首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starvation tolerance of laboratory-reared larval stone flounder, Kareius bicoloratus, was examined at different temperatures and salinities during the winters of 1984, 1985 and 1986. Starvation tolerance decreased with increased temperature and exhibited low values with high salinities. The highest starvation tolerance observed at low salinity was just before the metamorphosis stage. Starvation tolerance showed little change until larvae were 11 d. It increased with age thereafter. Epithelial cell heights of the digestive tract and cell diameters of pancreas and liver were measured histologically in reared stone flounder during growth and starvation. These values decreased markedly in the starved condition. Aldehyde fuchsin positive granules in the rectal epithelium also disappeared during the short starved period. The nutitrional condition of wild-caught stone flounder larvae, collected in January and February 1986 from the Matsukawa-ura inlet, Fukushima, Japan, was also examined. Eighty percent of larvae were estimated to be in fed condition just before sampling. The changes in cell heights of digestive organs agreed with this estimate. These histological methods seem to be useful in assessing the nutritional condition of marine fish larvae.  相似文献   

2.
Changes in the biochemical composition of the digestive gland and in the proteins of the mantle muscle of Sepia officinalis L, collected in September 1989 from the Ria de Vigo (northwest Spain), were measured during periods of 2, 4, 10 and >53 d starvation. The digestive gland lost weight faster than the rest of the body throughout the whole period of starvation. In the digestive gland, carbohydrate and protein contents did not change during starvation; however, lipid levels decreased significantly after 53 d. Phospholipid content increased during longterm starvation. The content of free fatty acids rose after 16 d. Sterols, diacylglycerylethers, triacylglycerols and carotenoids contents did not change significantly. Of the total fatty acids, 18:0, 20:2n6, 20:4n6 and the monounsaturated moieties were preferentially consumed; others, such as 22:5n3, 22:6n3 and 16:4n1, were selectively retained. In the mantle muscle, water content increased and total protein content decreased. The myofibrillar proteins decreased after 53 d starvation, whereas the sarcoplasmic fraction did not change and the stromatic proteins increased. No changes were observed in the electrophoretic patterns of sarcoplasmic and myofibrillar proteins. The digestive gland of S. officinalis does not seem to be an important reserve organ during long-term starvation, but does seem to be important during shortterm starvation.  相似文献   

3.
An adult giant kelp plant (Macrocystis pyrifera), moved from an inshore kelp forest to an offshore, low-nitrogen environment near Santa Catalina Island, California (USA), maintained growth for 2 wk on internal nitrogen reserves. Frond elongation rates decreased significantly during the third week, and plant growth rate (wet wt) dropped from an initial inshore rate of 3.6 to 0.9% d-1. During this 3 wk period, nitrogen contents and free amino acid concentrations decreased, while mannitol and dry contents increased in frond tissues. After depletion of internal nitrogen reserves, the nitrogen content of lamina and stipe tissues averaged 1.1 and 0.7% dry wt, respectively. The experimental plant was exposed to higher ambient nitrogen concentrations during the last 2 wk. Rates of frond elongation and plant growth increased, but nitrogen content and amino acids in frond tissues remained low. Of the total nitrogen contained in frond tissue of the plant before transplantation, 58% was used to support growth in the absence of significant external nitrogen supply. Amino acids constituted a small proportion of these internal nitrogen reserves. Net movement of nitrogen occurred within large fronds, but not between different frond size classes. The nitrogen content of holdfast tissue remained relatively constant at 2.4% dry wt and accounted for 18 to 29% of the total nitrogen. Holdfast nitrogen was not used to support growth of nitrogen-depleted fronds. In comparison to Laminaria longicruris, which is adapted to long seasonal periods of low nitrogen availability, M. pyrifera has small nitrogen-storage capacity. However, internal reserves of M. pyrifera appear adequate to make nitrogen starvation uncommon in southern California kelp forests.  相似文献   

4.
This study demonstrates that the timing of larval starvation did not only determine the larval quality (shell length, lipid content, and RNA:DNA ratio) and the juvenile performance (growth and filtration rates), but also determine how the latent effects of larval starvation were mediated in Crepidula onyx. The juveniles developed from larvae that had experienced starvation in the first two days of larval life had reduced growth and lower filtration rates than those developed from larvae that had not been starved. Lower filtration rates explained the observed latent effects of early larval starvation on reduced juvenile growth. Starvation late in larval life caused a reduction in shell length, lipid content, and RNA:DNA ratio of larvae at metamorphosis; juveniles developed from these larvae performed poorly in terms of growth in shell length and total organic carbon content because of “depletion of energy reserves” at metamorphosis. Results of this study indicate that even exposure to the same kind of larval stress (starvation) for the same period of time (2 days) can cause different juvenile responses through different mechanisms if larvae are exposed to the stress at different stages of the larval life.  相似文献   

5.
Sardine larvae are forced to grow as fast as possible to reduce larval mortality. Thus, changes in biochemical composition during the first steps of sardine larval growth are intended to maximize larval growth rate efficiency and survival. Protein and RNA weight-specific growth rates were the highest and their corresponding doubling times the shortest among all the biomolecules, reflecting the importance of fast growth during early stages of larval development. The protein percentage increased and the carbohydrate and lipid percentages decreased during early growth until they reached, respectively, a percentage of 73.7, 3.1 and 18.0%. These percentages would represent the optimal proportion of biochemical components in sardine early larvae and they are the result of the trade-off between, in the short term, the protein proportion necessary to optimize larval movement and growth and, in the long term, the minimum lipid percentage necessary to guarantee energy reserves to fuel metamorphosis. RNA/DNA ratio increases during larval growth up to an asymptotic optimal value of ≈3.5 in postflexion larvae. Nutritional condition of sardine larvae was good and was influenced by the parental effect through the egg biochemical composition and by the growth trajectory determined by the actual environmental conditions.  相似文献   

6.
Larval turbot (Scophthalmus maximus) were reared in a large marine enclosure and in plastic bags in southern Norway. Samples of larvae in the enclosure were taken during the first 12 d of life to estimate individual body growth based on back calculations from daily growth rings on their otoliths. Size selective mortality was documented for these larvae in the predator-free enclosure. Starvation in the laboratory occurred on the seventh day. In the enclosure, a mortality rate of 18.1% d-1 prevailed. Our data indicates that the survivors beyond the starvation period are larger by 0.18 mm on average. This result is important with regard to the question of whether starvation is an important mechanism for larval mortality in the sea. A possible means of estimating the relative effects of starvation versus predation based on these results and the backcalculation technique is suggested.  相似文献   

7.
The quantitative significance of the nitrogenous compound glycine betaine (GBT) and its sulfur analog dimethylsulfoniopropionate (DMSP) to intracellular pools in marine phytoplankton is not well known. In a series of experiments conducted in August 1993, we measured these compounds, as well as total organic sulfur, carbon, and nitrogen, over the growth cycle in six isolates of marine phytoplankton, Amphidinium carterae Hulburt, Chrysochromulina sp. Lackey, Emiliania huxleyi Hay et Mohler, Prorocentrum minimum (Pavillard) Schiller, Skeletonema costatum (Greville) Cleve, and Tetraselmis sp. At the same time, we measured cellular concentrations of protein, amino acids, chlorophyll, and inorganic nutrients. All six species produced DMSP, while three produced GBT at lesser levels. In the Chrysochromulina sp. isolate, levels of GBT were greater than DMSP during the exponential phase of growth, but declined sharply as the culture approached stationary phase. This change appeared to coincide with the onset of nitrogen limitation. Other nitrogenous osmolytes were produced in five of the six species but in much smaller quantities. DMSP contributed significantly to cellular sulfur throughout the growth cycle although, in some algae, the proportion of dissolved DMSP increased substantially during stationary growth. When present, GBT formed a sizeable fraction of the cellular nitrogen only during exponential growth. A significant percentage (ca. 50%) of the organic nitrogen could not be accounted for even when cellular pools of protein, amino acids, inorganic nitrogen, and nitrogenous osmolytes were combined. Based on these experiments, there does not appear to be a reciprocal relationship between DMSP and GBT production, although GBT production does appear to be correlated with nitrogen availability. Received: 5 January 1998 / Accepted: 29 June 1999  相似文献   

8.
The time periods from exhausion of the yolk to the age of irreversible starvation for Pacific herring Clupea harengus pallasi larvae were 8.5, 7.0 and 6.0 d at 6°, 8° and 10°C, respectively. These periods are within the range perviously measured for Atlantic herring larvae and other temperature zone fish species; they are long compared to the periods for tropical species. The variation in the length of this period is due almost entirely to temperature; the natural logarithm of the time period from fertilization to irreversible starvation is highly correlated (r=0.91) with the mean rearing temperature for 25 species of pelagic marine fish larvae. The rates of growth and mortality, measured for 26 experimental populations of Pacific herring larvae reared at 6°, 8° and 10°C and ten ages of delayed first feeding, decreased and increased, respectively with increasing age of first feeding and increasing temperature. These rates, adjusted for the effects of rearing conditions, were compared with the rates for natural populations of herring larvae. Growth is generally faster in the sea than in experimental enclosures. Two of the eleven estimates of natural mortality rate were high enough to indicate possible catastrophic mass starvation. This is consistent with Hjort's critical period concept of year class formation and it suggests that mass starvation occurs in 18 to 36% of the natural populations of first feeding herring larvae.  相似文献   

9.
T. Ikeda  R. Kirkwood 《Marine Biology》1989,100(3):301-308
Oxygen consumption, ammonia excretion and phosphate excretion rates were measured for Euphausia superba and E. crystallorophias captured under the pack-ice off Enderby Land, Antarctica, during November 1985. Water, ash, carbon, nitrogen and phosphorus composition were also determined. Compared with summer data, body composition of E. superba at this time of year was characterized by low carbon (40.2 to 40.7% of total dry wt), high nitrogen (11.8 to 12.0%), high phosphorus (1.2%) and high water (80.6 to 81.7% of total wet wt) content. Metabolic rates, expressed as percentage daily losses of body carbon, nitrogen and phosphorus were 1.3 to 1.6%, 0.38 to 0.42% and 1.9 to 2.2%, respectively; these fall within the ranges of summer data. E. superba fed on algae growing on the bottom of the ice, but body compositional features of this species suggest limited contribution of ice-algae to nutrition. Compared to E. superba, E. crystallorophias displayed greater metabolic rates and much higher body carbon content (40.9 to 45.0%), implying that feeding conditions under the ice were better suited to the requirements of E. crystallorophias. The only gravid females found belonged to E. crystallorophias.  相似文献   

10.
The large bathypelagic mysid Gnathophausia ingens was collected in January 1980 at 400 to 700 m depth from the San Clemente Basin off southern California. Instars 7-8 and Instars 10-12 were starved in the laboratory for up to 19 wk. Oxygen consumption and ammonia excretion rates, and water, protein, lipid, and ash contents were determined periodically during starvation. Protein and lipid were metabolized in approximately equal amounts by starved individuals after the initial weeks of food deprivation. Unidentified components (probably non-protein nitrogenous compounds) apparently were oxidized within the first 7 wk of starvation. Oxygen consumption and ammonia excretion by Instars 7-8 decreased steadily during 19 wk of starvation. In contrast, stable or increasing respiration and excretion rates were observed for fed mysids. The mean respiration rate of Instars 10-12 did not change significantly during 13 wk of starvation, although ammonia excretion rates decreased. Low metabolic rates and large lipid reserves probably help G. ingens to withstand long periods of starvation in the mesopelagic environment. Calculations based on the laboratory data demonstrate that small, infrequent meals could account for the rates of metabolism and growth observed for G. ingens in the field.  相似文献   

11.
Female Calanus glacialis were collected in early May 1989 in the pack ice region of the western Barents Sea and were fed or starved over 11 wk. Both groups laid eggs continuously during this period, however, fed females laid up to six times more eggs. During the first 10 d after collection, both groups spawned at low rates. There-after, fed females strongly increased spawning rates and maintained high egg production levels over 11 wk, while the rates of starved females decreased. During starvation they lost 70% body carbon, 50% body nitrogen and 70% lipids. The wax ester portion decreased from 86 to ca. 60% of total lipids. Three phases of gonad development and lipid metabolism were distinguished: early gonad development; gonad maturation with a rapid decrease in lipids, especially wax esters; and spawning under fed and starved conditions, where in fed females food provided most of the energy, whereas in starved females the lipid content strongly decreased.  相似文献   

12.
Eggs and larvae of the Senegal sole, Solea senegalensis Kaup, were reared from fertilization until the end of metamorphosis, which occurs by Day 17 after hatching at 19.5 °C. Changes in energy content and biomass quality were studied in terms of dry weight and of carbon, nitrogen and energy content. S. senegalensis spawned eggs of about 1 mm diameter which hatched 38 h after fertilization. Average dry weight of individual eggs was 46 μg, the chorion accounting for about 18% of total dry weight. Gross energy of recently fertilized sole eggs was approximately 1 J egg−1. From fertilization to hatching, eggs lost 8% of their total energy (chorion not included). After hatching, larvae lost 14% of their initial energy until the start of feeding which occurred about 48 h afterwards. The principal components catabolized during embryogenesis were carbon-rich compounds that decreased by 26%, while nitrogen-rich compounds decreased by only 10% and were practically unaltered from hatching to the start of feeding. Feeding larvae displayed constant growth during the period studied (specific growth rate on a dry weight basis was 0.26 d−1). The relative proportion of carbon and nitrogen content revealed an accumulation of high energy compounds in the days before metamorphosis. By Day 14, the energy content reached values similar to those of recently hatched embryos, but decreased again during metamorphosis. Received: 10 June 1998 / Accepted: 28 January 1999  相似文献   

13.
During development of Xantho bidentatus, ten stages of the eggs have been recognised. In this period the colour of the egg changes from black to pale white at the X stage of development. Total carbohydrate, glycogen, soluble protein, insoluble protein, total lipid, ash and water content have been determined in all ten stages of developing eggs. The utilisation of these compounds at various stages of development is discussed. The habitat of the crabs and its significance during development is also discussed. A constant decrease in the organic material as well as the dry weight of the egg was noticed with increased stage of development. Along with this a steady increase in the water and ash content was also observed. Glycogen was reduced during early days of development, whereas lipid was reduced during the latter stages of development. Both soluble and insoluble proteins exhibit conspicuous variations depending upon the stage of development.  相似文献   

14.
Zoea-1 larvae of Carcinus maenas L. (Decapoda: Brachyura: Portunidae) were from Helgoland in March 1984 and reared in the laboratory at 18°C through ecdysis. Dry weight (DW) and elemental composition of carbon (C), nitrogen (N), and hydrogen (H) were analyzed in newly hatched zoea-1, after different initial starvation periods, and in newly moulted zoea-2. Continually starved zoea-1 lost biomass and energy steadily, and logarithmic functions show best fit of empirical and predicted data. Biomass and energy equivalents of newly moulted zoea-2 are significantly correlated with starvation periods in the zoea-1, showing lower values with longer initial starvation. After about 25 to 34% individual biomass and energy losses, larvae exceed the point-of-noreturn (PNR), and do not recover or moult to the zoea-2, even if re-fed. When starvation ceases before the PNR, larvae moult to the zoea-2, and develop with lower average growth rates (AGR) after prolonged periods of initial food deprivation. The later larvae were re-fed, the less absolute amounts of DW, C, H, and individual energy, but more DW-related energy equivalents and N accumulated during subsequent feeding towards ecdysis. It is suggested that lipid, rather than protein, is the main source of energy controlling the maintenance of larval moult cycles. After lipid reserves are depleted, zoea-1 larvae live on body protein, and lose the ability to absorb and restore sufficient lipid if re-fed later than the PNR.Contribution to research project An-145/1-1 granted by the Deutsche Forschungsgemeinschaft (DFG)  相似文献   

15.
The content of water, ash, carbohydrate, lipid, protein, chitin, carbon, hydrogen, nitrogen and energy was measured for all life stages of the bathypelagic mysid Gnathophausia ingens collected in San Clemente Basin off Southern California, USA between January 1969 and February 1982. These data are used to examine the life history, growth rates, growth pattern and partitioning of material and energy over the life of this species. Females reproduce only once and brood their young for about 1.5 yr, during which time the females do not feed. This species has a very high reproductive effort: of the energy accumulated over its life, 61.3% is used in egg production, 13.4% in parental care of young, 5.6% in cast exoskeletons and only 19.6% remains in the females after brooding. The relative rate of growth (percentage of energy d?1) is about 1% immediately after leaving the mother and declines to about 0.2% as maturity is approached. Such growth rates appear to be typical for an animal of this size living at low temperatures. The evolutionary context of this mysid's life history is discussed.  相似文献   

16.
J. Harms 《Marine Biology》1990,104(2):183-190
Liocarcinus holsatus (Fabricius) larvae, of females originating from the Elbe Estuary, FRG, were reared in the laboratory at constant 15°C in May 1988. For each larval stage, developmental time was measured by individual cultures (Zoea I: 6.7±0.7d; Zoea II: 5.0±0.6d; Zoea III: 4.8±0.7 d; Zoea IV: 5.3±0.6d; Zoea V: 6.1±1.1d; Megalopa: 10.45±0.7d). During the entire period of development, dry weight (W), carbon (C), nitrogen (N), and hydrogen (H) were measured daily (Zoea I to V) or every second day (Megalopa). The energy content (E) was estimated from C. Biomass and energy (per individual) increased in each larval stage as a parabolic function of age and is described by power functions. C, H, and E exhibit a higher percentage gain (relative to initial values at the time of hatching) than W and N. It is suggested that proportionally more lipid than protein is accumulated during larval development. Cyclical changes in the relative biomass (% W) correspond to the larval moult cycle, indicating a rapid uptake of water and minerals immediately after hatching and a later increase in tissue growth. Changes in the C:N ratio suggest that during the first period more lipid than protein is accumulated. These patterns of growth and elemental composition are compared with literature data and a high degree of similarity in the growth characteristics of decapod larvae is seen. In addition W, C, N, and H values as well as E were measured for the exuviae of Zoea I to V and Megalopa. The percentage loss of growth rate by exuviae for each larval instar were higher in W (12 to 16%) and C (8 to 12%), and varied between 5 and 10% for N, H, and E.  相似文献   

17.
Cell nitrogen quotas and uptake rates following ammonium additions were measured during ammonium-limited growth transients obtained by starving batch and chemostat cultures of Thalassiosira pseudonana (Clone 3 H). During starvation, cell quotas decreased by more than 50% in batch cultures. In chemostat cultures, the drop in cell quota during starvation decreased with dilution rate, from more than 50% at 1.45 d-1, to less than 10% at 0.22 d-1. Minimal levels of 3 to 4×10-2 pg-at. N cell-1 were reached after 24 h starvation in both batch and chemostat cultures. Uptake rates over the first minute of perturbation experiments were 3 times the long-term (10 to 30 min) rates. In batch cultures, specific uptake rates increased from 4 d-1 to 20 d-1 after 24 h starvation. Uptake rates per cell were independent of starvation time and dilution rate in chemostat cultures, but lower in non-starved batch cultures. The implications of these data for models of phytoplankton growth are discussed: the data support models which predict a depression in average growth rates when diatoms encounter microscale patches in oligotrophic environments.  相似文献   

18.
W. K. W. Li 《Marine Biology》1979,55(3):171-180
Prolonged exposure of Thalassiosira weissflogii (Grunow) to a sub-lethal concentration of cadmium in continuous culture resulted in the development of cellular characteristics allowing optimal growth in the presence of Cd. Examination of Cd-adapted and unadapted cells was made on steady-state populations growing at the same rate in order to eliminate any effects of differing growth rate on metabolism. Adaptation to Cd stress was manifested as increases in mean cell volume, dry weight, protein: DNA, protein: RNA, protein: carbohydrate, protein nitrogen: total cell nitrogen and carotenoid: chlorophyll a ratios. Subsequent exposure of the cells to Cd over a wide concentration range showed that cellular division rate, carbon photoassimilation and extracellular release of dissolved organic compounds were greatest near the Cd concentration to which the cells had previously been adapted. Enhanced cellular carbon photoassimilation in Cd-adapted cells correlated exactly with increased cellular protein content. The amount of dissolved organic excretion by Cd-adapted cells at the adaptation concentration was the same as that of unadapted cells at the same concentration. Since total carbon photoassimilation was greater in Cd-adapted cells at this concentration, the percentage of carbon excreted was less in these cells.  相似文献   

19.
Metamorphosis in the Chilean oyster Ostrea chilensis was complete 36 h after release of the larvae, when 100% of the individuals showed edge growth of the dissoconch. The size of the larval shell did not change during metamorphosis, although the total dry weight of the larva decreased considerably. During this period, when the gill ciliature was undeveloped and the oyster therefore unable to feed, energy demands were met by biochemical reserves retained from the larval phase. Proteins contributed the largest quantity of energy to the metamorphosing oyster, 69.3% of the total expended, whereas lipids supplied 24.3% and carbohydrates only 6.4%. The process of metamorphosis consumed 64.5% of the energy reserves held by the pediveliger at the time of release. When metamorphosis was complete, growth began and tissue reserves were replenished, protein and carbohydrate accumulating rapidly early in the juvenile stage. Received: 26 December 1997 / Accepted: 8 July 1998  相似文献   

20.
The relationship between Penaeus merguiensis protozoea larvae and their phytoplankton diet was examined using seasonal plankton surveys and in situ rearing experiments. Larval abundance, phytoplankton community structure, and chlorophyll a concentration in Albatross Bay, Gulf of Carpentaria, were monitored monthly for 2 yr. Larval abundance peaked in November (spring) and March (autumn), at which times diatoms were the most abundant group in net samples of phytoplankton and in the guts of larvae. During November 1989 and March 1990, larvae were reared in nylon mesh enclosures positioned throughout the water column at three depths: 0 to 3 m, 3 to 6 m and 6 to 9 m. Overall, larval survival and gut fullness were both higher in November than in March. In both months, larval survival was lower at the surface than at other depths. This correlated with lower chlorophyll a concentrations, but lower total cell densities were not detected. During the in situ experiments, diatoms were the most abundant phytoplankton group in the water column and in the guts of larvae and, therefore, appeared to be the principal diet of larvae. Pigment analysis demonstrated that while gut contents generally reflected the composition of the phytoplankton community, the larvae were not feeding exclusively on diatoms. They also ingested green algae and possibly seagrass detritus. The in situ experiments demonstrated that the predominantly diatom flora in Albatross Bay can provide a nutritionally adequate environment for prawn larvae even at seasonally low levels. It is unlikely, therefore, that starvation is a major cause of mortality of P. merguiensis larvae during either of the biannual peaks in their abundance in Albatross Bay, Gulf of Carpentaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号