首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
建立了液液萃取—气相色谱-质谱法快速测定丙烯酸生产废水中苯系物、酯类、醇类、醛类和酮类等12种半挥发性有机物的分析方法。液液萃取条件为:以二氯甲烷为萃取剂,废水p H 7,分散剂甲醇加入量10 m L/L,盐析剂Na Cl加入量300 g/L。各组分的工作曲线的线性关系良好。各组分的加标回收率为95.2%~116.0%,各组分的方法检出限为0.001~0.179μg/L,相对标准偏差均小于3.5%。该方法可用于丙烯酸生产废水中主要特征有机物的快速定量检测。  相似文献   

2.
建立了液液萃取(LLE)—气相色谱-质谱(GC-MS)法同时测定石化废水中双酚A(BPA)和邻苯二甲酸二乙酯(DEP)的新方法,对液液萃取条件进行了优化。最佳的液液萃取条件为:萃取剂为乙酸乙酯,水样调成酸性(pH<2),每次加入萃取剂0.1 mL/mL、盐析剂NaCl 0.1 g/mL,萃取次数为6次,每次萃取时间为2 min。实验结果表明:在质量浓度1~100 mg/L的范围内,BPA和DEP测定标准曲线的线性关系良好;BPA和DEP的检出限(LOD)分别为5.18 μg/L和0.89 μg/L,定量限(LOQ)分别为17.11 μg/L和2.96 μg/L,回收率为81.4 %~124.9 %,相对标准偏差(RSD)(n=7)小于5.5 %。  相似文献   

3.
建立了液液萃取(LLE)—气相色谱-质谱(GC-MS)法同时测定石化废水中双酚A(BPA)和邻苯二甲酸二乙酯(DEP)的新方法,对液液萃取条件进行了优化。最佳的液液萃取条件为:萃取剂为乙酸乙酯,水样调成酸性(pH2),每次加入萃取剂0.1 mL/mL、盐析剂NaCl 0.1 g/mL,萃取次数为6次,每次萃取时间为2 min。实验结果表明:在质量浓度1~100 mg/L的范围内,BPA和DEP测定标准曲线的线性关系良好;BPA和DEP的检出限(LOD)分别为5.18μg/L和0.89μg/L,定量限(LOQ)分别为17.11μg/L和2.96μg/L,回收率为81.4%~124.9%,相对标准偏差(RSD)(n=7)小于5.5%。  相似文献   

4.
采用自制的SSX萃取剂对FeCl3蚀刻液膜电解阴极液(简称废液)中的Ni2+进行萃取回收。考察了萃取pH、SSX萃取剂含量、萃取相比(SSX萃取剂与废液的体积比)、萃取时间、萃取次数对Ni2+萃取率的影响,以及反萃剂HCl溶液浓度、反萃相比(反萃剂与萃取液的体积比)、反萃时间对Ni2+反萃率的影响。实验结果表明: 当SSX萃取剂质量分数20%、萃取pH 2.0、萃取相比1.0、萃取时间10 min、1次萃取时,Ni2+萃取率可达74.56%;当反萃剂HCl溶液浓度6.0 mol/L、反萃相比1.5、反萃时间10 min时,Ni2+反萃率达93.10%;再生后的SSX萃取剂重复使用4次后,Ni2+的累积萃取率达91.00%,萃取剂中Ni2+的质量浓度可达14.94 g/L;反萃液经浓缩、结晶处理可制备电镀用NiCl2产品。  相似文献   

5.
陈奇奇  徐明德 《化工环保》2014,34(4):348-351
采用二次缩合反应预处理高浓度酚醛树脂生产废水。一次反应的最佳工艺条件为:甲醛加入量0.010 0 mL/mL,Ba(OH)2加入量0.005 g/mL,反应时间3 h,反应温度85 ℃。最佳工艺条件下的一次反应COD去除率为 52.9%。二次反应中,当反应温度为80 ℃、反应时间为3 h、尿素加入量为3 g/L时,二次反应COD去除率最高,为31.5%。COD=85 000 mg/L、ρ(挥发酚)= 12 000 mg/L、ρ(甲醛)=6 740 mg/L的废水经两次缩合反应处理后,出水中COD=27 400 mg/L,COD的总去除率为67.8%;ρ(挥发酚)=2 400 mg/L,挥发酚的总去除率达80.0%;ρ(甲醛)= 980 mg/L,甲醛的总去除率达84.9%。处理1 t废水还可回收酚醛树脂6.75 kg。  相似文献   

6.
王平 《化工环保》1989,9(6):352-355,368
用甲苯-乙醚(1:2)为萃取剂,国产上试102酸洗白色担体涂渍15%SF96不锈钢柱,氢焰离子化检测器,气液色谱法测定苯酐生产废水中4种有机污染物,方法灵敏度高、重现性好、准确、快速。  相似文献   

7.
探讨了苯甲酸生产残液中锰、钴和镍的提取及分离方法。首先采用酸溶液提取残液中的金属元素;然后通过氨水沉淀法分离锰;最后使用p507萃取剂分离钴和镍。实验结果表明:当苯甲酸生产残液中锰、钴和镍的质量分数分别为0.085 0%,0.307 1%,0.015 5%时,在硫酸浓度为2.0 mol/L、过氧化氢溶液质量分数为25%的条件下,锰、钴和镍的提取率分别为88.59%,87.77%,86.50%;当氨水浓度为2 mol/L时,锰的沉淀率达94.24%;在平衡水相p H为4、p507萃取剂皂化率为60%、油相中p507萃取剂的体积分数为15%的条件下,钴萃取率达87.53%,镍萃取率仅为8.46%,钴镍分离系数为68.70。  相似文献   

8.
废弃饱和盐水钻井液的固液分离   总被引:2,自引:0,他引:2  
采用化学破胶脱稳和压滤机械分离的化学强化固液分离技术处理江汉油田废弃饱和盐水钻井液(简称废钻井液).最佳固液分离工艺为:调节废钻井液的pH为6.5左右,先加入无机破胶剂(HWJ),HWJ的加入量为15 000 mg/L,以400 r/min的转速搅拌3 min,稀释1倍后,再加入有机破胶剂(HYJ),HYJ的加入量为300 mg/L,以120 r/min的转速搅拌5min.固液分离结果表明,分离后出水率达68.2%,而泥饼湿含量只有55.8%,废钻井液的COD由67 886.8 mg/L降至8 898.9 mg/L.  相似文献   

9.
赵桦萍 《化工环保》2016,36(2):226-229
在磷酸介质中利用亚硝酸根催化条件下溴酸钾氧化甲基红的褪色反应,建立了β-环糊精(β-CD)增敏催化动力学光度法,对亚硝酸根进行测定。该方法最佳反应条件为:0.05 mol/L甲基红溶液加入量8.0%(φ,下同),0.1 mol/L溴酸钾溶液加入量12.0%,1.0 mol/L稀磷酸加入量12.0%,0.15 mol/L β-CD溶液加入量16.0%,反应温度40 ℃,反应时间15 min。亚硝酸根测定的线性范围为8.0×10-6~6.0×10-4 g/L,线性回归方程的相关系数为0.996 6,检出限为4.0×10-7 g/L。亚硝酸根的加标回收率为99.0%~102.0%,水样测定结果的相对标准偏差为2.4%~3.2%。加入β-CD后测定亚硝酸根的灵敏度增加了2.5倍。  相似文献   

10.
赵桦萍 《化工环保》2016,36(3):345-349
采用β-环糊精作为H2O2氧化茜素红褪色反应的增敏剂,建立了催化动力学光度法测定工业废水中Cr(Ⅵ)的新方法。该方法最佳反应条件为:反应体系总体积25 mL,0.1 mol/L的H2SO4溶液加入量2.0 mL,1.0×10-3 mol/L茜素红溶液加入量1.5 mL,30%的H2O2溶液加入量4.0 mL,100 g/L的β-环糊精溶液加入量3.0 mL。在最大吸收波长554 nm处测定反应前后溶液的吸光度,Cr(Ⅵ)的质量浓度与吸光度差值(ΔA)在4.0×10-4~5.4×10-2 mg/L范围内符合比尔定律,线性回归方程为:ΔA=18.52ρ+ 0.018,相关系数为0.996 6,检出限为3.5×10-4 mg/L,加标回收率为99.46%~101.3%,6次测定的相对标准偏差小于等于2.4%。该法的测定结果与GB/T 7467-1987中的二苯碳酰二肼分光光度法相近。  相似文献   

11.
改性高岭土处理含酸性媒介染料的印染废水   总被引:1,自引:1,他引:0  
用十六烷基三甲基溴化铵(CTMAB)改性的高岭土处理以水溶性酸性媒介染料为主的印染废水.实验结果表明,当CTMAB-高岭土加入量为0.6 g/L、用石灰乳控制废水pH为9.5~10.0、聚丙烯酰胺的加入量为2.0 mg/L时,废水的处理效果最佳,废水色度和COD去除率分别达到98.0%和92.0%以上,出水色度和COD达到了GB4287-92<纺织染整工业水污染物排放标准>一级排放标准.  相似文献   

12.
采用自制的负载型CuO-ZnO-CeO2/γ-Al2O3催化剂,常温常压下通过紫外辐照-催化湿式氧化技术处理酸性大红GR模拟染料废水。考察了催化剂加入量、H2O2加入量、废水pH、反应时间、初始酸性大红GR质量浓度等对废水脱色率的影响。实验得到最佳工艺条件为初始酸性大红GR质量浓度200mg/L,催化剂加入量10.0g/L,H2O2加入量2.0mL/L,废水pH4,反应时间2h。最佳工艺条件下废水脱色率达99.33%。  相似文献   

13.
将臭氧分别与超声波、H2O2、紫外光等联用,深度处理干法腈纶生产厂生化池出水,对各种联用技术的处理效果进行了研究。实验结果表明:在进水流量2 L/min、反应时间30 min、臭氧加入量3.5 g/(L?h)的条件下,当超声功率为300 W时,臭氧-超声联用技术的COD去除率为30.0%;当H2O2加入量为0.4 mL/L时,臭氧-H2O2联用技术的COD去除率为50.7%;当紫外灯功率为40 W时,臭氧-紫外光联用技术的COD去除率为49.9%;在各种联用技术中,臭氧-H2O2联用技术的运行成本最低(为7.5 元/t),且处理后出水COD为143 mg/L,达到《<污水综合排放标准>(GB8978—1996)中石化工业COD标准值修改单》中的一级排放标准。综合考虑,臭氧-H2O2联用技术是深度处理干法腈纶废水的最优工艺。  相似文献   

14.
采用总铬自动在线检测仪测定水样中的总铬含量。测定5 m L水样的最佳实验条件为:过硫酸钾质量浓度为2.0 g/L的过硫酸钾溶液加入量1.0 m L,浓度为0.01 mol/L的硫酸加入量1.0 m L,二苯碳酰二肼质量浓度为2 g/L的显色剂加入量1.0 m L。该方法的检测范围为0.01~2.50 mg/L,检出限为0.01 mg/L。方法的加标回收率为97.5%~103.8%,相对标准偏差为1.17%~1.27%。  相似文献   

15.
采用酸析—撞击流旋转填料床( IS-RPB)强化Fenton试剂氧化法预处理二硝基甲苯(DNT)生产废水.最佳工艺条件为:酸析工段废水pH 1.0,IS-RPB转速1 500 r/min,FeSO4加入量0.06 mol/L,H2O2加入量0.45mol/L,反应温度40 ℃,反应时间4h.在该条件下处理DNT生产废水,COD去除率可达98.95%,硝基化合物去除率达98.32%,BOD5/COD为 0.65.经该方法预处理后的DNT生产废水可适用于生化法进行后续处理.  相似文献   

16.
混凝-催化氧化法预处理氨基C酸生产废水   总被引:1,自引:1,他引:0  
采用混凝-催化氧化组合工艺预处理氨基C酸生产废水,考察了混凝剂加入量、废水pH、氧化剂加入量、反应时间和催化剂的重复使用次数等因素对废水处理效果的影响。混凝-催化氧化法预处理氨基C酸生产废水的最佳工艺条件为:质量分数为10%的FeSO4溶液作混凝剂,加入量为250InL/L;质量分数为1%的ClO2溶液作氧化剂,加入量为75mL/L;Ni/AC作催化剂,加入量为40g/L;废水pH为3.2;催化氧化反应时间为60min。在该条件下,废水的COD去除率可达78.4%,BOD,/COD由原来的0.076提高到0.292,可生化性得到明显改善。Ni/AC催化剂连续使用7次后仍保持稳定的催化活性。经济性初步分析表明,1t废水的处理成本约为16元。  相似文献   

17.
陈莉荣  陈毛毛  刘文 《化工环保》2015,35(3):318-323
以拜耳法赤泥为原料、Na Cl为助溶剂,采用酸浸法溶出赤泥中的铁、铝元素,再与硅酸钠、硫酸氧钛反应制备出高效混凝剂含钛聚硅酸铝铁(T-PSAF),并将其用于模拟亚甲基蓝印染废水的脱色。实验结果表明:在硫酸浓度为8 mol/L、液固比(硫酸体积与干赤泥质量之比)为14 m L/g、酸浸温度为80℃、酸浸时间为80 min、Na Cl加入量为0.10 g/g(以干赤泥计)的优化酸浸条件下,铁、铝的浸出率分别为88.25%和73.21%;在n(Fe+Al)∶n(Ti)∶n(Si)=0.3∶0.3∶1、熟化p H为4~5、熟化时间为2 h、混凝剂加入量为25 m L/L的优化混凝条件下,初始亚甲基蓝质量浓度为10 mg/L的废水的脱色率可达87.1%,而当初始亚甲基蓝质量浓度增至150~200 mg/L时废水脱色率可达99%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号