significantly decreased both benzene and catechol associated respiration, confirming the highly inhibitory effect of this intermediate. This inhibitory threshold concentration was approximately two orders of magnitude lower than the concentrations present in the culture medium during process start-up, suggesting that cellular activity was always far below its maximum. Thus, due to its toxic and inhibitory nature and its tendency to accumulate at high benzene loading, catechol must be carefully monitored during process operation.  相似文献   

4.
This work deals with a new abiotic oxidation process designed as a suitable pre-treatment step within a biological depuration of wastewater containing phenol or its derivatives (o-cresol, 2-chlorophenol and p-nitrophenol) or aniline. The reaction was carried out in a stirred tank reactor at 20 degrees C and atmospheric pressure in presence of the organic compound, 150mgl(-1), zero valent iron particles (10g), ethylenediamine tetraacetic acid (EDTA, 101mgl(-1)) and air. The experimental results show that 85% of phenol conversion can be achieved after 360min. 2-Chlorophenol was found to be more easily degradable and it is completely eliminated after 300min. The oxidation of o-cresol and aniline behaved more closely to phenol obtaining after 360min 70% and 68% of conversion respectively. p-Nitrophenol was a very refractory compound, giving only 28% of conversion after 360min. Moreover, the influence of some operating variables was studied over the following ranges: temperature from 20 to 50 degrees C, initial phenol concentration from 150 to 1000mgl(-1), EDTA concentration from 50 to 200mgl(-1) and iron particles from 5 to 20g. As expected, temperature strongly enhances phenol conversion. Also, an increase of the catalyst to phenol ratio or the iron or EDTA to phenol ratio improves the reaction rate. A preliminary kinetic analysis of the data shown that the rate of phenol disappearance is not first order with respect to the phenol.  相似文献   

5.
苯酚的厌氧生物处理   总被引:3,自引:0,他引:3  
采用不断增加苯酚浓度而降低葡萄糖浓度的方法可驯化厌氧污泥中的微生物,使厌氧污泥最终以苯酚为唯一碳源生长,可显著提高厌氧污泥降解苯酚的能力;对苯酚间歇厌氧降解过程进行了分析。苯酚浓度在0~1.680 mg/L范围内,其厌氧降解过程符合一级动力学。Aiba模型、Haldane模型和Teisser 模型均可很好地描述处于对数期时厌氧污泥的比生长速率与初始底物浓度之间的关系,其中以Teisser 模型模拟的效果最好。将驯化污泥接种于UASB中可实现对含酚废水处理的连续运行,最大的有机负荷达2 g COD/(L·d),稳定运行时苯酚的去除率可维持在96%以上。  相似文献   

6.
3,4-Dichloro- and 3,4-difluoroanilines were degraded by Pseudomonas fluorescens 26-K under aerobic conditions. In the presence of glucose strain degraded 170 mg/L of 3,4-dichloroaniline (3,4-DCA) during 2-3 days. Increasing of toxicant concentration up to 250 mg/L led to degradation of 3,4-DCA during 4 days and its intermediates during 5-7 days. Without cosubstrate and nitrogen source degradation of 3,4-DCA took place too, but more slowly--about 40% of toxicant at initial concentration 75 mg/L was degraded during 15 days. 3,4-Difluoroaniline (3,4-DFA) (initial concentration 170 mg/L) was degraded by Pseudomonas fluorescens 26-K during 5-7 days. The strain was able to completely degrade up to 90 mg/L of 3,4-DFA, without addition of cosubstrate and nitrogen during 15 days. Degradation of fluorinated aniline was accompanied by intensive defluorination. Activity of catechol 2,3-dioxygenase (C2,3DO) (0.230 micromol/min/mg of protein) was found in the culture liquid of the strain, grown with 3,4-DCA and glucose. This fact, as well as, the presence of 3-chloro-4-hydroxyaniline as a metabolite suggested that 3,4-DCA degradation pathway includes dehalogenation and hydroxylation of aromatic ring followed by its subsequent cleaving by C2,3DO. On the contrary, activity of catechol 1,2-dioxygenase (C1,2DO) (0.08 micromol/min/mg of protein) was found in the cell-free extract of biomass grown on 3,4-DFA. 3-Fluoro-4-hydroxyaniline as intermediate was found in this cell-free extract.  相似文献   

7.
两相厌氧流化床中优势菌种降解硝基苯废水的特性   总被引:4,自引:4,他引:0  
构建了从强化传质与优势菌相结合的两相厌氧流化床生物降解体系,考察了水力停留时间(HRT)与上流速度2种水力特征以及共基质、pH、进水浓度等主要过程因素对优势菌种降解硝基苯的影响.结果显示,反应器在HRT为36h、上流速度为4 m/h时获得较好的处理效果;菌种需要pH 7.5的条件下以葡萄糖为共基质降解硝基苯,且两者的最佳质量比约为6;当进水硝基苯浓度为50~345 mg/L时,对硝基苯平均降解率和降解速率分别达到91.1%和120.9 mg/(L·d),且可耐受2.5倍以内的浓度负荷冲击.由此表明良好的反应器水力条件及优势菌种的结合可使高毒性的硝基苯在厌氧条件下有效地降解.  相似文献   

8.
Huang JS  Chou HH  Chen CM  Chiang CM 《Chemosphere》2007,68(2):382-388
A laboratory study using a combined upflow anaerobic sludge bed (UASB)-activated sludge (AS) reactor system was undertaken to explore the effect of recycle-to-influent ratio (R(e)=1, 2, and 3) on the activities of nitrifiers and denitrifiers. Suspended-solids pre-settled piggery wastewater was used as the substrate-feed wastewater. At the R(e) of 1-3, the combined reactor system achieved efficient removal of COD (96-97%), TKN (100%) and total nitrogen TN (54-77%). Methanogenesis occurred with nearly-complete denitrification in the UASB reactor, whereas complete nitrification took place in the AS reactor. A higher R(e) (i.e., accompanied with a shorter solids retention time) resulted in a larger amount of high-activity denitrifiers and thereby achieved a higher TN removal efficiency. Compact granules and a high biomass concentration in the UASB reactor were observed. At the R(e) of 1-3, the maximum specific reaction rate of nitrifiers (0.45-0.49 NH(4)(+)-NmgVSS(-1)d(-1)) and the specific nitrification rates of mixed culture (0.18-0.22mg NH(4)(+)-NmgVSS(-1)d(-1)) in the AS reactor varied slightly; whereas the maximum specific reaction rate of denitrifiers (0.18-0.27mg NO(x)(-)-NmgVSS(-1)d(-1)) and the specific denitrification and COD removal rates of mixed culture (0.025-0.050mg NO(x)(-)-NmgVSS(-1)d(-1); 0.24-0.31mgCODmgVSS(-1)d(-1)) in the UASB reactor increased with increasing R(e). The primary finding of the study is that the combined UASB-AS reactor system should be operated at a higher R(e) to maintain high-activity denitrifiers to remove organic materials and nitrogen from piggery wastewater.  相似文献   

9.
高氯离子味精尾母液废水厌氧处理研究   总被引:2,自引:0,他引:2  
味精尾母液废水COD浓度极高同时含有大最氯离子.采用UASB反应器对味精尾母液废水进行处理,其中接种污泥来自啤酒厂UASB反应器.实验表明:当氯离子浓度在4 500 mg/L以下时,对厌氧微生物没有明礁的抑制作用;5 000 mg/L的氯离子浓度可以看作一个抑制限值,但经过驯化后,仍可获得较好的COD去除效果;当氯离子浓度达到8 000mg/L左右时,COD平均去除率在80%以上.  相似文献   

10.
Chou HH  Huang JS 《Chemosphere》2005,59(1):107-116
Two upflow anaerobic sludge bed (UASB) reactors were fed with a non-inhibitory substrate sucrose and an inhibitory substrate phenol, respectively, to compare granule characteristics and biokinetics. The average size of biomass granules in the sucrose-fed UASB reactor was slightly larger than that of the phenol-fed reactor. The average microbial density was significantly higher in the phenol-fed reactor. The intrinsic biokinetics of sucrose-acidogenesis and phenol-acidogenesis followed Monod and Haldane kinetics, respectively. By comparing half-saturation constants for sucrose and phenol (Ks1,s; Ks1,p), the affinity of phenol to the granule should be much higher. The mass fraction of methanogens (f) in the sucrose-fed reactor decreased with increasing volumetric loading rate (VLR) because of the accumulation of volatile fatty acids (VFAs); the f of the phenol-fed reactor decreased with increasing VLR because acidogenesis was the rate-limiting step. The mass transfer resistance in overall substrate removal in the sucrose-fed reactor was greater than that in the phenol-fed reactor.  相似文献   

11.
Chromium species behaviour in the activated sludge process   总被引:3,自引:0,他引:3  
The purpose of this research was to compare trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)) removal by activated sludge and to investigate whether Cr(VI) reduction and/or Cr(III) oxidation occurs in a wastewater treatment system. Chromium removal by sludge harvested from sequencing batch reactors, determined by a series of batch experiments, generally followed a Freundlich isotherm model. Almost 90% of Cr(III) was adsorbed on the suspended solids while the rest was precipitated at pH 7.0. On the contrary, removal of Cr(VI) was minor and did not exceed 15% in all experiments under the same conditions. Increase of sludge age reduces Cr(III) removal, possibly because of Cr(III) sorption on slime polymers. Moreover, the decrease of suspended solids concentration and the acclimatization of biomass to Cr(VI) reduced the removal efficiency of Cr(III). Batch experiments showed that Cr(III) cannot be oxidized to Cr(VI) by activated sludge. On the contrary, Cr(VI) reduction is possible and is affected mainly by the initial concentration of organic substrate, which acts as electron donor for Cr(VI) reduction. Initial organic substrate concentration equal to or higher than 1000 mgl(-1) chemical oxygen demand permitted the nearly complete reduction of 5 mgl(-1) Cr(VI) in a 24-h batch experiment. Moreover, higher Cr(VI) reduction rates were obtained with higher Cr(VI) initial concentrations, expressed in mg Cr(VI) g(-1) VSS, while decrease of suspended solids concentration enhanced the specific Cr(VI) reduction rate.  相似文献   

12.
This paper presents the performance of two bench scale Upflow Anaerobic Sludge Blanket reactors (UASB) used for the treatment of synthetic substrates that simulate bleached and unbleached cellulose pulp plant wastewaters. The control reactor was fed with diluted black liquor and the treatment reactor with the same substrate plus a mixture of chlorinated organics. The total concentration of the chlorinated compounds was gradually increased from 2.5 mg l-1 to 15.0 mg l-1. The average COD removal efficiency during the last phase of the experiment was 81% in the control reactor and 76% in the treatment reactor. These results indicate the capability of UASB reactors to treat this kind of wastewater and the low impact of the chlorinated organics on COD removal efficiency. The minimum overall chlorinated organics removal efficiency was 71% and the maximum was 99.7%. The experiment indicates that under the conditions used in this research the presence of chlorinated organics does not negatively impact the treatment process.  相似文献   

13.
Antibiotic formulation effluents are well known for their difficult elimination by traditional bio-treatment methods and their important contribution to environmental pollution due to its fluctuating and recalcitrant nature. In the present study the effect of ozonation on the degradation of oxytetracycline (OTC) aqueous solution (100mgl(-1)) at different pH values (3, 7 and 11) was investigated. Ozone (11mgl(-1) corresponds the concentration of ozone in gas phase) was chosen considering its rapid reaction and decomposition rate. The concentration of oxytetracycline, chemical oxygen demand (COD), biochemical oxygen demand (BOD) and BOD5/COD ratio were the parameters to evaluate the efficiency of the ozonation process. In addition, the toxic potential of the OTC degradation was investigated by the bioluminescence test using the LUMIStox 300 instrument and results were expressed as the percentage inhibition of the luminescence of the marine bacteria Vibrio fischeri. The results demonstrate that ozonation as a partial step of a combined treatment concept is a potential technique for biodegradability enhancement of effluents from pharmaceutical industries containing high concentration of oxytetracycline provided that the appropriate ozonation period is selected. At pH 11 and after 60min of ozonation of oxytetracycline aqueous solutions (100 and 200mgl(-1)) the BOD5/COD ratios were 0.69 and 0.52, respectively. It was also shown that COD removal rates increase with increasing pH as a consequence of enhanced ozone decomposition rates at elevated pH values. The results of bioluminescence data indicate that first by-products after partial ozonation (5-30min) of OTC were more toxic than the parent compound.  相似文献   

14.
An upflow anaerobic sludge blanket (UASB)-anoxicaerobic system was used for treatment of tomato and bean processing wastewater. At various hydraulic retention times, ranging from 0.7 to 5 days, excellent removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total suspended solids (TSS), ammonia-nitrogen (NH4-N), and total Kjeldahl nitrogen was achieved with final effluent BOD/TSS/NH4N concentrations of less than 15/15/1 mg/L. Biogas yield in the UASB reactor varied from 0.33 to 0.44 m3/kgCODremoved. The kinetics of anaerobic treatment were investigated. The yield coefficient was 0.03 gVSS/gCOD; maximum specific growth rate was 0.24 day(-1); Monod half velocity constant was 135 mgCOD/L; and specific substrate utilization rate was 3.25 gCOD/gVSS x d. Nitrification and denitrification kinetics were studied in batch experiments, and the rates were comparable with those in the continuous flow system.  相似文献   

15.
采用逐步降温法启动上流式污泥床反应器(UASB)并对其过程做动力学分析。UASB反应器采用逐渐提高进水COD负荷的方式在25℃进行启动,当COD去除率达到70%完成启动。启动完成后,降低温度运行反应器,在20℃时COD的去除率达到65%左右。在25℃条件下,出水氨氮浓度增加,总氮浓度有增加趋势,随后出水总氮浓度降低;在20℃负荷提高和稳定时期,出水的氨氮浓度逐渐降低,总氮浓度逐渐升高。建立低温条件下厌氧处理高浓度有机废水的动力学模型,分析结果看出20℃运行阶段的基质比降解速度高于25℃阶段基质比降解速度,在20℃条件下厌氧污泥活性最大,污泥性能最佳。推测原因,可能是由于25℃时进水浓度较高,且废水中含有大量抑制性物质(1.1 mg·L-1),较大影响了微生物的降解速率、而在20℃时进水浓度降低,废水中的抑制性物质也有所降低,为0.75 mg·L-1。  相似文献   

16.
Das BK  Das N 《Chemosphere》2005,61(2):186-191
Static bioassays of 96 h duration were conducted in the laboratory using fry of common carp (Cyprinus carpio), adult tubificid worm (Branchiura sowerbyi) and adult copepod plankton (Cyclops viridis) to determine LC50 values of Cu and CaO to these organisms and effects of interaction between Cu and CaO. Ninety-six hour LC(50) values of Cu to fry of common carp, worm and copepod were found to be 1.40 mgl(-1), 0.08 mgl(-1) and 0.03 mgl(-1) respectively. CaO up to 500 mgl(-1) did not produce any mortality of the fry of common carp up to 96 h. But 96 h LC50 values of CaO to worm and copepod were 83.00 mgl(-1) and 27.80 mgl(-1) respectively. When common carp fry, worm and the copepod were exposed to respective LC50 dose of Cu in presence of varying concentration of CaO, mortality of the organisms significantly reduced and was found inversely correlated with the doses of CaO [y = 48.36-0.807x, r = -0.99 (n = 7) for fish; y = 44.46-0.146x, r = -0.97 (n = 7) for worm; y = 49.46-0.66x, r = -0.99 (n = 7) for the copepod]. The present results indicate that CaO is non-toxic to fish and is capable of reducing the toxicity of Cu to fish while CaO and Cu are antagonistic to each other for the worm and the copepod. Potential of using CaO as antitoxic agent for Cu in water is discussed.  相似文献   

17.
Lai CL  Lin SH 《Chemosphere》2004,54(3):235-242
Treatment of copper chemical mechanical polishing (CMP) wastewater from a semiconductor plant by electrocoagulation is investigated. The CMP wastewater was characterized by high suspended solids (SS) content, high turbidity (NTU), chemical oxygen demand (COD) concentration up to 500 mgl(-1) and copper concentration up to 100 mgl(-1). In the present study, electrocoagulation was employed to treat the CMP wastewater with an attempt to simultaneously lower its turbidity, copper and COD concentrations. The test results indicated that electrocoagulation with Al/Fe electrode pair was very efficient and able to achieve 99% copper ion and 96.5% turbidity removal in less than 30 min. The COD removal obtained in the treatment was better than 85%, with an effluent COD below 100 mgl(-1). The effluent wastewater was very clear and its quality exceeded the direct discharge standard. In addition, sludge settling velocities after electrocoagulation were measured and the data were employed to verify the empirical sludge settling velocity models. Finally, the sludge settling characteristic data were also utilized to establish the relation between the solids flux (G) and the initial solids concentration.  相似文献   

18.
A synthetic wastewater containing phenol as sole substrate was respectively treated at temperatures of 26±1°C and 37±1°C in 2.8 litre upflow anaerobic sludge blanket (UASB) reactors. At the two temperatures, pH 7.0–7.5, with a 1:1 effluent recycle ratio, phenol in wastewater was efficiently degraded in a UASB reactor. Microbial community analysis using denaturing gradient gel electrophoresis (DGGE) showed that less shift in the microbial community occurred with the temperature changing. Phenol degradation in wastewater was recommended to select ambient temperature in UASB reactors. The optimal HRT was 12 to 16 hours corresponding to 6.0–4.5 g COD/(l.d) loading rate at ambient temperature in UASB reactors. The distribution of archaeal and bacterial populations in the UASB granular consortium was revealed using fluorescence in situ hybridisation (FISH) technique.  相似文献   

19.
In the present study, fate of carbofuran in anaerobic environments and the adverse effects of carbofuran on conventional anaerobic systems were evaluated. Carbofuran degradation studies were carried out in batch reactors with varying carbofuran concentrations of 0 to 270.73 mg/L corresponding to a sludge-loading rate (SLR) of 2.12 x 10(-6) to 3.83 x 10(-3) g of carbofuran/g of volatile suspended solids (VSS)/d. Carbofuran concentration was reduced to undetectable levels at the end of 8 and 13 days in the batch reactors operated with a SLR of 2.12 x 10(-6) and 3.33 x 10(-5) g of carbofuran/g of VSS/d, respectively. Performances of two anaerobic reactors i.e. upflow anaerobic sludge blanket (UASB) and modified UASB (with tube settlers) were evaluated in the presence and absence of carbofuran using synthetic wastewater. In the absence of carbofuran, the soluble chemical oxygen demand (COD) removal efficiency in the conventional UASB reactor at 8 h and 6 h hydraulic retention time (HRT) was nearly 88% and 76%, respectively, whereas in modified UASB reactor it was increased to 90% at 8 h HRT and 78% at 6 h HRT. When 28 mg/L (SLR of 1.19 x 10(-2) g of carbofuran/g of VSS/d) of carbofuran was introduced in the reactors, the COD removal efficiency was reduced to 41% and 44% in conventional and modified UASB reactors respectively. However, the reactor could maintain around 80% COD removal efficiency at a carbofuran concentration of 7.84 mg/L (SLR of 3.64 x 10(-3) g of carbofuran/g of VSS/d). The reactor efficiency was also measured in terms of specific acetoclastic methanogenic activity (SMA). The toxic effect of carbofuran was reversible to a certain extent. Carbofuran removal efficiency in the conventional UASB reactor at carbofuran concentrations of 7, 13 and 28 mg/L were 40 +/- 3%, 27 +/- 3%, and 11 +/- 3%, respectively. In modified UASB reactor, carbofuran removal efficiency was almost uniform at 7 and 13 mg/L but it was reduced nearly by 56% at 28 mg/L. The major metabolite of carbofuran i.e. 3-keto carbofuran was found in all the reactors.  相似文献   

20.
Microbial activity in a combined UASB-activated sludge reactor system   总被引:1,自引:0,他引:1  
Huang JS  Wu CS  Chen CM 《Chemosphere》2005,61(7):1032-1041
A combined upflow anaerobic sludge bed-activated sludge (UASB-AS) reactor system with consistently wasting of excess biomass was used to treat suspended-solids pre-settled piggery wastewater (COD=2000 mg l(-1), total Kjeldahl nitrogen TKN=400 mg l(-1), suspended solids=250-400 mg l(-1)). Thus, the activity of nitrogen-related microbial groups in each individual bioreactor was investigated. When the granules retention time (GRT) of 20-50 d in the UASB reactor, the solids retention time (SRT) of 10-25 d in the AS reactor and the recycle-to-influent ratio (Re) of 1 were maintained, the combined system removed 95-97% of chemical oxygen demand (COD), 100% of TKN and 54-55% of total nitrogen (TN). Denitrification and methanogenesis occurred in the UASB reactor so that both biochemical processes contributed to most of the COD removal and, complete nitrification (most of the TKN removal) occurred in the AS reactor. Compact granules with good settling abilities developed in the UASB reactor, and rapid rates of granulation of break-up granules in the UASB reactor were confirmed by experiments. The activity of nitrifiers and denitrifiers (an=0.68-0.87; adn=0.55-0.70) and the calculated specific nitrification and denitrification rates (qn=0.26-0.47 mg NH4+ -N mg VSS(-1)d(-1); qdn=0.046-0.076 mg NOx- -N mg VSS(-1)d(-1)) significantly increased with decreasing SRT and GRT, respectively. Accordingly, the combined UASB-AS reactor system should be regarded a promising alternative for the removal of organic carbon and nitrogen from piggery wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号