首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to investigate the distribution of the total petroleum hydrocarbons (TPH) in groundwater and soil, a total of 71 groundwater samples (26 unconfined groundwater samples, 37 confined groundwater samples, and 8 deeper confined groundwater samples) and 80 soil samples were collected in the Songyuan oilfield, Northeast China, and the vertical variation and spatial variability of TPH in groundwater and soil were assessed. For the groundwater from the unconfined aquifer, petroleum hydrocarbons were not detected in three samples, and for the other 23 samples, concentrations were in the range 0.01–1.74 mg/l. In the groundwater from the confined aquifer, petroleum hydrocarbons were not detected in two samples, and in the other 35 samples, the concentrations were 0.04–0.82 mg/l. The TPH concentration in unconfined aquifer may be influenced by polluted surface water and polluted soil; for confined aquifer, the injection wells leakage and left open hole wells may be mainly responsible for the pollution. For soils, the concentrations of TPH varied with sampling depth and were 0–15 cm (average concentration, 0.63 mg/g), >40–55 cm (average concentration, 0.36 mg/g), >100–115 cm (average concentration, 0.29 mg/g), and >500–515 cm (average concentration, 0.26 mg/g). The results showed that oil spillage and losses were possibly the main sources of TPH in soil. The consequences concluded here suggested that counter measures such as remediation and long-term monitoring should be commenced in the near future, and effective measures should be taken to assure that the oilfields area would not be a threat to human health.  相似文献   

2.
环境中总石油烃的气相色谱分析测定   总被引:1,自引:0,他引:1  
将总石油烃划分为挥发性汽油类(C6~C10)、可萃取柴油和重油类(C10~C40)两部分,分别建立了通过吹扫捕集、液液萃取和超声溶剂萃取分离富集,气相色谱-火焰离子化检测器(GC-FID)测定环境水体和土壤中总石油烃的分析方法。以汽油、柴油、润滑油标准溶液进行外标校正,以色谱出峰总面积进行定量。汽油类(C6~C10)的检出限分别为0.04mg/L和0.42mg/kg,柴油和重油类(C10~C40)的检出限分别为0.06mg/L和4.9mg/kg。方法的精密度和准确度均良好。  相似文献   

3.
The purpose of this study was to assess contaminated soil and groundwater for the urban redevelopment of a rapid transit railway and a new mega-shopping area. Contaminated soil and groundwater may interfere with the progress of this project, and residents and shoppers may be exposed to human health risks. The study area has been remediated after application of first remediation technologies. Of the entire area, several sites were still contaminated by waste materials and petroleum. For zinc (Zn) contamination, high Zn concentrations were detected because waste materials were disposed in the entire area. For petroleum contamination, high total petroleum hydrocarbon (TPH) and hydrocarbon degrading microbe concentrations were observed at the depth of 7 m because the underground petroleum storage tank had previously been located at this site. Correlation results suggest that TPH (soil) concentration is still related with TPH (groundwater) concentration. The relationship is taken into account in the Spearman coefficient (α).  相似文献   

4.
Soil and groundwater contamination is one of the important environmental problems at petroleum-related sites, which causes critical environmental and health defects. Severe petroleum hydrocarbon contamination from coastal refinery plant was detected in a shallow Quaternary sandy aquifer is bordered by Gulf in the Northwestern Gulf of Suez, Egypt. The overall objective of this investigation is to estimate the organic hydrocarbons in shallow sandy aquifers, released from continuous major point-source of pollution over a long period of time (91 years ago). This oil refinery contamination resulted mainly in the improper disposal of hydrocarbons and produced water releases caused by equipment failures, vandalism, and accidents that caused direct groundwater pollution or discharge into the gulf. In order to determine the fate of hydrocarbons, detailed field investigations were made to provide intensive deep profile information. Eight composite randomly sediment samples from a test plot were selected for demonstration. The tested plot was 50 m long?×?50 m wide?×?70 cm deep. Sediment samples were collected using an American auger around the point 29° 57′ 33″ N and 32° 30′ 40″ E in 2012 and covered an area of 2,500 m2 which represents nearly 1/15 of total plant area (the total area of the plant is approximately 3.250 km2). The detected total petroleum hydrocarbons (TPHs) were 2.44, 2.62, 4.54, 4.78, 2.83, 3.22, 2.56, and 3.13 wt%, respectively. TPH was calculated by differences in weight and subjected to gas chromatography (GC). Hydrocarbons were analyzed on Hewlett–Packard (HP-7890 plus) gas chromatograph equipped with a flame ionization detector (FID). The percentage of paraffine of the investigated TPH samples was 7.33, 7.24, 7.58, 8.25, 10.25, 9.89, 14.77, and 17.53 wt%, respectively.  相似文献   

5.
The role of natural attenuation processes in groundwater contamination by petroleum hydrocarbons is of intense scientific and practical interest. This study provides insight into the biodegradation effects in groundwater at a site contaminated by kerosene (jet fuel) in 1993 (Vitanovac, Serbia). Total petroleum hydrocarbons (TPH), hydrochemical indicators (O2, NO3?, Mn, Fe, SO42?, HCO3?), δ13C of dissolved inorganic carbon (DIC), and other parameters were measured to demonstrate biodegradation effects in groundwater at the contaminated site. Due to different biodegradation mechanisms, the zone of the lowest concentrations of electron acceptors and the zone of the highest concentrations of metabolic products of biodegradation overlap. Based on the analysis of redox-sensitive compounds in groundwater samples, redox processes ranged from strictly anoxic (methanogenesis) to oxic (oxygen reduction) within a short distance. The dependence of groundwater redox conditions on the distance from the source of contamination was observed. δ13C values of DIC ranged from ??15.83 to ??2.75‰, and the most positive values correspond to the zone under anaerobic and methanogenic conditions. Overall, results obtained provide clear evidence on the effects of natural attenuation processes—the activity of biodegradation mechanisms in field conditions.  相似文献   

6.
Three biosurfactant-producing strains designated as BS-1, BS-3, and BS-4 were screened out from crude oil-contaminated soil using a combination of surface tension measurement and oil spreading method. Thin layer chromatography and infrared analysis indicated that the biosurfactants produced by the three strains were lipopeptide, glycolipid, and phospholipid. The enhancement of solubilization and biodegradation of petroleum hydrocarbons in groundwater employing biosurfactant-producing strains was investigated. The three strain mixtures led to more solubilization of petroleum hydrocarbons in groundwater, and the solubilization rate was 10.5 mg l?1. The combination of biosurfactant-producing strains and petroleum-degrading strains exhibited a higher biodegradation efficiency of 85.4 % than the petroleum-degrading strains (71.2 %). Biodegradation was enhanced the greatest with biosurfactant-producing strains and petroleum-degrading strains in a ratio of 1:1. Fluorescence microscopy images illustrate that the oil dispersed into smaller droplets and emulsified in the presence of biosurfactant-producing strains, which attached to the oil. Thus, the biodegradation of petroleum hydrocarbons in groundwater was enhanced.  相似文献   

7.
The total petroleum hydrocarbons (TPH) pollution in regional agricultural soils was investigated. Seventy soil samples collected from surface layers (0–20 cm) and horizons of five selected pedons in the vicinity of a petrochemical complex in Guangzhou, China were analyzed, and the vertical variation and spatial variability of TPH were evaluated. The TPH concentration in top soils around the petrochemical complex ranged from 1,179.3 to 6,354.9 mg kg − 1, with the average of 2,676.6 mg kg − 1. Furthermore, significant differences between land-use types showed that the TPH concentration in top soils was strongly influenced by accidental spills. Both the TPH trends in pedons and the identified hot-spot areas also showed that the accidental explosions or burning accidents were mainly responsible for the pollution. The results reported here suggest that the regular monitoring and inspection shall be conducted for safety and to avoid or minimize the accidents, and the effective measures should be taken to remediate the contaminated areas and to assure that the important industrialization of Guangzhou area would not mean human health risks near the petrochemical complex.  相似文献   

8.
The assessment of soil quality after a chemical or oil spill and/or remediation effort may be measured by evaluating the toxicity of soil organisms. To enhance our understanding of the soil quality resulting from laboratory and oil field spill remediation, we assessed toxicity levels by using earthworms and springtails testing and plant growth experiments. Total petroleum hydrocarbons (TPH)-contaminated soil samples were collected from an oilfield in Sfax, Tunisia. Two types of bioassays were performed. The first assessed the toxicity of spiked crude oil (API gravity 32) in Organization for Economic Co-operation and Development artificial soil. The second evaluated the habitat function through the avoidance responses of earthworms and springtails and the ability of Avena sativa to grow in TPH-contaminated soils diluted with farmland soil. The EC50 of petroleum-contaminated soil for earthworms was 644 mg of TPH/kg of soil at 14 days, with 67 % of the earthworms dying after 14 days when the TPH content reached 1,000 mg/kg. The average germination rate, calculated 8 days after sowing, varied between 64 and 74 % in low contaminated soils and less than 50 % in highly contaminated soils.  相似文献   

9.
以沧州地区的地下水、土壤和小麦中的氟元素为研究对象,探讨氟元素在地下水、土壤和小麦等不同介质中的含量、空间分布与来源成因。通过绘制各介质中氟元素分布图,获得氟元素在各介质中不同深度的含量及水平空间上的分布特征。结果显示,当地深层地下水氟含量平均为2.25 mg/L,高于浅层地下水的平均值0.80 mg/L;深层和浅层土壤氟含量接近,平均值分别为557.18、569.20 mg/kg;小麦中的氟含量最高值为0.96 mg/kg,当地小麦氟含量均低于国家标准限值(1.0 mg/kg)。根据氟元素的分布特点分析,当地深层地下水与土壤的氟元素来源一致,而不同于浅层地下水中的氟;小麦的氟元素分布受浅层土壤氟影响较大。  相似文献   

10.
The primary objective of this study was to investigate the concentrations and spatial distribution of the total petroleum hydrocarbons (TPHs) in the intertidal zone surface sediment of Todos os Santos Bay, Brazil, to assess the distribution and degree of contamination by TPHs, measure the level of TPH degradation in the surface sediment, and identify the organic matter sources. The surface sediment used in this study was collected in 50 stations, and TPHs, isoprenoid alkanes (pristane and phytane), and unresolved complex mixture (UCM) were analyzed by gas chromatography with a flame ionization detector. The total concentrations ranged from 0.22 to 40,101 μg g?1 dry weight and showed a strong correlation with the total organic carbon (TOC) content. The highest TPH concentrations were observed in samples from the mangrove sediments of a river located near a petroleum refinery. Compared with other studies in the world, the TPH concentrations in the intertidal surface sediment of Todos os Santos Bay were below average in certain stations and above average in others. An analysis of the magnitude of UCM (0.11 to 17,323 μg g?1 dry weight) and the ratios nC17/Pr and nC18/Ph suggest that an advanced state of oil weathering, which indicates previous contamination. The molar C/N ratios varied between 5 and 43, which indicate organic matter with a mixed origin comprising marine and continental contributions.  相似文献   

11.
This study reports the level of total petroleum hydrocarbons (TPH) and trace heavy metals (lead, copper, and cadmium) in soil samples collected randomly from Iyana–Iba garage, Lagos State University bus stop, Adeniran Ogunsanya College of Education bus stop, and a control site off Lusada–Atan road, near Crawford University, Igbesa, Ogun state. TPH was estimated gravimetrically after Soxhlet extraction and column clean up, while soil metals were determined by atomic absorption spectrometry using mineral acid digestion. For TPH, the sites have mean values of 19.43 ± 1.27, 16.11 ± 1.85, and 11.43 ± 4.33 mg/g with a control mean value of 0.33 ± 0.16 mg/g. For trace heavy metals, cadmium was not detected. However, the mean levels of lead are 4.24 ± 3.10, 3.72 ± 0.60, and 3.70 ± 1.32 μg/g, respectively, whereas mean copper concentrations are 20.63 ± 9.02, 19.35 ± 3.61, and 16.76 ± 3.02 μg/g in all sites, respectively, compared to the control mean of 0.25 ± 0.13 and 5.99 ± 1.23 μg/g for lead and copper, respectively. Sites studied have higher levels of TPH and metals compared to the control soil samples. This is indicated by a statistically significant difference found between the concentration of analyzed elements in soils collected along Lagos–Badagry expressway and the control site.  相似文献   

12.
In May 2008, an accidental damage of a Nigerian National Petroleum Corporation (NNPC) pipeline occurred in Ijegun area of Lagos, Nigeria, resulting in oil spillage and consequent contamination of the environment. The residual concentration of the total hydrocarbon (THC) and benzene, toluene, ethylbenzene, and xylene (BTEX) in the groundwater and soil was therefore investigated between March 2009 and July 2010. Results showed elevated THC mean levels in groundwater which were above the World Health Organization maximum admissible value of 0.1 mg/l. THC values as high as 757.97 mg/l in groundwater and 402.52 mg/l in soil were observed in March 2009. Pronounced seasonal variation in the concentration of THC in groundwater and soil samples show that there was significant (P?<?0.05) difference in the measured concentration of THC between each season (dry and wet), with the highest being in the dry season and between the years 2009 and 2010. Significant hydrocarbon contamination, 500 m beyond the explosion site and 25 months after the incident, was observed revealing the extent of the spillage of petroleum products. The highest concentrations of 16.65 μg/l (benzene), 2.08 μg/l (toluene), and 4864.79 μg/l (xylene) were found in stations within the 100 m buffer zone. Most of the samples of groundwater taken were above the target value of 0.2 μg/l set for BTEX compounds by the Environmental Guidelines and Standards for Petroleum Industry in Nigeria. The level of hydrocarbon in the impacted area calls for concern and remediation of the area is urgently needed to reduce further negative impact on the ecosystem.  相似文献   

13.
Migration pattern of organochloro pesticide lindane has been studied in groundwater of metropolitan city Vadodara. Groundwater flow was simulated using the groundwater flow model constructed up to a depth of 60 m considering a three-layer structure with grid size of 40?×?40?×?40 m3. The general groundwater flow direction is from northeast to south and southwest. The river Vishwamitri and river Jambua form natural hydrologic boundary. The constant head in the north and south end of the study area is taken as another boundary condition in the model. The hydraulic head distribution in the multilayer aquifer has been computed from the visual MODFLOW groundwater flow model. TDS has been computed though MT3D mass transport model starting with a background concentration of 500 mg/l and using a porosity value of 0.3. Simulated TDS values from the model matches well with the observed data. Model MT3D was run for lindane pesticide with a background concentration of 0.5?μg/l. The predictions of the mass transport model for next 50 years indicate that advancement of containment of plume size in the aquifer system both spatially and depth wise as a result of increasing level of pesticide in river Vishwamitri. The restoration of the aquifer system may take a very long time as seen from slow improvement in the groundwater quality from the predicted scenarios, thereby, indicating alarming situation of groundwater quality deterioration in different layers. It is recommended that all the industries operating in the region should install efficient effluent treatment plants to abate the pollution problem.  相似文献   

14.
In order to investigate the bioremedial potential of humic deposit (leonardite), the effects of the treatments of leonardite and a commercial bioaugmentation agent on the degradation of a variety of petroleum hydrocarbons (C13–C31) and soil enzyme activities (urease acid-alkaline phosphatase and dehydrogenase) were tested within a soil incubation experiment lasting 120 days. Experimentally crude-oil-contaminated soil (2.5%) was regulated to a C:N:P ratio (100:15:1; Oilcon), amended with 5% of leonardite and regulated to the same C:N:P ratio (Oilcon-L) or mixed with a commercial bioaugmentation product (Oilcon-B), respectively. In the short period of incubation (60 days), Oilcon and Oilcon-B treatments showed higher hydrocarbon degradations, whereas Oilcon-L showed higher hydrocarbon degradation over Oilcon and Oilcon-B treatments in the long-term (120 days). Applying contaminated soil with leonardite increased urease (LSD, 4.978, *P?<?0.05) and dehydrogenase (LSD, 0.660, *P?<?0.05) activities. However, acid and alkaline phosphatase activities showed no certain inclination between different treatments. Dehydrogenase seemed to be more related to hydrocarbon degradation process. Overall results showed that leonardite enhanced biodegradation of petroleum hydrocarbons and also stimulated soil ecological quality measured as soil enzyme activities.  相似文献   

15.
Monitoring the concentration of NO(3)-N from agricultural fields to the subsurface and shallow ground water resources have received considerable interest worldwide, since agriculture has been identified as a major source of nitrate-nitrogen (NO(3)-N) pollution of groundwater systems in intensively farmed watersheds. A study was conducted to quantify the impact of two tillage practices viz. chisel plow (CP) and no till (NT) with liquid swine manure application on nitrate leaching to the shallow ground water system under corn-soybean production system. This study is part of the long-term field experiments conducted at Iowa State University using completely randomized block design. The NO(3)-N concentrations in the shallow ground water were monitored at three depths viz., a network of subsurface drains at a depth of 1.2 m and piezometers at depths of 1.8 m and 2.4 m. Results of this study showed that the average NO(3)-N concentration during the study period was 16.1 mg l(-1), 14.4 mg l(-1) and 11.8 mg l(-1) at 1.2 m, 1.8 m and 2.4 m depths, respectively implying significant amount of NO(3)-N leaching past the subsurface drain depth of 1.2 m into the shallow groundwater but the NO(3)-N concentration decreases with the depth. The NO(3)-N concentrations in shallow groundwater were significantly higher under the chisel plow system in comparison with the no till method of tillage. Fall application of liquid swine manure caused more leaching in comparison with the spring application. Higher NO(3)-N concentration was observed under corn in comparison with the soybean plots. An in-depth analysis of the data showed a definite relationship between the NO(3)-N concentration in subsurface drain water at a depth of 1.2 m and shallow groundwater at depths of 1.8 m and 2.4 m depths.  相似文献   

16.
Total petroleum hydrocarbons (TPH) or petroleum hydrocarbons (PHC) are one of the most widespread soil contaminants in Canada, the United States and many other countries worldwide. Clean-up of PHC-contaminated soils costs the Canadian economy hundreds of millions of dollars annually. In Canada, most PHC-contaminated site evaluations are based on the methods developed by the Canadian Council of the Ministers of the Environment (CCME). However, the CCME method does not differentiate PHC from BOC (the naturally occurring biogenic organic compounds), which are co-extracted with petroleum hydrocarbons in soil samples. Consequently, this could lead to overestimation of PHC levels in soil samples. In some cases, biogenic interferences can even exceed regulatory levels (300 μg g(-1) for coarse soils and 1300 μg g(-1) for fine soils for Fraction 3, C(16)-C(34) range, in the CCME Soil Quality Level). Resulting false exceedances can trigger unnecessary and costly cleanup or remediation measures. Therefore, it is critically important to develop new protocols to characterize and quantitatively differentiate PHC and BOC in contaminated soils. The ultimate objective of this PERD (Program of Energy Research and Development) project is to correct the misconception that all detectable hydrocarbons should be regulated as toxic petroleum hydrocarbons. During 2009-2010, soil and plant samples were collected from over forty oil-contaminated and paired background sites in various provinces. The silica gel column cleanup procedure was applied to effectively remove all target BOC from the oil-contaminated sample extracts. Furthermore, a reliable GC-MS method in combination with the derivatization technique, developed in this laboratory, was used for identification and characterization of various biogenic sterols and other major biogenic compounds in these oil-contaminated samples. Both PHC and BOC in these samples were quantitatively determined. This paper reports the characterization results of this set of 21 samples. In general, the presence of petroleum-characteristic alkylated PAH homologues and biomarkers can be used as unambiguous indicators of the contamination of oil and petroleum product hydrocarbons; while the absence of petroleum-characteristic alkylated PAH homologues and biomarkers and the presence of abundant BOC can be used as unambiguous indicators of the predominance of natural organic compounds in soil samples.  相似文献   

17.
Stream water chemistry were analyzed across Vatinsky Egan River Catchment (West Siberia). The objective of the study is to reveal the spatial and seasonal variations of the water quality and to assess the anthropogenic chemical inputs into the river system. Stream chemistry were monitored in 24 sampling sites for a period extended from January 2002 to December 2005. Spatial distribution of constituents in the Vatinsky Egan River basin indicated pollution from non-point sources associated with oil development. Data revealed that ion concentrations of river waters are usually negatively correlated with stream discharge. The major spatial variations of the hydrochemistry are related to the salinity. Chloride exhibited wide and high concentration range. A comparison with another rivers of West Siberia reveals that Vatinsky Egan River is the most saline and regional impacts further out in the watershed. The salinity of the river water increases substantially as it crosses Samotlor oil field. Many Cl(-) concentrations in the middle and lower parts of the catchment exceed the world average river values by one or more orders of magnitude. For 38% of sampling events, total petroleum hydrocarbons (TPH) concentrations were above the recommended water quality standards.  相似文献   

18.
The soil of a coastal Mexican refinery is quite contaminated, especially by hydrocarbons, with detected concentrations up to 130000 mg kg(-1) as TPHs (total petroleum hydrocarbons). The main sources of contamination are pipelines, valves, and old storage tanks, besides the land disposal of untreated hydrocarbon sediments derived from the cleaning of storage tanks. A health risk assessment (HRA) was carried out in order to measure the risk hazard indexes and clean-up standards for the refinery soil. HRA suggested the following actions to be taken: benzene concentrations must be reduced in eight of the 16 studied refinery zones to 0.0074-0.0078 mg kg(-1). Also, vanadium concentration must be reduced in two zones up to a concentration of 100 mg kg(-1). In only one of all of the studied zones, benzo(a)pyrene concentration must be reduced to 0.1 mg kg(-1). After 1 yr, TPHs showed a diminution of about 52%. Even though TPHs concentrations were variable, during 1999 the average concentrations were as much as 15.5 times the goal concentration. For year 2000, TPHs concentrations were only 7.4-fold the proposed value. For the 1999-2000 period, PAHs (polycyclic aromatic hydrocarbons) concentrations decreased by 82%. Some PAHs with 2, 3, 4, and 5 aromatic rings were removed up to 100% values.  相似文献   

19.
The level of concentrations of polycyclic aromatic hydrocarbons (PAHs) in surface soils from petroleum handling facilities (kerosene tank, generating plant, petrol stations, mechanic workshops, leaking pipeline and air port fuel dump) from Calabar metropolis southeastern Nigeria was determined by gas chromatography/ mass spectrometry. The results show that total polycyclic aromatic hydrocarbons (PAHs) varied from 1.80 to 334.43 mg/kg with a mean of 50.31 mg/kg. The lowest value of 1.80 mg/kg was obtained from petrol station while the highest value of 334.43 mg/kg was obtained from facility characterised by petrol stations and mechanic workshops. The ratio of phenanthrene/anthracene and fluoranthene/pyrene, varied from 0.43 to 27.72 and from 0.14 to 17.76 respectively. These ratios indicate various sources for the PAH. The two to three ring PAHs are the most abundant. Based on the PAH ratios and content alone it is not possible to distinguish between contribution from motor vehicle exhaust, gasoline spillage, used engine oil or petroleum production. However, considering the area of the study, it is very likely that the major source of soil contamination is originating from petroleum product.  相似文献   

20.
We conducted controlled laboratory exposure experiments to assess the toxic effects of water-accommodated fractions (WAFs) of South Louisiana sweet crude oil on five phytoplankton species isolated from the Gulf of Mexico. Experiments were conducted with individual and combinations of the five phytoplankton species to determine growth inhibitions to eight total petroleum hydrocarbon (TPH) equivalent concentrations ranging from 461 to 7,205 ppb. The composition and concentration of crude oil were altered by physical and chemical processes and used to help evaluate crude oil toxicity. The impact of crude oil exposure on phytoplankton growth varied with the concentration of crude oil, species of microalgae, and their community composition. At a concentration of TPH <?1,200 ppb, dinoflagellate species showed significantly better tolerance, while diatom species showed a higher tolerance to crude oil at higher concentrations of TPH. For both groups, the larger species were more tolerant to crude oil than smaller ones. The toxicity potential of crude oil seems to be strongly influenced by the concentration of polycyclic aromatic hydrocarbons (PAHs). The addition of the dispersant, Corexit® EC9500A, increased the amount of crude oil up to 50-fold in the water column, while the physical enhancement (vigorous mixing of water column) did not significantly increase the amount of TPH concentration in the water column. The species response to crude oil was also examined in the five-species community. Each phytoplankton species showed considerably less tolerance to crude oil in the five-species community compared to their individual responses. This study provides baseline information about individual phytoplankton responses to crude oil and dispersed crude oil for subsequent research efforts seeking to understand the impacts of oil on the phytoplankton in the bigger picture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号