首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indoor radon distribution of subway stations in a Korean major city   总被引:1,自引:0,他引:1  
The overall survey on indoor radon concentration was conducted at all subway stations in a major city, Daejeon in the central part of Korea. It was quarterly performed from September 2007 to August 2008. The annual arithmetic mean of indoor radon concentration of all the stations was 34.1 ± 14.7 Bq m−3, and the range of values was from 9.4 to 98.2 Bq m−3. The radon concentrations in groundwater (average 31.0 ± 0.8 Bq m−3) were not significantly high in most stations, but the concentration (177.9 ± 2.3 Bq L−1) of one station was over the level of 148 Bq L−1 in drinking water proposed by U.S. EPA. Based on indoor survey results, the approximate average of the annual effective dose by radon inhalation to the employees and passengers were 0.24 mSv y−1, and 0.02 mSv y−1, respectively. Although the effective dose based on the UNSCEAR report was potentially estimated, for more accurate assessment, the additional survey on the influence by indoor radon will be necessary.  相似文献   

2.
Radon and gamma dose rate measurements were performed in 512 schools in 8 of the 13 regions of Greece. The distribution of radon concentration was well described by a lognormal distribution. Most (86%) of the radon concentrations were between 60 and 250 Bq m−3 with a most probable value of 135 Bq m−3. The arithmetic and geometric means of the radon concentration are 149 Bq m−3 and 126 Bq m−3 respectively. The maximum measured radon gas concentration was 958 Bq m−3. As expected, no correlation between radon gas concentration and indoor gamma dose rate was observed. However, if only mean values for each region are considered, a linear correlation between radon gas concentration and gamma dose rate is apparent. Despite the fact that the results of radon concentration in schools cannot be applied directly for the estimation of radon concentration in homes, the results of the present survey indicate that it is desirable to perform an extended survey of indoor radon in homes for at least one region in Northern Greece.  相似文献   

3.
The expectation of elevated 222Rn levels in modern homes that have low air interchange rates with the outdoor air caused us to survey both solar and conventional homes in northeastern New York State. As a group, homes that are more airtight have three times the 222Rn levels of the conventional homes; they have other specific problems that are introduced or exaggerated by modern construction. For example, the highest two levels of radon in the solar homes give doses over 30 years that are known to produce lung cancer in 1% of uranium miners. Summer readings in more than one-half of the cases are different from winter ones by a factor of two or more, so that year-round measurements are necessary for precise dosimetry. The track-etching technique is ideally suited for such measurements. Radon emanation measurements on soils and sand demonstrate a considerable variety of release rates.  相似文献   

4.
Measurements were made of radon levels in 165 randomly selected homes in Cumberland County, PA during Winter 1984–1985. The average and mean levels were found to be 9.1 ± 0.7 pCi/L and 6.3 ± 0.5 pCi/L, respectively, many times normally encountered levels. Average and mean radon levels are reported vs. various house characteristics.  相似文献   

5.
The indoor radon (222Rn) activity concentration was measured between January and June in the schools of two geothermal areas in Tuscany, central Italy. One of these areas (the Larderello area) is characterized by a large number of geothermal power plants, covering about 9% of the world’s geothermal power production. In contrast, the other area, Monte Pisano, has not any such facilities. About 250 measurements were made using track etch detectors. Only a slight difference in the concentrations between the two major sampling areas (98 Bq m−3 for Larderello area and 43 Bq m−3 for Monte Pisano area) was found, and this was related to different geological characteristics of the ground and not the presence of the geothermal plants. The measured radon concentrations were always well below the intervention levels in both areas, and health risks for students and personnel in the examined schools were excluded.  相似文献   

6.
Modeling houses as two coupled chambers, namely, the living area and basement, predicts more accurately the total indoor radon source flux from building materials and geology than a one-chamber model in houses with disparate radon concentrations. Three regional surveys found mean radon concentration ratios between basement and living area to range from 1.4 to 4.2, implying weak interchamber coupling in most cases. The invariability of second-order system parameters under steady infiltration but different initial conditions confirms the adequacy of the two-chamber model. The presence of a characteristic radon source flux was detected within the basements of two houses, in one case across different infiltration, coupling, and initial conditions. One-chamber models fit to two-chamber tracer gas data in one house show a source flux variation of a factor of 6 across changing coupling, while the two-chamber source flux variation was only a factor of 1.5. A substantial fraction of the apparent one-chamber living area source flux in these cases is the variable convective radon flux from the basement. The technique is not sensitive enough to detect living area source fluxes if either the interchamber coupling is strong or if the basement source flux is substantially larger.  相似文献   

7.
Results of indoor gamma radiation and radon measurements in 95 wooden dwellings located in a Norwegian thorium-rich carbonatite area using thermoluminescent dosemeters and CR-39 alpha track detectors, respectively, are reported together with a thorough analysis of the indoor data with regard to geological factors. Slightly enhanced radium levels and thorium concentrations of several thousands Bq kg(-1) in the carbonatites were found to cause elevated indoor radon-222 levels and the highest indoor gamma dose rates ever reported from wooden houses in Norway. An arithmetic mean indoor gamma dose rate of 200 nGy h(-1) and a maximum of 620 nGy h(-1) were obtained for the group of dwellings located directly on the most thorium-rich bedrock.  相似文献   

8.
In this work we present the results of a 2-year survey of indoor radon variations in four cities of Lahijan, Ardabil, Sar-Ein and Namin in North and Northwest Iran. We used both passive and active measurements by solid state nuclear track detectors (SSNTDs) with CR-39 polycarbonate and PRASSI Portable radon Gas Surveyor. A total of 1124 samplers in Lahijan, Ardabil, Sar-Ein and Namin were installed. Sampling frequency was seasonal and sampling locations were randomly chosen based on dwelling structures, floors, geological formations, elevation and temperature variation parameters. For quality assurance, 281 active measurements and double sampling were carried out. Based on our results and the results of previous surveys, Ardabil and Lahijan have the second and third highest radon concentration in Iran, respectively (Ramsar is first). The average radon concentration during the year in Lahijan, Ardabil, Sar-Ein and Namin were 163, 240, 160 and 144 Bq/m(3) with medians of 160, 168, 124 and 133 Bq/m(3), respectively. These concentrations give rise to annual effective doses of 3.43 mSv/y for Lahijan and 5.00 mSv/y for Ardabil. The maximum recorded concentration was 2386 Bq/m(3) during winter in Ardabil and the minimum concentration was 55 Bq/m(3) during spring in Lahijan. Relationships between radon concentration and building materials and room ventilation were also studied. The dosimetry calculations showed that these four cities could be categorized as average natural radiation zones. The correlation coefficients relating warm and cold season radon variation data were obtained.  相似文献   

9.
Measurements of indoor radon concentrations were performed in 28 low-rise houses and 30 apartments in Patras area from December 1996 to November 1997, using nuclear track detectors. The investigation was focused on the effects of season and floor number, as well as on the existence of a basement in low-rise houses on indoor radon levels. It was found that the differences in mean radon concentrations between adjacent seasons, in a number of 61 selected sampling sites distributed in 28 houses, were statistically significant. As expected, a maximum was found in winter and a minimum in summer. The differences in mean radon concentration on different floors of the same houses were also statistically significant and followed a linear decrease from underground to 2nd floor. In addition, indoor radon concentrations in the ground floor were found to be influenced by the existence or not of a basement. The average annual radon concentration was found to be 41 Bq m(-3) for the houses, 28 Bq m(-3) for the apartments and 38 Bq m(-3) for all the dwellings. These values lead to an average effective dose equivalent of 1.1, 0.7 and 0.9 mSv y(-1), respectively. Residents living on the underground in low-rise houses, during winter, where the average effective dose equivalent is 2.1 mSv y(-1), attain the higher risk.  相似文献   

10.
In the beginning of 1990s within the framework of a national radon survey of more than 1500 points, radon measurements were performed in more than 100 houses located in Galicia region, in the Northwest area of Spain. The houses were randomly selected only bearing in mind general geological aspects of the region. Subsequently, a nationwide project called MARNA dealt with external gamma radiation measurements in order to draw a Spanish natural radiation map. The comparison in Galicia between these estimations and the indoor radon levels previously obtained showed good agreement. With the purpose of getting a confirmation of this relationship and also of creating a radon map of the zone, a new set of measurements were carried out in 2005. A total of 300 external gamma radiation measurements were carried out as well as 300 measurements of (226)Ra, (232)Th and (40)K content in soil. Concerning radon, 300 1-m-depth radon measurements in soil were performed, and indoor radon concentration was determined in a total of 600 dwellings. Radon content in soil gave more accurate indoor radon predictions than external gamma radiation or (226)Ra concentration in soil.  相似文献   

11.
Indoor radon activities were measured during a period of 6 months, as well as several physical environmental variables (temperature, pressure, humidity and rainfall). The location was a small room at an administrative building of the University of Coimbra, usually undisturbed by human activities and situated over bedrock of low-uranium Triassic red sandstones. A low average activity of radon was observed (36 Bq m−3), however showing a very well marked daily periodicity (10 ± 5 Bq m−3), with maximum values occurring more frequently between 9 and 10 a.m. Daily variations are shown to have no relation with earth tides, and their amplitudes exhibit a significant correlation with outdoor temperature; no dependence on barometric pressure was found. Rainfall disturbs the observed daily radon cycles through a strong reduction of their amplitude, but has no effect on the long-term variability of the gas concentration.  相似文献   

12.
A theoretical approach to indoor radon and thoron distribution   总被引:1,自引:0,他引:1  
A model based on the Finite Element Method was developed to simulate indoor behavior of radon ((222)Rn), thoron ((220)Rn) and their progeny, as well as, to calculate their spatial distributions. Since complex physical processes govern the distribution several simplifications were made in the presented model. Different locations of possible radon/thoron sources, diffusion of these gases, their radioactive decay, etc were taken into account. Influences of different parameters on thoron/radon as well as indoor distribution of their progeny, such as the geometry and room dimension, the presence of aerosols and their size distribution expressed through the diffusion coefficient, different kinds of ventilation, etc, were investigated. It has been found that radon is distributed homogeneously, while the thoron concentration is rather inhomogeneous and decreases exponentially with the distance from the source. Regardless of the source distribution, the distribution of radon was homogeneous, except at places near an air inlet and outlet. However, the distribution of thoron depends on the source distribution. If thoron emanates from walls or the floor, its concentration decreases with the distance from the wall. Moreover, the concentration gradient is much larger near walls. This suggests that the actual selection of the site effect should be taken into account when obtaining a representative value of indoor (220)Rn and their progeny for dose assessment. The simulation results of activities and their distribution were in accordance with the results of other studies and experiments.  相似文献   

13.
Using high-sensitivity radon ((222)Rn) portable detectors (passive electronic devices of the type RADIM3), the airborne (222)Rn concentration in the interior of various Cypriot buildings and dwellings was measured. For each preselected building and dwelling, a calibrated detector was put into a closed room, and the (222)Rn concentration was registered in sampling intervals of 2 to 4 h for a total counting time of typically 48 h. (222)Rn activity concentrations were found to be in the range of 6.2 to 102.8 Bq m(-3), with an overall arithmetic mean value of (19.3+/-14.7) Bq m(-3). This value is by a factor of two below the world average (population-weighted) value of 39 Bq m(-3). The total annual effective dose equivalent to the Cypriot population was calculated to be between 0.16 and 2.6 mSv with an overall arithmetic mean value of (0.49+/-0.37) mSv.  相似文献   

14.
In China, as the economy is developing and the population is expanding, some underground buildings have been used as supermarkets, restaurants and entertainment places. Tunnels in mountains are one type of underground building, and the radon (222Rn) level in tunnels is an important issue. Radon levels in different type tunnels appear to differ, and relatively higher levels of 222Rn are associated with particular types of bedrock. The 222Rn levels in tunnels in five different geological characteristics were analyzed. Those built in granite had the highest 222Rn levels with a geometric mean (GM) of 280 Bq m−3, while those built in limestone (GM: 100 Bq m−3) and andesitic porphyry (GM: 96 Bq m−3) were lower. The sequence of 222Rn concentrations was: granite > tuff > quartz sandstone > limestone > andesitic porphyry, and the 222Rn in granite was statistically significantly higher than in limestone and andesitic porphyry. Tunnels built in granite, tuff, quartz sandstone, limestone tended to have higher 222Rn concentrations in summer than in winter, while the reverse tendency was true in andesitic porphyry tunnels. Only the difference in limestone was statistically significant.  相似文献   

15.
Based on an idealized model, both the annual and the seasonal radon ((222)Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil (226)Ra content and a global ecosystems database. Digital maps of the (222)Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average (222)Rn flux density from the soil surface across China was estimated to be 29.7+/-9.4 mBq m(-2)s(-1). Both regional and seasonal variations in the (222)Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil (226)Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China.  相似文献   

16.
In general, indoor radon concentration is subject to seasonal variability. The reasons are to be found (1) in meteorological influence on the transport properties of soil, e.g. through temperature, frozen soil layers and soil water saturation; and (2) in living habits, e.g. the tendency to open windows in summer and keep them closed in winter, which in general leads to higher accumulation of geogenic Rn in closed rooms in winter. If one wants to standardize indoor Rn measurements originally performed at different times of the year, e.g. in order to make them comparable, some correction transform as a function of measurement time which accounts for these effects must be estimated. In this paper, the seasonality of indoor Rn concentration measured in Austria is investigated as a function of other factors that influence indoor Rn. Indoor radon concentration is clearly shown to have seasonal variability, with higher Rn levels in winter. However, it is complicated to quantify the effect because, as a consequence of the history of an Rn survey, the measurement season maybe correlated to geological regions, which may introduce a bias in the estimate of the seasonality amplitude.  相似文献   

17.
This paper presents a novel approach of measuring radon in-water in the field by inserting a MEDUSA gamma-ray detector into a 210 L or 1000 L container. The experimental measurements include investigating the effect of ambient background gamma-rays on in-field radon measurement, calibrating the detector efficiency using several amounts of KCl salt dissolved in tap water, and measuring radon in borehole water. The results showed that there is fairly good agreement between the field and laboratory measurements of radon in water, based on measurements with Marinelli beakers on a HPGe detector. The MDA of the method is 0.5 Bq L−1 radon in-water.  相似文献   

18.
In order to improve regulatory tools for radon risk management in France, a harmonised methodology to derive a single map of the geogenic radon potential has been developed. This approach consists of determining the capacity of the geological units to produce radon and to facilitate its transfer to the atmosphere, based on the interpretation of existing geological data. This approach is firstly based on a classification of the geological units according to their uranium (U) content, to create a radon source potential map. This initial map is then improved by taking into account the main additional parameters, such as fault lines, which control the preferential pathways of radon through the ground and which can increase the radon levels in soils. The implementation of this methodology to the whole French territory is currently in progress. We present here the results obtained in one region (Bourgogne, Massif Central) which displays significant variations of the geogenic radon potential. The map obtained leads to a more precise zoning than the scale of the existing map of radon priority areas currently based solely on administrative boundaries.  相似文献   

19.
Environmental radon exposure of residents of domestic premises in the United Kingdom (UK) and elsewhere in Europe is estimated on the basis of the measured radon concentrations in, and the relative occupancies of, the principal living room and bedroom. While studies on radon concentration variability in the individual units in apartment blocks in various countries have been described, little data has been reported on variability in two-storey single-family dwellings, and the majority of extant studies consolidate living room and bedroom data early in the analysis. To investigate this further, detailed analysis was made of radon concentration data from a set of thirty-four homes situated in areas of Northamptonshire known to exhibit high radon levels. All homes were of typical UK construction of brick/block/stone walls under a pitched tile/slate roof. Approximately 50% of the sample were detached houses, the remainder being semi-detached (duplex) or terraced (row-house). Around 25% of the sample possessed cellars, while 12% were single-storey dwellings (bungalows), reflecting the typical incidence of this type of dwelling in England. In the two-storey homes, all monitored bedrooms were on the upper floor. Distribution of the ratios of bedroom/living room radon concentrations (BR/LR ratio) in individual properties was left-skewed (mean 0.67, median 0.73, range 0.05-1.05) with a tail extending to just above 1.0. The mean is consistent with the outcome of earlier extensive studies in England, while the variability depends principally on the characteristics of the property, and not on seasonal factors. In a small set of homes, the BR/LR ratio was anomalously low, (mean 0.3). BR/LR ratios in single-storey homes clustered around a value of 1.0, indicating that house design, rather than lifestyle, is the dominant factor in determining bedroom radon concentrations. Homes with higher mean annual radon concentrations showed lower BR/LR ratios, supporting our proposal that, in some homes, radon emanation from building materials may comprise a significant component of the overall radon level.  相似文献   

20.
In the UK, excessive levels of radon gas have been detected in domestic housing. Areas where 1% of existing homes were found to be over the Action Level of 200 Bq · m 3 were declared to be Radon Affected Areas. Building Regulations have been introduced which require that, for areas where between 3% and 10% of existing houses are above the Action Level, new homes should be built with basic radon protection using a membrane, and that, where 10% or more of existing homes exceed this level, new homes should be built with full radon protection.Initially these affected areas followed administrative boundaries, known as Counties. However, with increasing numbers of measurements of radon levels in domestic homes recorded in the national database, these areas have been successively refined into smaller units – 5 km grid squares in 1999, down to 1 km grid squares in 2007.One result is the identification of small areas with raised radon levels within regions where previously no problem had been identified. In addition, some parts of areas that were previously considered radon affected are now considered low, or no, risk. Our analysis suggests that the net result of improved mapping is to increase the number of affected houses. Further, the process is more complex for local builders, and inspectors, who need to work out whether radon protection in new homes is appropriate.Our group has assessed the cost-effectiveness of radon remediation programmes, and has applied this analysis to consider the cost-effectiveness of providing radon protection in both new and existing homes. This includes modelling the potential failure rate of membranes, and whether testing radon levels in new homes is appropriate. The analysis concludes that it is more cost effective to provide targeted radon protection in high radon areas, although this introduces more complexity.The paper also considers the trend in housing to a greater proportion of apartments, the regional variations in types of housing and the decreasing average number of occupants in each dwelling, and concludes that data and methods are now available to respond to the health risks of radon at a local level, in keeping with a general initiative to prioritise responses to health and social welfare issues at a more local level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号