首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid removal of flutriafol in water by zero-valent iron powder   总被引:1,自引:1,他引:0  
Ghauch A 《Chemosphere》2008,71(5):816-826
A study of the effect of zero-valent iron (ZVI) powder is carried out for the first time on the degradation of flutriafol ((RS)-2,4'-difluoro-alpha-(1H-1,2,4-triazol-1-ylmethyl)-benzhydryl alcohol, C(16)H(13)F(2)N(3)O), a bifluorinated soil and water persistent triazole pesticide using a laboratory scale device consisting of a 20 ml pyrex serum vials fixed to a Vortex agitator. Different amounts of ZVI powder (10-50 g l(-1)) at pH 6.6 and room temperature were investigated. Experiments showed an observed degradation rate k(obs) directly proportional to the surface of contact of flutriafol with ZVI. Flutriafol degradation reactions demonstrated first order kinetic with a half-live of about 10.8+/-0.5 min and 3.6+/-0.2 min when experiments were conducted at [ZVI]=10 g l(-1) into oxygenated and anoxic solutions, respectively. Three analytical techniques were employed to monitor flutriafol degradation and to understand solution and by-products behaviors: (1) A UV-Vis spectrophotometer; (2) a high performance liquid chromatography (HPLC) coupled with a photo diode array (PDA) and fluorescence detectors; (3) a similar HPLC coupled with a PDA and a mass spectrometer detectors equipped with an atmospheric pressure photoionization source. Results showed a complete disappearance of flutriafol after 20 min of contact with ZVI, the loss of fluorescence properties of the final by-products, the defluorination of the triazole pesticide via hydroxylation reaction and finally the hydrogenation of the triazole ring.  相似文献   

2.
The objective of this study was to assess the effects of heavy metals on microbial decomposition of cellulose in heavy metal-contaminated soils using a cotton strip assay. The assay is a measure of the potential of soil microorganisms to decompose the plant polymer, cellulose. Cellulolytic activity in soil was assessed by determining the reduction in tensile strength of the buried cotton strips over a 25- and 45-day period. Soils were obtained from a rifle range that contain high levels of lead, copper and zinc. The site has been used for approximately 50 years, resulting in metal levels of up to 30,000 mg/kg of lead, 4000 mg/kg of copper and 600 mg/kg of zinc in the most contaminated soils. All the metal-contaminated soils had lower degradation rates than the uncontaminated soils tested. Among the contaminated soils, however, the heavy metal concentration was not the major factor in determining the loss in tensile strength of the cotton strips, where cellulose decomposition was governed by other soil physicochemical properties. Soil with a higher cation exchange capacity, readily oxidisable material and volatile solids content had the greatest loss in tensile strength of cotton strips. Microbial adaptation to the presence of high concentrations of soil heavy metals and reduced bioavailability of metals is the likely explanation for this phenomenon.  相似文献   

3.
The short-term effect of three broad spectrum fungicides on microbial activity, microbial biomass, soil ergosterol content, and phospholipid fatty acid (PLFA) profiles was studied. A silty clay loam soil was treated separately with captan, chlorothalonil and carbendazim at three different dosages of each fungicide. Chlorothalonil and carbendazim significantly altered soil microbial activity. However, changes in soil microbial biomass were only observed in soil treated with higher dosages of these fungicides. All dosages of fungicides significantly decreased fungal biomass as estimated by soil ergosterol content. PLFA analysis indicated that there was a shift in PLFA pattern. Higher dosages of all three fungicides decreased a straight-chain PLFA 22:0. In addition, soil treated with carbendazim increased cyclopropyl fatty acids. Compared to untreated soil, higher dosages of both captan and chlorothalonil affected PLFA 10Me 16:0, indicating that these fungicides can reduce actinomycetes population. Finally, our results suggest that application of both captan and chlorothalonil decreased Gram-positive to Gram-negative ratio.  相似文献   

4.
White lupin (Lupinus albus L.) is an annual crop that has been used for phytostabilization of acidified multi-contaminated soils. Once the culture cycle is over, after shoot harvesting, a progressive transference of contaminants from roots to soil may take place as decomposition of roots occurs. An incubation experiment with Cu, Zn, Cd, and As-loaded roots of white lupin and soils with different pH values and concentrations of these contaminants from the area affected by a mine spill at Aznalcóllar (near Seville, Spain) was performed in order to assess the effect of the decomposition of the roots to the pH and (NH4)2SO4-extractable levels of these pollutants in the soils. Pollutants loaded-roots were mineralized (56 d) at a ratio similar to animal manures (15.8-19.4% of total organic carbon) in soil. The estimated root inputs of contaminants in comparison to their extractable concentrations in soil were high, especially in the control, non-contaminated and neutral contaminated soils. However, the extractable concentrations of the toxic elements in the soil were mainly governed by soil pH. Hence, the correction and maintenance of the soil pH within the range 5-6 after lupin culture is essential for long-time phytostabilization of acidified multi-contaminated soils.  相似文献   

5.
基于获得高效纤维素降解细菌的目的,通过LB培养基的培养以及刚果红培养基的筛选,从牛粪堆肥中筛选获得2株高效纤维素降解细菌。经鉴定,分别为枯草芽胞杆菌(Bacillus subtilis)和地衣芽胞杆菌(Bacillus licheniformis)。所筛选得到的菌种具有很高的滤纸降解能力,可在6d内使滤纸剧烈崩溃,振摇成均匀糊状;其中,地衣芽胞杆菌的羧甲基纤维素钠酶活峰值在发酵第4天达到峰值(237U/g)。  相似文献   

6.
The Minicontainer-test, first described by Eisenbeis (1993), was designed to study the kinetics of organic residue decomposition at a microsite level. It is derived from the litterbag technique and consists of polyethylene minicontainers (volume about 1.5 cm3) filled with a test substrate (litter, straw, cellulose, etc.). The minicontainers (MCs) are closed at either end with plastic gauze discs of variable mesh size (e.g. 20 μm, 250 μm, 500 μm or 2 mm). A definite number of such units are inserted into PVC-bars, which can be implanted into the soil horizontally or vertically, or be exposed on the soil surface horizontally. The bars are very stable and can be exposed in different environments for months to years. If required, the bars can be removed temporarily and stored, e.g. during soil cultivation. Should fresh litter be used, two phases of decomposition can be distinguished: a fast initial phase, which can be mainly related to the effect of leaching, and a second slow phase depending mainly on the activity of soil organisms and litter quality. Several questions can be addressed to investigations using MCs, e.g. 1) parts of the soil fauna which are involved in decomposition (nematodes, microarthropods, and smaller specimens of the macrofauna, e.g. enchytraeidae, diplopods and dipteran larvae) can be extracted from the litter substrate using a miniscale high gradient extractor, 2) the organic mass loss of litter can be determined, 3) microbial biomass (Cmic, Nmic) can be assessed by fumigation extraction and 4) microbial activity (respiration) in the test substrate can also be assessed by use of standardised methods. Compared to litterbag studies, the larger number of small replicate units improves the statistical evaluation. Until today the Minicontainer-test has been applied in forestry and agriculture, e.g. studying the effects of liming, soil restoration and the application of insecticides, e.g. Diflubenzuron (Dimilin) and Btk (Bacillus thuringiensis var.kurstaki).  相似文献   

7.
CL-20 is a relatively new energetic compound with applications in explosive and propellant formulations. Currently, information about the fate of CL-20 in ecological systems is scarce. The aim of this study is to evaluate the biodegradability of CL-20 in soil environments. Four soils were used where initial CL-20 concentrations (above water solubility) ranged from 125 to 1500 mg of CL-20 per kg dry soil (corresponding to the concentrations derived from unexploded ordnance, low order detonation, or manufacturing spills). CL-20 appears to be biodegradable in soil under anaerobic conditions, and additions of organic substrates can substantially accelerate this process. However, CL-20 is not degraded in soil under aerobic conditions kept in the dark at temperatures up to 30 degrees C without organic amendments. Additions of starch or cellulose promote the biodegradation of CL-20 under aerobic conditions. Soil microbial community mediated biodegradation and plant uptake appears to enhance CL-20 biodegradation, the latter suggesting a possible route for CL-20 to entry in the food chain.  相似文献   

8.
水热处理为纤维素废弃物资源化应用开辟了一条新的途径,文中就水热处理技术的特点、水热条件下纤维素的降解过程进行了介绍,并着重综述了纤维素废弃物水热制H2方面的研究进展,同时对纤维素及其废弃物的水热处理和资源化研究前景进行了展望。  相似文献   

9.
水热处理为纤维素废弃物资源化应用开辟了一条新的途径,文中就水热处理技术的特点、水热条件下纤维素的降解过程进行了介绍,并着重综述了纤维素废弃物水热制H2方面的研究进展,同时对纤维素及其废弃物的水热处理和资源化研究前景进行了展望.  相似文献   

10.
Cellulose decomposition in soils amended over twenty year ago with heavy metal-contaminated sewage sludges was assessed by using the cotton-strip assay. The soils of the Luddington Experiment now contain concentrations of Cu, Ni and Zn in selected plots that approximate to or exceed the statutory limits for these elements in sewage sludge-amended soils. The rates of cellulose decomposition were generally lower in the plots with elevated metal concentrations, relative to uncontaminated sludge-amended and unsludged controls. Generally, the metal-rich plots showed reductions in the time taken to reach 50% cotton-tensile-strength loss (CTSL). However, the reductions could not be consistently related to any one metal. The difference in decomposition rates between treatments was systematically reduced over the duration of a time-course experiment. A lower initial population of the appropriate decomposer community of micro-organisms may account for the observed short-term lag in decomposition rates.  相似文献   

11.
Y S Shen  Y Ku 《Chemosphere》2002,46(1):101-107
The decomposition of gas-phase trichloroethene (TCE) in air streams by direct photolysis, the UV/TiO2 and UV/O3 processes was studied. The experiments were carried out under various UV light intensities and wavelengths, ozone dosages, and initial concentrations of TCE to investigate and compare the removal efficiency of the pollutant. For UV/TiO2 process, the individual contribution to the decomposition of TCE by direct photolysis and hydroxyl radicals destruction was differentiated to discuss the quantum efficiency with 254 and 365 nm UV lamps. The removal of gaseous TCE was found to reduce by UV/TiO2 process in the presence of ozone possibly because of the ozone molecules could scavenge hydroxyl radicals produced from the excitation of TiO2 by UV radiation to inhibit the decomposition of TCE. A photoreactor design equation for the decomposition of gaseous TCE by the UV/TiO2 process in air streams was developed by combining the continuity equation of the pollutant and the surface catalysis reaction rate expression. By the proposed design scheme, the temporal distribution of TCE at various operation conditions by the UV/TiO2 process can be well modeled.  相似文献   

12.
Cao J  Guo H  Zhu HM  Jiang L  Yang H 《Chemosphere》2008,70(11):2127-2134
Sorption and desorption of the herbicide prometryne in two types of soil subjected to the changes of pH and soil organic matter and surfactant were investigated. The sorption and desorption isotherms were expressed by the Freundlich equation. Freundlich Kf and n values indicate that soil organic matter was the major factor affecting prometryne behavior in the test soils. We also quantified the prometryne sorption and desorption behavior in soils, which arose from the application of Triton X-100 (TX100), a nonionic surfactant and change in pH. Application of TX100 led to a general decrease in prometryne sorption to the soils and an increase in desorption from the soils when applied in dosages of the critical micella concentration (CMC) 0.5, 1 and 2. At the concentration below the CMC, the non-ionic surfactant showed a tendency to decrease prometryne sorption and desorption. It appeared that TX100 dosages above CMC were required to effectively mobilize prometryne. Results indicate that the maximum prometryne sorption and minimum prometryne desorption in soils were achieved when the solution pH was near its pKa. Finally, the influence of TX100 on the mobility of prometryne in soils using soil thin-layer chromatography was examined.  相似文献   

13.
Studies on persistence, mobility and the effect of repeated application of permethrin on its half-life were carried out under field conditions. The half-life of permethrin in the top 20 cm of the soil increased from 11.5 to 23.6 days as the application rates increased from 35 to 140 g ha(-1). Induced by heavier rainfall, more residues moved downward in trial 2 than in trial 1. Repeated applications enhanced degradation rates and mobility of permethrin in the soil. The residue level in the 0-5-cm layer was reduced at day 28 after 17 consecutive applications to a level lower than after 5 applications. The half-life of permethrin was reduced from 15.9 days to 11.2 days after 5 and 17 applications, respectively. The residue reached the 15-20 cm layer much earlier (approximately 3 days after treatment) in soil that received 17 applications as compared to those with two applications.  相似文献   

14.
The diffusive gradients in thin films (DGT) technique was evaluated in modelling wheat (Triticum aestivum) arsenic toxicity using a dataset of As-contaminated soil samples (n = 28) collected from former sheep dip sites. Above ground wheat biomass from a 21-day early growth bioassay was adopted as the response variable and the dose-response relationships were modelled using the three-parameter sigmoid equation. The DGT-derived effective soil solution As to P concentration ratios corresponded strongly to the differences in the response variable. With a single sample identified as an outlier, the 95% confidence interval for the effective soil solution As/P molar concentration ratio which resulted in a 50% reduction in the response (EC50) was 0.168-0.360. While the DGT-derived soil measure of As/P ratio was shown as a promising phytotoxicity predictor, the influence of P nutrition on the dose-response relationship deserves further consideration.  相似文献   

15.
Effects of repeated applications of the herbicide butachlor (N-(butoxymethyl)-2-chloro -N-2′,6′-dimethyl acetanilide) in soil on its persistence and soil microbial functional diversity were investigated under laboratory conditions. The degradation half-lives of butachlor at the recommended dosage in soil were calculated to be 12.5, 4.5, and 3.2 days for the first, second, and third applications, respectively. Throughout this study, no significant inhibition of the Shannon-Wiener index H′ was observed. However, the Simpson index 1/D and McIntosh index U were significantly reduced (P ≤ 0.05) during the initial 3 days after the first application of butachlor, and thereafter gradually recovered to a similar level to that of the control soil. A similar variation but faster recovery in 1/D and U was observed after the second and third Butachlor applications. Therefore, repeated applications of butachlor led to more rapid degradation of the herbicide, and more rapid recovery of soil microorganisms. It is concluded that repeated butachlor applications in soil had a temporary or short-term inhibitory effect on soil microbial communities.  相似文献   

16.
In this study, DNA damage to earthworms (Eisenia fetida) after in vivo exposure to contaminated soils was measured by detecting DNA strand breakages (DSBs) and causality was analyzed through fractionation based bioassays. A non-linear dose-response relationship existed between DNA damage and total soil PAHs levels. DNA damage, measured with the comet assay, and its repair process, were observed. To identify the chemical causality, an in vitro comet assay using coelomocytes was subsequently performed on the fractionated organic extracts from soils. The results showed that the PAHs in the soils were responsible for the exerting genotoxic effects on earthworms. When normalized to benzo(a)pyrene toxic equivalent (TEQ(BaP)), the saturation dose in the dose-response curve was about 10ng TEQ(BaP) g(-1) soil (dw).  相似文献   

17.
The effects of repeated applications of the fungicide triadimefon in agricultural soil on the microbial functional diversity of the soil and on the persistence of the fungicide in the soil were investigated under laboratory conditions. The degradation half-lives of triadimefon at the recommended dosage, simulated by a first-order kinetic model, were 23.90, 22.95, and 21.52 days for the first, second, and third applications, respectively. Throughout this study, no significant inhibition of the Shannon-Wiener index (H') was observed. However, the Simpson index (1/D) and the McIntosh index (U) were obviously reduced (p ≤ 0.05) during the initial 3 days after the first triadimefon application and thereafter, gradually recovered to or exceeded the level of the control soil. A similar trend in variation but with a faster recovery in the 1/D and U was observed after the second and third triadimefon applications, respectively. Taken together, the above results indicate that the repeated application of triadimefon enhanced the degradation rate of the fungicide and the recovery rate of the soil microbial functional diversity. It is concluded that repeated triadimefon applications in soil have a transient or temporary inhibitory effect on soil microbial communities.  相似文献   

18.
19.
20.
Aflatoxin decomposition in various soils   总被引:1,自引:0,他引:1  
The persistence of aflatoxin in the soil environment could potentially result in a number of adverse environmental consequences. To determine the persistence of aflatoxin in soil, 14C-labeled aflatoxin B1, was added to silt loam, sandy loam, and silty clay loam soils and the subsequent release of 14CO2 was determined. After 120 days of incubation, 8.1% of the original aflatoxin added to the silt loam soil was released as CO2. Aflatoxin decomposition in the sandy loam soil proceeded more quickly than the other two soils for the first 20 days of incubation. After this time, the decomposition rate declined and by the end of the study, 4.9% of the aflatoxin was released as CO2. Aflatoxin decomposition proceeded most slowly in the silty clay loam soil. Only 1.4% of aflatoxin added to the soil was released as CO2 after 120 days incubation. To determine whether aflatoxin was bound to the silty clay loam soil, aflatoxin B1 was added to this soil and incubated for 20 days. The soil was periodically extracted and the aflatoxin species present were determined using thin layer chromatographic (TLC) procedures. After one day of incubation, the degradation products, aflatoxins B2 and G2, were observed. It was also found that much of the aflatoxin extracted from the soil was not mobile with the TLC solvent system used. This indicated that a conjugate may have formed and thus may be responsible for the lack of aflatoxin decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号