首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chang CM  Wang MK  Chang TW  Lin C  Chen YR 《Chemosphere》2001,43(8):1133-1139
The predictive accuracy of using the one-dimensional advection–dispersion equation to evaluate the fate and transport of solute in a soil column is usually dependent on the proper determination of chemical retardation factors. Typically, the distribution coefficient (Kd) obtained by fitting the linear sorption isotherm has been extensively used to consider general geochemical reactions on solute transport in a low-concentration range. However, the linear distribution coefficient cannot be adequately utilized to describe the solute fate at a higher concentration level. This study employed the nonlinear equilibrium-controlled sorption parameters to determine the retardation factor used in column leaching experiments. Copper and cadmium transportation in a lateritic silty-clay soil column was examined. Through the explicit finite-difference calculations with a third-order total-variation-diminishing (TVD) numerical solution scheme, all results of the theoretical copper and cadmium breakthrough curves (BTCs) simulated by using the Freundlich nonlinear retardation factors revealed good agreement with the experimental observations.  相似文献   

2.
In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due to higher preferential flow and lower fraction of equilibrium sorption sites.  相似文献   

3.
Movement of metolachlor and terbuthylazine in core and packed soil columns   总被引:2,自引:0,他引:2  
Singh N  Kloeppel H  Klein W 《Chemosphere》2002,47(4):409-415
Movement of metolachlor and terbuthylazine including a bromide tracer was studied in core and packed soil columns in PVC pipes (80 mm diameter, 15 mm depth) with two German soil types viz: silt loam and loamy silt. The breakthrough curves (BTCs) for bromide indicated some preferential flow of water both under conventional tillage (CN) and no-till (NT) simulation with silt loam soil. The herbicides leached to a greater extent in NT columns than in CN columns. Leaching was higher in loamy silt soil than in silt loam soil under CN conditions. This result is in agreement with the higher sorption capacity of silt loam having higher organic carbon compared to loamy silt having low organic carbon. Adsorption strength of the herbicides did not affect their breakthrough time, but was reflected in the slope and maximum height of the BTCs. The BTCs showed the expected inverse relationship between leaching and adsorption with greater mobility of the weakly-sorbed metolachlor than the more strongly sorbed terbuthylazine. Maximum amounts of the applied herbicides were recovered from the top soil layer in intact columns. Metolachlor was more mobile in packed columns than in core columns.  相似文献   

4.
Yolcubal I  Akyol NH 《Chemosphere》2008,73(8):1300-1307
The transport and fate of arsenate in carbonate-rich soil under alkaline conditions was investigated with multiple approaches combining batch, sequential extraction and column experiments as well as transport modeling studies. Batch experiments indicated that sorption isotherm was nonlinear over a wide range of concentration (0.1-200 mg L(-1)) examined. As(V) adsorption to the calcareous soil was initially fast but then continued at a slower rate, indicating the potential effect of rate-limited sorption on transport. Column experiments illustrated that transport of As(V) was significantly retarded compared to a non-reactive tracer. The degree of retardation decreased with increasing As(V) concentration. As(V) breakthrough curves exhibited nonideal transport behavior due to the coupled effects of nonlinear and rate-limited sorption on arsenate transport, which is consistent with the results of modeling studies. The contribution of nonlinear sorption to the arsenate retardation was negligible at low concentration but increased with increasing As(V) concentration. Sequential extraction results showed that nonspecifically sorbed (easily exchangeable, outer sphere complexes) fraction of arsenate is dominant with respect to the inner-sphere surface bound complexes of arsenate in the carbonate soil fraction, indicating high bioavailability and transport for arsenate in the carbonate-rich soils of which Fe and Al oxyhydroxide fractions are limited.  相似文献   

5.
Leachate from ash landfills is frequently enriched with As and Se but their off-site movement is not well understood. The attenuation potential of As and Se by soils surrounding selected landfills during leachate seepage was investigated in laboratory column studies using simulated ash leachate. As(III, V) and Se(IV, VI) concentrations as well as pH, flow rate, and a tracer were monitored in influent and effluent for up to 800 pore volumes followed by sequential desorption, extraction, and digestion of column segments. Column breakthrough curves (BTCs) were compared to predictions based on previously measured sorption isotherms. Early As(V) breakthrough and retarded As(III) breakthrough relative to predicted BTCs are indicative of oxidative transformation during seepage. For Se(VI), which exhibits linear sorption and the lowest sorption propensity, measured BTCs were predicted fairly well by equilibrium sorption isotherms, except for the early arrival of Se(IV) in one site soil, which in part, may be due to higher column pH values compared to batch isotherms. Most of the As and Se retained by soils during leaching was found to be strongly sorbed (60–90%) or irreversibly bound (10–40%) with <5% readily desorbable. Redox potential favoring transformation to the more sorptive valence states of As(V) and Se(IV) will invoke additional attenuation beyond equilibrium sorption-based predictions. With the exception of Se(IV) on one site soil, results indicate that attenuation by down-gradient soils of As and Se in ash landfill seepage will often be no less than what is predicted by equilibrium sorption capacity with further attenuation expected due to favorable redox transformation processes, thus mitigating contaminant plumes and associated risks.  相似文献   

6.
Deng J  Jiang X  Zhang X  Hu W  Crawford JW 《Chemosphere》2008,71(11):2150-2157
Contaminant transport in soils is complicated and involves some physical and chemical nonequilibrium processes. In this research, the soil column displacement experiments of Cl and atrazine under different flow velocities were carried out. The data sets of Cl transport in sandy loam fitted to the convection dispersion equation (CDE) and the two-region model (TRM) indicated that the effects of physical nonequilibrium process produced by immobile water on the breakthrough curves (BTCs) of Cl and atrazine transport through the repacking soil columns were negligible. The two-site model (TSM) and the continuous time random walk (CTRW) were also used to fit atrazine transport behavior at the flow rate of 19.86 cm h−1. The CTRW convincingly captured the full evolution of atrazine BTC in the soil column, especially for the part of long tailing. However, the TSM failed to characterize the tailing of atrazine BTC in the soil column. The calculated fraction of equilibrium sorption sites, F, ranging from 0.78 to 0.80 for all flow rates suggested the contribution of nonequilibrium sorption sites to the asymmetry of atrazine BTCs. Furthermore, the data sets for the flow rates of 6.68 cm h−1 and 32.81 cm h−1 were predicted by the TSM and the CTRW. As to the flow rate of 6.68 cm h−1, the CTRW predicted the entire BTC of atrazine transport better than the TSM did. For the flow rate of 32.81 cm h−1, the CTRW characterized the late part of the tail better, while the TSM failed to predict the tailings of atrazine BTC.  相似文献   

7.
We analyzed the long-term behavior of breakthrough curves (BTCs) and temporal moments of a solute subjected to Freundlich equilibrium sorption (s = kc(n)). For one-dimensional transport in a homogeneous porous medium, we derived a power-law relation between travel time, tau, and solute displacement, chi, with the exponent being equal to the Freundlich n exponent. The mean solute velocity, derived from the first time moment, was found to change as tau(n-1). For n values larger than 0.66, the second time moment could be related to c chi(2/n), where c is a constant. An approach based on the use of a critical concentration was developed to estimate the presence of the asymptotic regime in the tail of the BTC. This approach was tested successfully using numerical case studies. One-dimensional numerical simulations with varying values of k, n and initial mass were run to verify the closed form analytical expressions for the large time behavior of temporal moments and the tailing part of breakthrough curves. Good agreement between the slope of the tailing part of log-log transformed BTCs and the predicted slope using asymptotic theory was found. Asymptotic theory in general underestimated the magnitude of the concentration in the tail. The quality of the estimated concentrations in the tail improved for small values of the dispersivity. Experimental BTCs of uranin and benazolin were analyzed in combination with sorption/desorption batch experiments using asymptotic theory. A good agreement between the value of n parameter derived from desorption experiment with benazolin and the value of the n parameter derived from the tail of the BTC was found.  相似文献   

8.
Large amounts of 137Cs have been accidentally released to the subsurface from the Hanford nuclear site in the state of Washington, USA. The cesium-containing liquids varied in ionic strengths, and often had high electrolyte contents, mainly in the form of NaNO3 and NaOH, reaching concentrations up to several moles per liter. In this study, we investigated the effect of ionic strengths on Cs migration through two types of porous media: silica sand and Hanford sediments. Cesium sorption and transport was studied in 1, 10, 100, and 1000 mM NaCl electrolyte solutions at pH 10. Sorption isotherms were constructed from batch equilibrium experiments and the batch-derived sorption parameters were compared with column breakthrough curves. Column transport experiments were analyzed with a two-site equilibrium-nonequilibrium model. Cesium sorption to the silica sand in batch experiments showed a linear sorption isotherm for all ionic strengths, which matched well with the results from the column experiments at 100 and 1000 mM ionic strength; however, the column experiments at 1 and 10 mM ionic strength indicated a nonlinear sorption behavior of Cs to the silica sand. Transport through silica sand occurred under one-site sorption and equilibrium conditions. Cesium sorption to Hanford sediments in both batch and column experiments was best described with a nonlinear Freundlich isotherm. The column experiments indicated that Cs transport in Hanford sediments occurred under two-site equilibrium and nonequilibrium sorption. The effect of ionic strength on Cs transport was much more pronounced in Hanford sediments than in silica sands. Effective retardation factors of Cs during transport through Hanford sediments were reduced by a factor of 10 when the ionic strength increased from 100 to 1000 mM; for silica sand, the effective retardation was reduced by a factor of 10 when ionic strength increased from 1 to 1000 mM. A two order of magnitude change in ionic strength was needed in the silica sand to observe the same change in Cs retardation as in Hanford sediments.  相似文献   

9.
Continuous time random walk (CTRW) formulations have been demonstrated to provide a general and effective approach that quantifies the behavior of solute transport in heterogeneous media in field, laboratory, and numerical experiments. In this paper we first apply the CTRW approach to describe the sorbing solute transport in soils under chemical (or) and physical nonequilibrium conditions by curve-fitting. Results show that the theoretical solutions are in a good agreement with the experimental measurements. In case that CTRW parameters cannot be determined directly or easily, an alternative method is then proposed for estimating such parameters independently of the breakthrough curve data to be simulated. We conduct numerical experiments with artificial data sets generated by the HYDRUS-1D model for a wide range of pore water velocities (υ) and retardation factors (R) to investigate the relationship between CTRW parameters for a sorbing solute and these two quantities (υ, R) that can be directly measured in independent experiments. A series of best-fitting regression equations are then developed from the artificial data sets, which can be easily used as an estimation or prediction model to assess the transport of sorbing solutes under steady flow conditions through soil. Several literature data sets of pesticides are used to validate these relationships. The results show reasonable performance in most cases, thus indicating that our method could provide an alternative way to effectively predict sorbing solute transport in soils. While the regression relationships presented are obtained under certain flow and sorption conditions, the methodology of our study is general and may be extended to predict solute transport in soils under different flow and sorption conditions.  相似文献   

10.
The effects of bentonite colloids on strontium migration in fractured crystalline medium were investigated. We analyzed first the transport behaviour of bentonite colloids alone at different flow rates; then we compared the transport behaviour of strontium as solute and of strontium previously adsorbed onto stable bentonite colloids at a water velocity of approximately 7.1·10(-6)m/s-224m/yr. Experiments with bentonite colloids alone showed that - at the lowest water flow rate used in our experiments (7.1·10(-6)m/s) - approximately 70% of the initially injected colloids were retained in the fracture. Nevertheless, the mobile colloidal fraction, moved through the fracture without retardation, at any flow rate. Bentonite colloids deposited over the fracture surface were identified during post-mortem analyses. The breakthrough curve of strontium as a solute, presented a retardation factor, R(f)~6, in agreement with its sorption onto the granite fracture surface. The breakthrough curve of strontium in the presence of bentonite colloids was much more complex, suggesting additional contributions of colloids to strontium transport. A very small fraction of strontium adsorbed on mobile colloids moved un-retarded (R(f)=1) and this fraction was much lower than the expected, considering the quantity of strontium initially adsorbed onto colloids (90%). This behaviour suggests the hypothesis of strontium sorption reversibility from colloids. On the other hand, bentonite colloids retained within the granite fracture played a major role, contributing to a slower strontium transport in comparison with strontium as a solute. This was shown by a clear peak in the breakthrough curve corresponding to a retardation factor of approximately 20.  相似文献   

11.
Solute travel time distributions were derived from breakthrough curves (BTCs) of bromide concentrations, which were measured during a large-scale tracer experiment in a quaternary fluviatile aquifer at Krauthausen. Travel time distributions to a specific point in the aquifer were derived from locally measured BTCs, using averaged absolute concentrations ?abs(x1,t), normalized concentrations ?norm(x1,t), and velocity-weighted normalized concentrations ?vw(x1,t). The travel time distributions were characterized in terms of equivalent convective-dispersive transport parameters: the equivalent solute velocity and equivalent dispersivity. Parameters were derived from BTCs using moment analyses and least-squares fits of the 1-D convection-dispersion equation (CDE). Both local and averaged BTCs showed pronounced tailing which was not well described by the 1-D CDE and which indicates the presence of macroscopic regions with low velocities in the aquifer. Therefore, dispersivities derived from CDE fits were significantly smaller than those derived from time moments. The BTCs of ?abs(x1,t) were dominated by only a few local BTCs with high concentrations and were less representative for the travel time distribution than BTCs of averaged normalized concentrations. Dispersivities derived from ?norm(x1,t) and ?vw(x1,t) were very similar. Finally, estimates of dispersivities and vertical correlation length of lnK, gamma 3, from BTCs were in agreement with a first-order estimate of the dispersivity and gamma 3 based on grain size data and flow meter measurements.  相似文献   

12.
In this note, we applied the temporal moment solutions of [Das and Kluitenberg, 1996. Soil Sci. Am. J. 60, 1724] for one-dimensional advective-dispersive solute transport with linear equilibrium sorption and first-order degradation for time pulse sources to analyse soil column experimental data. Unlike most other moment solutions, these solutions consider the interplay of degradation and sorption. This permits estimation of a first-order degradation rate constant using the zeroth moment of column breakthrough data, as well as estimation of the retardation factor or sorption distribution coefficient of a degrading solute using the first moment. The method of temporal moment (MOM) formulae was applied to analyse breakthrough data from a laboratory column study of atrazine, hexazinone and rhodamine WT transport in volcanic pumice sand, as well as experimental data from the literature. Transport and degradation parameters obtained using the MOM were compared to parameters obtained by fitting breakthrough data from an advective-dispersive transport model with equilibrium sorption and first-order degradation, using the nonlinear least-square curve-fitting program CXTFIT. The results derived from using the literature data were also compared with estimates reported in the literature using different equilibrium models. The good agreement suggests that the MOM could provide an additional useful means of parameter estimation for transport involving equilibrium sorption and first-order degradation. We found that the MOM fitted breakthrough curves with tailing better than curve fitting. However, the MOM analysis requires complete breakthrough curves and relatively frequent data collection to ensure the accuracy of the moments obtained from the breakthrough data.  相似文献   

13.
14.
In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers’ breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils’ hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity.  相似文献   

15.
In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers' breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils' hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity.  相似文献   

16.
Rate limited processes including kinetic adsorption-desorption can greatly impact the fate and behavior of toxic arsenic compounds in heterogeneous soils. In this study, miscible displacement column experiments were carried out to investigate the extent of reactivity during transport of arsenite in soils. Arsenite breakthrough curves (BTCs) of Olivier and Windsor soils exhibited strong retardation with diffusive effluent fronts followed by slow release or tailing during leaching. Such behavior is indicative of the dominance of kinetic retention reactions for arsenite transport in the soil columns. Sharp decrease or increase in arsenite concentration in response to flow interruptions (stop-flow) further verified that non-equilibrium conditions are dominant. After some 40-60 pore volumes of continued leaching, 30-70% of the applied arsenite was retained by the soil in the columns. Furthermore, continued arsenite slow release for months was evident by the high levels of residual arsenite concentrations observed during leaching. In contrast, arsenite transport in a reference sand material exhibited no retention where complete mass recovery in the effluent solution was attained. A second-order model (SOM) which accounts for equilibrium, reversible, and irreversible retention mechanisms was utilized to describe arsenite transport results from the soil columns. Based on inverse and predictive modeling results, the SOM model successfully depicted arsenite BTCs from several soil columns. Based on inverse and predictive modeling results, a second-order model which accounts for kinetic reversible and irreversible reactions is recommended for describing arsenite transport in soils.  相似文献   

17.
Evaluating non-equilibrium solute transport in small soil columns   总被引:11,自引:0,他引:11  
Displacement studies on leaching of bromide and two pesticides (atrazine and isoproturon) were conducted under unsaturated steady state flow conditions in 24 small undisturbed soil columns (5.7 cm in diameter and 10 cm long) each collected from two sites differing in soil structure and organic carbon content in North Germany. There were large and irregular variabilities in the characteristics of both soils, as well as in the shapes of breakthrough curves (BTCs) of different columns, including some with early breakthrough and increased tailing, qualitatively indicating the presence of preferential flow. It was estimated that one preferential flow column (PFC) at site A, and four at site B, contributed, respectively to 11% and 58% of the accumulated leached fraction and to more than 80% of the maximum observed standard deviation (SD) in the field-scale concentration and mass flux of pesticides at two sites. The bromide BTCs of two sites were analyzed with the equilibrium convection-dispersion equation (CDE) and a non-equilibrium two-region/mobile-immobile model. Transport parameters of these models for individual BTCs were determined using a curve fitting program, CXTFIT, and by the time moment method. For the CDE based equilibrium model, the mean values of retardation factor, R, considered separately for all columns, PFCs or non-preferential flow columns (NPFCs) were comparable for the two methods; significant differences were observed in the values of dispersion coefficients of two sites using the two estimation methods. It was inferred from the estimated parameters of non-equilibrium model that 5-12% of water at site A, and 12% at site B, was immobile during displacement in NPFCs. The corresponding values for PFCs of two sites were much larger, ranging from 25% to 51% by CXTFIT and from 24% to 72% by the moment method, suggesting the role of certain mechanisms other than immobile water in higher degrees of non-equilibrium in these columns. Peclet numbers in PFCs of both sites were consistently smaller than five, indicating the inadequacy of the non-equilibrium model to incorporate the effect of all forms of non-equilibrium in PFCs. Overall, the BTCs of individual NPFCs, PFCs and of field average concentration at the two sites were better reproduced with parameters obtained from CXTFIT than by the moment method. The moment method failed to capture the peak concentrations in PFCs, but tended to describe the desorption and tail branches of BTCs better than the curve fitting approach.  相似文献   

18.
A new reactive transport modelling approach and examples of its application are presented, dealing with the impact of sorption/desorption kinetics on the spreading of solutes, e.g. organic contaminants, in groundwater. Slow sorption/desorption is known from the literature to be strongly responsible for the retardation of organic contaminants. The modelling concept applied in this paper quantifies sorption/desorption kinetics by an intra-particle diffusion approach. According to this idea, solute uptake by or release from the aquifer material is modelled at small scale by a "slow" diffusion process where the diffusion coefficient is reduced as compared to the aqueous diffusion coefficient due to (i) the size and shape of intra-particle pores and (ii) retarded transport of solutes within intra-particle pores governed by a nonlinear sorption isotherm. This process-based concept has the advantage of requiring only measurable model parameters, thus avoiding fitting parameters like first-order rate coefficients.In addition, the approach presented here allows for modelling of slow sorption/desorption in lithologically nonuniform media. Therefore, it accounts for well-known experimental findings indicating that sorptive properties depend on (i) the grain size distribution of the aquifer material and (ii) the lithological composition (e.g. percentage of quartz, sandstone, limestone, etc.) of each grain size fraction. The small-scale physico-chemical model describing sorption/desorption is coupled to a large-scale model of groundwater flow and solute transport. Consequently, hydraulic heterogeneities may also be considered by the overall model. This coupling is regarded as an essential prerequisite for simulating field-scale scenarios which will be addressed by a forthcoming publication.This paper focuses on mathematical model formulation, implementation of the numerical code and lab-scale model applications highlighting the sorption and desorption behavior of an organic contaminant (Phenanthrene) with regard to three lithocomponents exhibiting different sorptive properties. In particular, it is shown that breakthrough curves (BTCs) for lithologically nonuniform media cannot be obtained via simple arithmetic averaging of breakthrough curves for lithologically uniform media. In addition, as no analytical solutions are available for model validation purposes, simulation results are compared to measurements from lab-scale column experiments. The model results indicate that the new code can be regarded as a valuable tool for predicting long-term contaminant uptake or release, which may last for several hundreds of years for some lithocomponents. In particular, breakthrough curves simulated by pure forward modelling reproduce experimental data much better than a calibrated standard first-order kinetics reactive transport model, thus indicating that the new approach is of high quality and may be advantageously used for supporting the design of remediation strategies at contaminated sites where some lithocomponents and/or grain size classes may provide a long-term pollutant source.  相似文献   

19.
Transport of silver nanoparticles (AgNPs) in soil   总被引:1,自引:0,他引:1  
Sagee O  Dror I  Berkowitz B 《Chemosphere》2012,88(5):670-675
The effect of soil properties on the transport of silver nanoparticles (AgNPs) was studied in a set of laboratory column experiments, using different combinations of size fractions of a Mediterranean sandy clay soil. The AgNPs with average size of ∼30 nm yielded a stable suspension in water with zeta potential of −39 mV. Early breakthrough of AgNPs in soil was observed in column transport experiments. AgNPs were found to have high mobility in soil with outlet relative concentrations ranging from 30% to 70%, depending on experimental conditions. AgNP mobility through the column decreased when the fraction of smaller soil aggregates was larger. The early breakthrough pattern was not observed for AgNPs in pure quartz columns nor for bromide tracer in soil columns, suggesting that early breakthrough is related to the nature of AgNP transport in natural soils. Micro-CT and image analysis used to investigate structural features of the soil, suggest that soil aggregate size strongly affects AgNP transport in natural soil. The retention of AgNPs in the soil column was reduced when humic acid was added to the leaching solution, while a lower flow rate (Darcy velocity of 0.17 cm/min versus 0.66 cm/min) resulted in higher retention of AgNPs in the soil. When soil residual chloride was exchanged by nitrate prior to column experiments, significantly improved mobility of AgNPs was observed in the soil column. These findings point to the importance of AgNP-soil chemical interactions as a retention mechanism, and demonstrate the need to employ natural soils rather than glass beads or quartz in representative experimental investigations.  相似文献   

20.
We performed a sensibility analysis of model selection in modeling the reactive transport of cesium in crushed granite through model calibration and validation. Based on some solid phase analysis data and kinetic batch experimental results, we hypothesized three two-site sorption models in the LEHGC reactive transport model to fit the breakthrough curves (BTCs) from the corresponding column experiments. The analysis of breakthrough curves shows that both the empirical two-site kinetic linear sorption model and the semi-mechanistic/semi-empirical two-site kinetic surface complexation model, regardless of their complexity, can match our experimental data fairly well under given test conditions. A numerical experiment to further compare the two models shows that they behave differently when the pore velocity is not of the same order of magnitude as our test velocities. This result indicates that further investigations to help determine a better model are needed. We suggest that a multistage column experiment, which tests over the whole range of practical flow velocities, should be conducted to help alleviate inadequate hypothesized models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号